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Abstract

We present a family of strategies for the problem of
searching in an unknown street for a target of un-
known location. We show that a robot using a strat-
egy from this family follows a path that is at most
x + 1 times longer than the shortest possible path.
Although this ratio is worse than the ratio of the
best previously known strategy, which achieves a de-
tour of at most 2v/2 ~ 2.8284 times the length of
a shortest path, the simplicity of the analysis is in-
teresting in its own. We use this new strategy as
part of a hybrid method to obtain an equally sim-
ple strategy of slightly more complex analysis with a
competitive ratio of 1v/x? +4x + 8 ~ 2.75844. The
7 + 1-competitive strategy is very similar in spirit to
the first published strategy of which the best analysis
is very involved and gives a bound of ~ 4.44. More
importantly, we show that the v 41 strategy is robust
under small navigational errors.

1 Introduction

One of the main problems in robotics is to find a
path from the current location of the robot to a given
goal of unknown location, particularly in those cases
where the robot has only a partial knowledge of its
surroundings.

In this paper we assume that the robot is
equipped with a vision system that provides a vis-
ibility map of its local environment. Based on this
information the robot has to find a path to a visu-
ally identifiable given goal that is located somewhere
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within the scene. The search of the robot can be
viewed as an on-line problem in which the amount
of information available to the robot increases as it
discovers its surroundings in its travels. A natural
measure of the quality of a search strategy is to use
the framework of competitive analysis as introduced
by Sleator and Tarjan [12]. A search strategy is called
c-competitive if the path traveled by the robot to find
the goal is a most ¢ times longer than a shortest path.
The parameter c is called the competitive ratio of the
strategy.

Since there is no strategy with a competitive ratio
of o(n) for scenes with arbitrary obstacles having a
total of n vertices [2], the on-line search problem has
been studied previously in various contexts where the
geometry of the obstacles is restricted [1, 2, 3, 4, 10,
11].

Klein introduced the notion of a street which al-
lowed for the first time a search strategy with a con-
stant competitive ratio [7]. In a street, the starting
points s and the goal g are located on the boundary of
the polygon and the two polygonal chains from s to g
are mutually weakly visible. Klein presents a strategy
for searching in streets and gives an upper bound on
its competitive ratio of 1 + 3/2x (~ 5.71). The analy-
sis was recently improved to 7 /2 + /1 +x2/4 (~
4.44) by Icking [6]. Though Klein’s strategy per-
forms well in practice—he reports that no example
had been found for which his strategy performs worse
than 1.8—the strategy and its analysis are both quite
involved and no better competitive ratio could be
shown until, recently, Kleinberg presented a new ap-
proach.

In this paper we present a * + 1 (~ 4.14) anal-
ysis of a strategy similar to Klein’s. This analysis
is significantly simpler than other published work
[7, 9]. It also has the advantage that the strategy
proposed is robust under small navigational errors.
The simplicity of the strategy and analysis points
naturally to possible improvements in the strategy.
To illustrate this we present a hybrid method which
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uses the 7 4 1-competitive strategy and results in a
3V7T2 4+ 47 + 8 ~ 2.75844 that betters the best pre-
viously known of 2v/2-competitive ratio [8].

The rest of this paper is organized as follows. In
the next section we introduce some notation and def-
initions. Then the family of strategies is described in
Section 3, and in Section 4 we present its analysis.
In the next to last section we present and analyze
the hybrid strategy and then we conclude with some
observations and directions of further research.

2 Definitions and Assumptions

We consider a simple polygon P in the plane with n
vertices and a robot inside P which is located at a
start point s on the boundary of P. The robot has
to find a path from s to the goal g. The search of
the robot is aided by simple vision (i.e. we assume
that the robot knows the visibility polygon of its cur-
rent location). Furthermore, the robot retains all the
information seen so far (in memory) and knows its
starting and current position. We are, in particu-
lar, concerned with a special class of polygons called
streets first introduced by Klein [7).

Definition 2.1 [7] Let P be a simple polygon with
two distinguished vertices, s and g, and let L and
R denote the clockwise and counterclockwise, resp.,
oriented boundary chains leading from s to g. If L
and R are mutually weakly visible, i.e. if each point
of L sees at least one point of R and vice versa, then
(P, s,9) ts called a street.

We denote the L,-distance between two points p; and
P2 by d(pi1, p2) and the L,-norm of a point p by ||p||.

Definition 2.2 Let P be a street with start point s
and goal g. If p is a point of P, then the visibility
polygon of p is the set of all points in P that are seen
by p. It is denoted by V (p).

Definition 2.3 A window of V(p) is an edge of V(p)
that does not belong to the boundary of P (see Fig-
ure 1).

A window w splits P into a number of subpolygons
Py, ..., P one of which contains V(p). We denote the
union of the subpolygons that do not contain V(p)
by P,.

All windows are collinear with p. The end point of
a window w that is closer to p is called the entrance

Figure 1: The the visibility polygon V(p) of p with
windows wy, ..., ws.

point of w. We assume that a window w has the
orientation of the ray from p to the entrance point of
w. We say a window w is a left window if the part
P, of P that does not contain V(p) is locally to the
left of w w.r.t. the given orientation of w. A right
window is defined similarly.

Definition 2.4 Two windows w; and w; are clock-
wise consecutive if the clockwise oriented polygonal
chain of V(p) between w, and w, does not contain a
window different from w; and w,. Counterclockwise
consecutive ts defined analogously.

3 A Family of Strategies

As observed by Kleinberg the shortest path P from s
to g consists of a number of line segments that touch
reflex vertices of P. The general strategy we follow
is to start at a reflex vertex v of P that belongs to P
and to identify another reflex vertex v’ of P that is
closer to g by traveling further on. If the robot has
identified v/, then it moves to it and starts the search
anew. A move from one reflex vertex of P on P to
another closer to g is called a step.

If the robot has traveled along the path P, then
we assume that the robot knows the part of P that
can be seen from P, i.e. the robot maintains the
polygon V(P) = U,cp V(p). We say a window w of
V(p) is a true window w.r.t. P if it is also a window
of V(P).

In the following we present the relevant results
about true windows from [9].
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Figure 2: The subsegment of target points.

Lemma 3.1 If w is a right (left) window of V(p)
and the boundary of P,, belongs to L (R), then w is
not a true window.

Lemma 3.2 All windows that belong to L (R) are
clockwise (counterclockwise) consecutive in V(p).

True windows are called consecutive if there is no
true window that is between them. An immediate
corollary of Lemmas 3.1 and 3.2 is that true left and
true right windows are consecutive.

Corollary 3.3 If wy is the window that is inter-
sected by P the first time, then all true left (right)
windows are clockwise (counterclockwise) consecutive

from wq in V(p).

Because of Corollary 3.3 there is a clockwise-most
true left entrance point from wg which we denote by
pt and a counterclockwise-most true right entrance
point of V(p) which we denote by p~ provided that
V(p) contains both true left and right windows. The
point pt is called the left extreme entrance point and
p~ the right eztreme entrance point of V(p). As ob-
served by Klein, it is only when V'(p) contains both
true left and right windows when the optimal strategy
is unclear. Thus, our strategy mimics Klein’s strat-
egy for the cases without two true windows (7, 9].
Namely, the cases are:

Case 1. The goal g is visible to the robot. The
robot moves to g on a straight line.

Case 2. There is no true left (right) window.
The robot moves to p~ (p*).

Case 3. The points p, p*, and p~ are collinear.
The robot moves along the line pp* to the closer point
of pt and p~.

In the case of two true windows, the robot has
to determine the trajectory to follow. As proposed
by Klein, the robot selects a target point t; in the
line p}p;. The robot moves then in a straight line
towards t; until either of the entrance points has
changed or the goal has been identified and reached.
There are several possible criteria to select t;. Klein
studied the case where t; balances the current ab-
solute detour, as compared to the possible optimal
trajectory, which is either the line joining the chain
of left points p; or joining the right points pf' , de-
pending on the actual location of the goal. Different
criteria may be used to select the target point ¢;. In
particular, this leads to the main family of stategies:

Strategy Walk-in-Circles. Let { be the subseg-
ment of p; p} which consists of the points ¢ such that
d(p;,t) < d(p;'-spi) and d(p?',t) < d(P?.,Pi) (see Fig'
ure 2). The algorithm chooses a point ¢; in the target
segment { and moves in a straight line towards it. Ifa
new window appears, the robot recomputes £ accord-
ing to the updated points p}';_l and p;, ,, and the new
position p;;1, until the goal is found. (see Figure 3).

4 Analysis

We consider the case where the goal turns out to be
on the right side. This is without loss of generality
since the local target selection strategy is invariant
under reflections.

The length of the trajectory traversed by the
robot is determined by the sum of the length of all
segments P;Pit1, i-e. 3 g d(Pi,Pi+1), Where n is the
number of extreme entrance points seen by the robot
in a step. Note that pp = s and p} =g. The length
of each of these segments can be bounded by using
the triangle inequality; viz. with notation as in Fig-
ure 3, we have that d(p;, Pi+l) < d(p;, Q) + d(q’ Pi+1)s

~ where ¢ is the point determined by the intersection of

the line p;,1p} and the circle centered at p} passing
through p;.

In turn the length of d(p;,q) is bounded by the
length of the circular arc p;q. Let a; = Lqp}" pi mea-
sured in radians. The length of the circular arc p;q is
given by a; - d(p;, p;"). Thus,

D dpipis) <3 (dping) +d(g:pira))

3 (s dipispF) + d(g,pi41))

]

IA

IN
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Figure 3: A single step in the strategy.

and the competitive ratio is determined by

X d(pi, Pi+1) Y- d(PiaP?) + 3 d(q,Ps'+1).
Opt = Opt !

where Opt is the length of the optimal walk from the
starting point to the goal. Note that, if the final
target is on the right chain as assumed, then Opt =
d(FOaP;. )+ ::01 d(p;" 21 Pit1)-

The following two lemmas allows us to simplify
the expression above. These lemmas follow quite nat-
urally from the diagrams, and we provide a formal
proof only for completeness.

Lemma 4.1 Let D; denote the length of the opti-
mal walk from point p; to the final target p}. Then
Di41 = D; — d(g, pi+1)-

Proof: If the target is located on the right side,
the optimum trajectory from any given point is to
move on a straight line to the uppermost visible
point on the right chain, and follow the chain of
points p} p}'_’,_l from then onwards. From point p;,
the length of the optimum trajectory is then D; =
d(pi,p}) + E;‘;,l d(P;-*,P,tH), and after moving to
pit1 is Diyr = d(pi1,p]) + 2021 d(p},ply,) =
d(Pi,P?) - d(q:pi-H) + 2;’;&1 d(P;sP;+1) = D; -
d(q,pi+1) as required, since g is located on the cir-
cle centered at p* and passing through p;. a

At the starting position the distance Dy is pre-
cisely the length of the right chain walk d(po,pg) +
™4 d(p} ,p;'_',_l), and at the end of the walk the
robot finds itself at a zero distance from the tar-
get point (i.e. the robot is at the target point).

Then the sum of the actual gains overall must be
id(g,piv1) = X:d(pf,pf},)- Thus

2 d(piy pit1) ¥ ai - d(pi,pt) + 3 d(g, pis1)
Opt - Opt
i ai-d(pi,p)

= 1.
Opt i

The term Y; a; - d(p;,p}) can be seen as a
weighted sum, where the a;s are the weights. Let
B = ¥ ; a;, and let k be such that p; is the point in
the robot’s trajectory such that d(p, p}) > d(p;, p}).
In other words, p; denotes the largest term in the
unweighted sum. Then we have Y ; a; - d(p;,p}) <

Y- d(pe, pf) = B - d(pr, P})-

Lemma 4.2 The distance d(pk, p;f) ts no larger than
the length of the polygonal chain Opt = d(po,p?) +

n-1

=0 d(?? ’p;’:}-l)‘

We actually prove a sfronger result, namely that
d(pi,p}) < d(po,pd) + Tib d(p}, PF1)-

Proof: By induction on the number of steps i.
When ¢ = 0, the two terms are equal and thus the in-
equality holds. For 1+ 1, we have that d(p;4, p}"“) =
d(p}, p},1) +d(pi, p}) — d(pi+1, ¢) (see Figure 3); and
by induction hypothesis, d(p;41, p, 1) < d(p?, p}fu)+
d(Po,PE;")-i-E;;}, d ;‘.)P;*-l)*d(f’i-i—la q) < d(Po,P:)"‘“

j‘:o d(P;t’ P;+1)~ o
This implies
Ei d(pi,Pi-H) ﬁ ° d(PIn Pt)
< .
Opt < Opt +1<B8+1

Lastly, as it was noted by Klein (see proof of
lemma 2.7 in [7]), if the angle /p] p;p} ever exceeds
7 then at the point where the angle was = —or pos-
sibly even before— there must have been no true left
window. In this case, the robot moves to the current
pt with competitive ratio bounded by x + 1.

As a consequence, the trajectory can be analyzed
in two parts. First, until the robot moves to the point
p' as a “temporal target”, and second, the search af-
terwards, in which we start anew from a point on the
right chain onwards towards the goal. The robot then
recurses in the second search, and the total compet-
itive ratio is bounded by the maximum of the com-
petitive ratio on both parts.

Notice that lp,f_',‘lp.'.np;';l > Lp;pip} + i, and
thus # > /p;p.p} > Lpgpops + L;ai > B. From
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which follows that the competitive ratio for each part
of the algorithm is, at worst,

>i d(pi, piv1) < 7w+l
Opt
Theorem 4.3 A robot moving traveling under the
strategy Walk-in-Circles has a 7+ 1 competitive ratio.

As the target in each step is selected from the in-
terval £ this provides a margin of navigational error
for the robot. That is, the strategy is robust under
small constant bias of compass heading. The tol-
erance of the strategy is proportional to the aspect
ratio of the smallest vs largest edges encountered and
the smallest distinguished angle between left or right
extreme entrance points.

5 A Hybrid Method

From the analysis above is clear that the competi-
tive ratio of strategy Walk-in-Circles is directly de-
pendent on the total “turn” angle . As it was
pointed out, B is smaller than » minus the initial
angle /py popy . This implies that, if the initial angle
is large, the strategy gives a better competitive ratio.

In this section we consider a hybrid method, in
which a strategy similar to that proposed by Klein-
berg (8] is followed for initial angles /pg pop¢ smaller
than 7/2 and the strategy of Section 3 is used for
angles larger than x/2.

Hybrid Strategy.

Cases 1-3 are as in Section 3.

Case 4 If /p;pops < 7/2 then the robot moves
on the line perpendicular to ;{,‘Tf,f. As the robot
advances it updates the vertices p; and p} as the
windows seen change. When either of /p;ppo or
Lp}ppo = 7 /2, where p is the current position of the
robot, it switches to strategy Walk-in-Circles, with p
as starting point.

Case 5 If Lpypopg > /2 then the robot uses
strategy Walk-in-Circles.

From the discussion in Section 4, it follows that
cases 1-3 and 5 have a competitive ratio of at most
x/2 + 1. Case 4 requires a more careful analysis.

If, as in the previous section, we assume that the
goal lies on the right side, then the optimal trajectory
is given by d(po,pg) + ¥; d(p},p},,)- Let j be the
index of the reflex vertex in which the robot switched
strategies. Notice that lp;-*pop; is now bigger equal
to x/2.

Figure 4: A hybrid strategy.

Lemma 5.1 The distance traversed by the robot up
to the point where it switches strategy is bounded by

d(po,p) < \/d(po, p;-k)2 - d(p, p;!‘)2 on either side.

Proof: For the vertex forming the right angle,
the lemma follows trivially from the Theorem of
Pythagoras. On the opposing vertex, say as in Fig-
ure 4, the law of the cosines states d(po,p})? =
d(po, p)* + d(p, p})? — 2 d(po, p) d(p, p}) cos(Lpopp});
which implies d(po,p})? > d(po,p)? + d(p,p})* as
Lpopp} > x/2, from which the lemma follows. O

As the robot applies strategy Walk-in-Circles as
if p was the starting point, we have that the length
of the distance traversed by it from p onwards is
bounded by (x/2+1) (d(p,p}) + T35} d(pf, p1))-
Thus the competitive ratio is given by R/Opt where,

R = \/d(POa'p;)z - d(p,p;)z +
n-1
(v/2+1)(dp, 1) + 3 diot 8810))
i=j
n—1
Opt = d(PO:P(T) + 2 d(P?’PIHL

=0

Let Opt' = d(po,p}) + L7} d(pf,p},;). Since
Opt > Opt' then R/Opt < R/Opt'. Without loss
of generality, we can assume that d(po, p;") =1 If
R/Opt' < (x/2+ 1+ k) for some k > 0, then R <
(v/2+ 1+ k) Opt', which implies

V1-d(p,p})? + (x/2+1) d(P,P;r)

n~1

<(®/2+1+k)+ kY d(p},ph,)-

i=j
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n—1

Since k-3 77 d(pf, pj'ﬂ) can be arbitrarily small,
for the expression above to be satisfied we need
©/2+1-/1-d(p,p})? - (v/2+1)d(p,p]) > —F.
Let f(z) = /2+1-+v1—22 — (v/2 + 1)z. This
function has an absolute minimum in the domain
of interest at zm,in = (7 + 2)/V7?2 447 + 8 with
f(min) = ®/24+ 1 - %\/rz + 47 + 8. From which
the fact that k > 372 + 47 +8 — 7/2 — 1 follows.
Since the competitive ratio R/Opt is bounded by
/2 + 1+ k, we have the following theorem.

Theorem 5.2 A robot using the Hybrid Strategy
has a 3v/7% + 4w + 8 competitive ratio.

The value 3v72+47+8 is approximately
2.758...

6 Conclusions and Open Problems

We introduced and analyzed the first family of strate-
gies for the street navigation problem. Because of
this approach, the resulting algorithm is more robust
under navigational error. It remains to be shown if it
is possible for a robot to traverse a scene with a pre-
determined maximal navigational error per unit tra-
versed at a predetermined competitive ratio. We also
introduced a hybrid strategy which has a better com-
petitive ratio than either of the original two strategies
that define it. As the hybrid strategy shows, the 7 +1
analysis not tight for small initial angles. In principle,
it may be possible to improve on the 7 + 1 ratio by
analyzing the Walk-in-Circles strategy differently for
each case. AS well, the best lower bound known for
traversing streets is v/2. The gap between this lower
bound and the best upper bound is still significant,
and remains to be improved
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