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Abstract

Automatic recognition of parts is an important problem in
many industrial applications. One model of the problem is:
Given a finite set of polygonal parts, use a set of “width”
measurements taken by a parallel-jaw gripper to determine
which part is present. We study the problem of computing
efficient strategies (“grasp plans”), with the goal to minimize
the number of measurements necessary in the worst case. We
show that finding a minimum length grasp plan is NP-hard,
and give a polynomial time approximation algorithm that is
simple and produces a solution that is within a log factor
from optimal.

1 Introduction

In automated manufacturing it is often necessary to rec-
ognize parts and their orientation; see [1, 2, 3,4, 6, 9]. In
this paper we discuss a model suggested in a few recent
robotics papers [3, 9, 4], in which a finite set of polygonal
parts is given and one considers a parallel-jaw gripper
that can grasp any polygonal part in a finite number of
stable grasps. A grasp is called stable if at least 3 ver-
tices of the part are in contact with the gripper jaws,
and any further closing of the gripper would deform the
part. See Figure 1 for an example of two unstable and
one stable grasps of a triangle. We assume that a grip-
per positioned at some orientation of its parallel jaws
can exert force causing a part to rotate until it reaches
a position in which it is stably grasped. A measure-
ment is then taken of the distance between the gripper
jaws, which we call a width of the part. We wish to find
a sequence of angles for the gripper, conditional on the
measurements obtained, for efficiently recognizing a part
from the given library of parts. (In [3, 9, 4], “width” is
called diameter.)

We assume that all parts are convex polygons; this is
without loss of generality, since the measurements ob-
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Figure 1: Unstable and stable grasps

tained by gripping an arbitrary polygonal part are iden-
tical to those obtained by gripping a part that is the
convex hull of the polygon. Hence, in a stable grasp,
at least one side (edge of the polygonal part) is flush
against one of the jaws.

It is easy to see that, for a given set of width mea-
surements, there is more than one polygonal part that
is consistent with these measurements. In fact, Rao
and Goldberg [9] show that there are an infinite (un-
countable) number of polygonal parts consistent with
any set of measurements, most of which have parallel
sides. They further show that, given a set of width mea-
surements, deciding whether there exists a polygon with
no parallel sides, consistent with these measurements is
NP-complete.

These results motivated [9, 4] to study the problem
of identifying a part from a known library of u parts,
P = {Py, P,,...P,}, using a minimum number of mea-
surements. Following their definitions, a grasp action at
angle a consists of rotating the jaws of the gripper to an
angle of a with the z-axis, closing the gripper so that
the part is in a stable grasp and measuring the width. A
grasp plan is a tree of grasp actions, where each internal
node corresponds to a grasp action. Alternatively, we
can think of each node as a set of candidate polygonal
parts from our library, where the root of the tree corre-
sponds to the entire library and the leaves correspond to
single parts. The length of a grasp plan is the depth of
this tree. Note that if all grasp actions on all parts yield
distinct width measurements, then a single grasp serves
to do discrimination; thus, the need to devise efficient
grasp plans arises from a type of “degeneracy” (or near
degeneracy) that exists in the library of parts (and is
quite common in industrial settings).

As an example, consider a library of three parts — a
square of side length 1, a square of side length 2, and a
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rectangle whose side lengths are 1 and 2. Clearly any
grasp action yields a width measurement of 1 or 2. An
optimal grasp plan in this case will consist of a first grasp
action, yielding two children of the root, corresponding
to width measurements 1 and 2. Each of these nodes
corresponds to two possible parts at one possible orien-
tation. In both cases, a second grasp action at angle
o = 90° will suffice to determine uniquely the part and
its orientation. See Figure 2.

Note, however, that there are sets of shapes (e.g., a
square of side length 1 and an equilateral triangle of
altitude 1) for which it is impossible to use width mea-
surements to identify which shape is present. Thus, in
the remainder of the paper, we assume that the given
library P consists of parts that are identifiable using
width measurements, or at least that our recognition
problem is limited to determining the equivalence class
of a part.

Figure 2: Grasp tree example

Let n be the total number of edges of the (convex)
polygonal parts in the library P. Govindan and Rao [4]
and Rao and Goldberg [9] give two algorithms: one
constructs an optimal plan in time O(n*2"), and the
other constructs a suboptimal plan in time O(n? logn).
Govindan and Rao [4] conjecture that the problem of
finding an optimal plan is NP-hard, and leave open the
problem of finding a suboptimal grasp plan with a good
performance guarantee.

In this paper, we resolve both open problems. In Sec-
tion 2, we prove that finding an optimal grasp plan is
NP-hard; in Section 3, we give a simple polynomial-time
algorithm to obtain a provably good grasp plan, whose
length is within a logarithmic factor of optimal.

2 Proof of Hardness

In this section we show that the problem of finding an
optimal grasp plan is NP-hard. The proof is modeled
after the one given in Arkin et al. [2]. We use a reduc-
tion from the ABSTRACT DECISION TREE PROBLEM
defined and shown to be NP-complete by Hyafil and

Rivest [5]: Let & = {1,2,...u} be a universal set, and
T ={T1,T>,...,Tn} a set of tests. For each test j and
each element ¢, we either have Tj(7) = “true” or “false”.
We also let T} denote the set of elements for which the
test Tj is true. The problem is to construct an identi-
fication procedure for the elements in &/ such that the
number of tests used is minimum. An identification pro-
cedure can be thought of as a binary decision tree, and
the problem is to minimize its height.

Theorem 1 The problem of finding an optimal grasp
plan for a set of (convez) polygonal parts is NP-hard.

Proof. We show that for any instance of the ABSTRACT
DEcisioN TREE PROBLEM, there is an equivalent in-
stance of the grasp planning problem. Given an instance
of the ABSTRACT DECISION TREE PROBLEM, we build
a library of polygonal parts, one for each element, as fol-
lows. Let M denote a regular 2(m+ 1)-gon with sides of
unit length, and consider the sides of M to be indexed

Jj=1,...,2(m + 1), where edge j is between vertices
vj—1 and v;. (For ease of notation, we let vo = va(m41)-)
For each edge j = 1,...,m+ 1 of M, we construct ei-

ther a “small” or a “smaller” triangle with base edge
J. For this purpose, let y; be the point on edge j at
distance 1/2 from v;_; (and therefore distance 1/2 from
vj). For each edge j = 1,...,m+ 1 let zj,a} ¢ M
be points “just outside” edge j, at distances ¢!/j and
€?/j from y;, with y; the perpendicular projection of
z},z? onto edge j. Let A; and 6; be the triangles de-
termined by edge j and points z] and 22, respectively.
Choose ¢! small enough so that M U (U;4;) is convex,
and €2 < e! /(m+1). (By this choice, M U (U;6;) is also
convex.) We think of A; as the “small” triangle, and of
6; as the “smaller” triangle.

Let P; be the convex polygon that is the union of M
and of small triangles A; for each test j = 1,...,m that
is “true” for element i, and of smaller triangles 6; for
each test j = 1,...,m that is “false” for element i. In
other words, each edge j = 1,...,m is “bumped out”
by €!/j if j is true for element i and by €2/; otherwise.
Finally, for edge m + 1 include the small triangle A4,
for all polygons P;. Formally,

P=MU U AjlU
j : 1€T; j

See Figure 3 for an example in which m =2,s0 M is
a hexagon. Assume T3j(1) = “false” and T2(1) = “true”.
We show the part corresponding to element 1, in which
edge 1 is bumped out by the smaller triangle é;, and
edges 2 and 3 are bumped out by small triangles A,
and Aj respectively.

Note that each of the polygonal parts is obtained from
M by replacing m + 1 of its edges by 2(m + 1), (the
m + 1 triangles), and thus each of the polygons in our

: igT;
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Figure 3: An example of the hardness construction

library has exactly 3(m + 1) sides. Furthermore, no two
edges are parallel. Consider possible grasps having one
Jjaw resting on one of the two possible edges of triangle
A;j ((vj-1,2}) or (z},v;)): For small enough choices of
¢!, these grasps are not stable, as the projection of the
vertex “across” from the edge (vm4j Or vmyj+1) onto
the line containing the edge of the triangle does not lie
on the triangle edge. The same is clearly also true for
grasps in which one jaw rests on an edge of triangle §;.
Hence, each polygonal part will have exactly (m + 1)
stable grasps, each yielding a different width measure-
ment. Since M is symmetric, a grasp action on M at any
angle yields the same measurement, call it w. For any
polygonal part P; there are two types of stable grasps:

o One jaw rests on an edge k of M, where m +2 < k <
2(m + 1), and the other on a point z} for some 1 <
J £ m + 1. This grasp has width measurement C; &f
w+e'/j.

e One jaw rests on an edge k of M, where m+ 2 < k <

2(m 4+ 1) — 1, and the other on a point zZ for some

1 < j £ m. This grasp has width measurement c;, wf

w+€e/j.
Note that each polygonal part P; has (m+1) different
width measurements from the set of 2m+1 different pos-

sible measurements (Cpn41, plus Cj,¢j for j = 1,...,m).
Furthermore, all polygonal parts have width measure-
ment Cry41.

We are now ready to show that an abstract decision
tree of height K exists if and only if there is a grasp plan
of length K + 1 for the constructed polygonal parts.

Consider a tree for an optimal grasp plan. The first
grasp action yields a measurement that is one of the
2m + 1 possible measurements; hence, the root of the

tree has that many children. After this first measure-
ment, which is done at an arbitrary angle o, each polyg-
onal part is consistent with this measurement in at most
one possible orientation. Measurement C,,4; is consis-
tent with each polygonal part in ezactly one orientation.
It is easy to see that the length of an optimal grasp
plan is given by the height of the subtree rooted at this
node: while this measurement tells us the orientation of
the part in question, it yields no additional information,
whereas other measurements may also eliminate some
possible candidate parts.

Any further measurement (beyond the first) is equiv-
alent to performing a test 7 for j = 1,...,m on the

element i. If the measurement obtained is Cj, a “small-

J” grasp, we conclude that Tj(i) is true. Otherwise, if
a “smaller-5” grasp, c;, is obtained, we conclude that
test T;(7) is false. Hence we can think of a grasp action
in some angle o; as answering whether test T} is true
or false. Thus, any optimal abstract decision tree has
a corresponding grasp plan tree, in which the subtree
rooted at the node corresponding to the first measure-
ment being Crny1 has the same height as the abstract
decision tree. ‘

To summarize, we have shown that for every AB-
STRACT DECISION TREE PROBLEM there is a grasp
plan problem, thus showing that the problem of find-
ing an optimal grasp plan is NP-hard. Clearly the de-
cision version of the problem, namely, deciding whether
there exists a grasp plan of length at most K, for some
constant K, is therefore NP-complete. (]

3 Approximation Algorithm

Since finding a minimum length grasp plan is NP-hard,
it is natural to attempt to devise approximation algo-
rithms that are guaranteed to obtain a solution close to
optimal. While several algorithms exist for designing
grasp plans, no previous method has proven bounds on
its worst-case performance.

We have seen that each candidate grasp action parti-
tions the set of polygonal parts P into two or more sets,
corresponding to parts that have a width measurement,
at a certain angle, which is consistent with the measure-
ment obtained. In other words, each node of the decision
tree corresponds to a set of part/orientation candidate
pairs. In particular, the root of the tree represents all u
parts at all angles that have stable grasps, a set of size
at most n. The leaves of the tree correspond to a single
part, at one or more possible orientations. Let ¢;(v) be
the number of possible orientations for part i at node v
of the tree. We define the weight of a node v in the tree
to be

wgt(v) = z ¢i(v) - ¢;(v).

1<i<j<u
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The weight of a node v can be interpreted using
a notion of an ambiguity graph, which is a u-partite
graph, on at most n nodes, one corresponding to each
part/orientation pair. An edge exists between two nodes
if they correspond to different polygonal parts that are
consistent with all measurements obtained in grasp ac-
tions so far; i.e., corresponding to nodes of the tree in the
path between node v and the root. The weight of node v
in the decision tree is simply the number of edges in the
corresponding ambiguity graph. Since any grasp plan
must distinguish between all pairs of parts, the weight
of each leaf node in the tree must be zero. The weight
of the root node is at most (), since there can be no
more than this many edges in an ambiguity graph on n
nodes.

A natural “greedy” heuristic in choosing an angle for
a good grasp action is to select an angle o that parti-
tions the possible candidate parts as evenly as possible.
Specifically, at each node of the decision tree, we select
a grasp action that minimizes the maximum weight of
its children. In this section, we prove that the greedy
heuristic always constructs a tree whose height is not
more than a small (logarithmic) factor times the opti-
mal height.

In [2, 1] the problem of identifying a geometric model
from a library of models using probes as tests was stud-
ied. It was shown that for a similar decision tree problem
this natural greedy strategy yields a log-factor approxi-
mation. The same proof can be used for an ABSTRACT
DEcisioN TREE PROBLEM obeying certain monotonic-
ity requirements. Although the grasp plan problem dif-
fers from those previously considered, in that it results
in a multi-way rather than a binary tree, the same proof
technique applies. (See Moret [8] for a survey of various
heuristics for related decision tree problems.)

Theorem 2 For u conver polygonal parts, P = {P;,
P,,...P,} having a total of n vertices, the greedy heuris-
tic grasp plan can be constructed in polynomial time.

Proof. We identify each part-orientation pair with one
of the (at most) n edges that is a possible contact edge
with a jaw face, after the initial grasp (which we can
assume is parallel to the z-axis, without loss of gener-
ality). For an edge e, we store e.part (the index of the
part containing the edge e) and e.stable (the current
edge of e.part that is in contact with a jaw face). Ini-
tially, e.stable = e, but e.stable may change as we apply
grasps.

All grasps will be considered relative to the current
jaw face. If edge e.stable is currently in contact with a
jaw face, then each of the other edges of e.part defines
a candidate grasp g, in that any grasp we apply at this
stage will possibly result in one of the other edges of
e.part being in contact with a jaw face. Thus, we can
consider grasps to be associated with the edges of e.part.
This results in O(n?) possible grasps.

We will construct a grasp plan (a tree). With node v,
we keep track of several pieces of information:

e v.parent points to the parent node (if v = root is the
root, then v.parent = NIL);

e v.edges is a list of part-orientation pairs at node v;
e v.num-edges is the cardinality of the set v.edges;

® ¢i(v) is the number of times that part z (1 € {1,...,u})
appears among the part-orientation pairs at v;

e v.num-parts is the total number of different parts
present at v;

e v.min-maz-wgt is the wgt(v) obtained by the greedy
strategy of minimizing the maximum weight of the chil-
dren of v [we initialize v.min-maz-wgt = coJ;

e v.wgt temporarily holds a weight associated with v;

e v.greedy-grasp is the grasp g that is selected at v by
the greedy strategy; and,

o v.widths is the set of widths associated with the chil-
dren of v, when we apply grasp v.greedy-grasp.

We maintain a list of “active” nodes, NoDES. While

NODES is non-empty, we do the following:
For each v in NODEs do

1. For each candidate grasp action g, do

(a) Set v.min-maz-wgt = oo, maz-wgt = 0.
(b) If v is not a leaf (i.e., if v.num-parts > 1),
then, for each e in v.edges, do
i. Compute
wgt = compute-grasp-action(v, e, g).
ii. If wgt > maz-wgt, set maz-wgt = wgt.
(c) f maz-wgt < v.min-maz-wgt, then set
v.min-maz-wgt = maz-wgt and v.greedy-
grasp = g.

2. Set children = NIL, and then call compute-grasp-
action(v, e, v.greedy-grasp). This creates a list,
children, of new nodes that are the children of v
that arise from grasp action v.greedy-grasp.

3. Append children to the list NODES.

To complete the description of the algorithm, we must
describe the function compute-grasp-action(v,e,g),
which computes the effect of applying grasp action g
to the part-orientation pair corresponding to edge e (in
contact with the jaw face) at v. The function creates
a child node (if necessary), and does the appropriate
“bookkeeping” to update wgt(v):

Let ¢+ = e.part. Compute w, the width that is obtained
from the grasp action g applied to part e.part, when
e.stable is in contact with the jaw face. (This can be
done in O(1) time by looking it up in a table of size
O(n®), which can be precomputed in time O(n®).)

If wis not in v.widths, then

1. Create a child node, v’ [v'.parent = v, v'.edges =
(e), v'.num-parts = 1, v'.num-edges = 1,
di(v') = 1, ¢;(v') = 0 (for § # v.part)], and add
v’ to the list children.
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2. Add w to the list of widths, v.widths.
3. Set v'.wgt = 0.
else
Let v’ be the child node of v that has width w.
Add e to the list v'.edges.
v’ .num-edges = v'.num-edges + 1.
di(v') = ¢i(v') + 1.
5. v'.wgt = v'.wgt + (v.num-edges — ¢i(v)).

Ll A

Return v’ wgt.

Since there are O(n?) choices for grasp action g and O(n)
choices for v, and O(n) choices for edge e (in v.edges),
the above algorithm clearly runs in polynomial (O(n*))
time. O

We now show that the greedy heuristic gives a grasp
plan of nearly optimal length:

Theorem 3 For any instance of the grasp plan problem
on u polygonal parts P = {Py, P,,...P,} having a total
of n vertices, the greedy heuristic constructs a grasp plan
of length at most 2lgn times that of an oplimal grasp
plan.

Proof. Let lopt (resp. lgreedy) be the length of an opti-
mal (resp. greedy) grasp plan. Consider a decision tree
T constructed by the greedy heuristic, and the corre-
sponding weights on the nodes of T, as defined above.
Clearly, for any parent and child nodes in T', the weight
of the child is smaller than the weight of the parent.
Hence the weights along any path down the tree T are
monotonically decreasing. Consider a longest path, ,
in the decision tree T', such that the ratio of the weight
of the final node on the path to the initial node on the
path is strictly greater than 1/2. Let k denote the length
(number of edges) of 7, and W the weight of the initial
node in 7.

First, we obtain an upper bound on the height of the
decision tree produced by the greedy algorithm; namely,
we show that lgreeqy < 2(k + 1)Ign. To see this, note
that along any path of length k + 1 or greater, at least
half of the remaining weight is removed. Since the

weight of the root of the tree is at most (3) < n?/2, .

we conclude that any path of length
(k+1)1g(n?/2) = (k+1)(2lgn-1) <2(k+1)lgn-1

reduces the weight of the nodes to at most 1. One more
grasp action suffices to reduce the weight to zero.

Next, we obtain a lower bound on the height of the
optimal decision tree; namely, we show that lope > k+1.
Consider the final node, v, on the path . By our def-
initions, its weight is W/2 + w for some w > 0. By
the pigeonhole principle, and the fact that T' was con-
structed with the greedy heuristic, the last grasp action
along 7 reduces the weight by at most

W—(W/2+w) _ (W/2)—w
3 =T %

No edge below v in any decision tree can reduce the
weight from parent to child by more than this amount,
otherwise the greedy algorithm would have selected that
grasp action. Thus, any decision tree rooted at v, even
the optimal tree, must have height at least

[ W/2 + w

(W/z—w)/k] 2k+1

Note that since v corresponds to a subset of the original
part/orientation pairs, no decision tree for the full set of
part/orientation pairs can be of smaller height.

Finally, we conclude,

2(k+1)lgn
- k+1

lgreedy

=2lgn
Iopt

o

It is interesting to note that the logarithmic bound is
indeed tight in some instances, as the following example
shows:

Theorem 4 There are instances of the grasp plan prob-
lem for which the greedy heuristic produces a decision
tree whose height is Q(lgn) times optimal.

Proof. Our construction is based on an example given
by Johnson, [7], showing that the log factor approxima-
tion given by the greedy algorithm for the SET CoVER
PROBLEM is tight. [2] use a similar construction.

We build a set of u polygon parts, starting as in The-

orem 1 with a regular m-gon, M. We define G e

22K+ — 1) + K + 3 and set m = 2(2KG + 1). We
show later that K = Q(lgn). For convenience we re-
fer to the sides of M by their indices 0,1,...,m — 1.
We think of the sides 1,...,m/2 — 1 as grouped into
2K groups with G sides per group. Each part consists
of the union of M and % small “non-special” triangles,
one triangle A based on side 0, and a triangle A; on each
sidel =1,...,m/2 — 1. There are three exceptions for
each part: three “special” triangles which replace three
of the non-special triangles within one particular group.

The parts are divided according to three categories:
class, type, and flavor. There are 2X classes, each con-
taining 2(2K+! — 1) parts, hence the total number of
parts is u = 2K . 2(2K+1 — 1) ~ 22K+2 Within each
class ¢, the parts are divided into types t = 0,..., K,
such that the number of parts of class ¢, type t is 2 - 2°.
Half of these are of flavor 1, and the remaining half are
of flavor 2. Note that the total number of parts of class
cis indeed K 2.2t = 2(2K+1 — 1)

We now describe the 3 special triangles of a part of
class ¢, type t, flavor f. Note that there is one group
of G sides of the m-gon for each class of parts. For
every class ¢, we further partition the group of sides
corresponding to class ¢ into three subgroups: The first
subgroup containing 2(2X+! —1) sides, one side for each

-203 -



part in class c; the second subgroup containing K + 1
sides, one side for each part of type t = 0,1,..., K in
class ¢; and the third subgroup containing 2 sides, one
for each flavor f = 1,2 of class c.

The three special triangles of a part in class ¢ will
be based at sides of the e-th group of sides, one spe-
cial triangle in each subgroup, as follows: Let 1 <1 <
2(2K+! — 1) be the number of a part in class c. The
first special triangle A (l) is placed on the I-th side of
the group (and hence in the first subgroup). The second
special triangle A, is placed on side 2(2X+! — 1)+t +1
of the group, which is the (¢ 4+ 1)-st side of the second
subgroup, for t = 0,..., K. The third special triangle
A/ is placed on side 2(2X ! —~ 1)+ K+1+ f=G+1-f
of the group, which is the f-th side of the third sub-
group. We choose the triangles so that triangles with
different “names” ((c,t, f), or 1) result in grasps of dif-
ferent width, and such that all parts are convex.

Note that by our construction, the first grasp uniquely
identifies the orientation of each possible part. As in
Theorem 1, the length of an optimal, as well as a greedy
grasp plan, (and any reasonable plan) is determined by
the height of the subtree rooted at the child of the root
corresponding to a width measurement generated by tri-
angle A, which is common to all parts. We concentrate
on the subtree rooted at this node. One (possibly op-
timal) strategy is to measure at triangles Af of which
there are 2 - 2K As soon as a special triangle is iden-
tified, the class and flavor of the part are known, and
the plan can be completed by measuring at all sides cor-
responding to parts of this class and flavor. Thus, at
most 2K+1 — 1 additional measurements suffice, and the
length of this grasp plan is at most 2K+2,

The goal of the greedy algorithm is to try to mea-
sure at special triangles that appear in as many parts
that have not yet been eliminated from consideration
as possible. Instead of measuring at a possible spe-
cial triangle A/ which appears in 2K+! — 1 parts, the
greedy heuristic would measure at the possible special
triangles A, g, fore =1,... ,2K  each of which is con-
tained in 2X+! parts. If such a special triangle is not
found, the greedy algorithm would next measure at pos-
sible special triangles A, g1, fore=1,.. ., 2K each of
which is contained in 2X parts, instead of possible spe-
cial triangles Af. Although for each pair (c, f) there are
2K+1 _1 parts containing it, 2K have already been elim-
inated from consideration by the measurements taken so
far. Thus, the special triangles A are present in only
9K+1 _ 1 _ 9K = 9K _ 1 possible parts.

This process continues fort = K —1,K - 2,...,0.
Thus, a greedy algorithm, in the worst case, will perform
at least (K + 1) - 2K measurements. The grasp plan
obtained by the greedy approach has length at least ~
K -2K whereas the alternative approach yields a tree of
height at most 25+2. The ratio of the heights of these
trees is & K /4.

Recall that the number of parts is u &~ 22(K+1) and
the number of sides of each part is $m, where m =
225G + 1), and G = 2(2K*1 — 1) + K + 3. Thus,
the total number, n, of sides of all polygonal parts is
n = O(22K+1) . 9(2K . 2. 2K+1)) = O(24K+5)_ Finally,
the ratio of the heights of the two trees is approximately
K/4=~ (lgn—5)/16 = Q(Ign). o

4 Conclusion

We have resolved open problems posed in [4, 9], by show-
ing that it is NP-hard to compute an optimal grasp plan
for identifying polygonal parts, and by providing a prov-
ably good approximation algorithm for the problem.

It would be interesting to examine which other meth-
ods of “probing” a library of parts yield similar results.
Furthermore, it would be interesting to study the effect
of measurement uncertainty on the recognition problem.
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