Computer-Aided Road Network Design”

P. Biscondi, J-M. Moreau

E.M.S.E.
158 CouURs FAURIEL, 42023 SAINT-ETIENNE, FRANCE

Abstract

This paper describes the process of compuler-aided
road design, for instance in the contezt of Geographic
Information Systems, where linear objects (roads,
rivers, ...) are defined by their azes and transverse
profiles. Various techniques are applicable, but few
have the sufficient flexibility to satisfy the strong con-
straints familiar 1o users in thatl field: Helerogeneous
data, conflicting scales in neighboring objects, arte-
facts, ete. ...

It is also desirable that once the whole graph has
been ezpanded, the adjacency relations between roads
and objects bordering them be preserved and optimized
in a certain sense. The algorithms described in this pa-
per combine all previous aspects, and were successfully
tmplemented in a major flight-simulator application.

1 Introduction

The progress of Computational Geometry during the
last two decades has made it possible to process larger
and larger databases. Large-scale geographic applica-
tions represent actual landscapes and towns with even
greater realism. Accordingly, the need for the auto-
matic design of such bases is growing ([1], [4], [5], [6]).

The paper introduces a generic method for expand-
ing road networks or river systems, using both the se-
mantics of their definitions, and some automatic rules
to adapt the geometry of other objects in the database,
and thereby guarantee initial adjacency relations. Sec-
tion 2 describes the various objects that will be consid-
ered. Section 3 presents the generic method suggested
for consistent expansion, and Section 4 two variants to
solve degenerate cases inherent to the problem. Sec-
tion 5 details the impact of expansion on other ob-
jects, and Section 6 concludes on extensions and future
work.

*This work was supported by a contract with SOGITEC
France, as part of the research on the SINDBA D flight-simulator
application.

2 Objects

The overall process of creating real databases involves
getting raw cartographic data. filtering redundant in-
formation or making it homogeneous, casting plani-
metric information on top of altimetric data (relief
lines, contour lines, faults, markers,...), mapping ob-
jects (fields, houses, buildings, rivers, roads) onto the
database, and then organizing its elements so that con-
flicts may be solved using a set of (geometric, seman-
tic, ...) pre-defined and/or user-defined rules. In in-
formal terms, fields should give way to roads or houses,
roads should “yield” to railway tracks or water lines,
altimetric data should be swallowed by rivers, etc.

When all these operations have been performed, the
resulting information is fed to a series of geometric al-
gorithms to make planar, interpolate, clip, triangulate
and visualize, etc.

In a typical G.I.S. application, three types of ob-
jects may be considered:

Static objects: Such objects (houses, contour lines,
altimetric extrema, etc.) are completely defined
at design time, and are not supposed to be altered
by the rest of the objects in the database, unless
they become partially or entirely occulted by con-
structs with higher rank in the priority scale of
objects.

Dynamic objects: Objects of this class (a generic
term for roads, rivers and all sorts of linear ob-
jects) are defined by a “skeleton” (polyline) and
a profile, both of which are used in the so-called
expansion process; for instance, a road may be
correctly approximated given a sequence of seg-
ments, and widths (orthogonal projections) de-
scribing the geometry of its sectional profile at
each definition vertex. Although profiles may be
complex, to represent ditches, verges, etc., we
shall restrict ourselves to simple profiles — where
only two half-widths are known -, as all the de-
scriptions in this paper may be generalized to
more complex situations.

-229 -

Figure 1: Some levels of description in a database.

Semi-dynamic objects: This last class is used to
describe all objects whose geometry is “influ-
enced” by the expansion of dynamic objects, as
explained below. Such objects share vertices with
dynamic objects at design time, but their final
geometry after the expansion of linear objects is
impossible to guess by that time.

In this paper, we suggest several construction rules for
the last two classes of objects, in order to satisfy vari-
ous contraints present in databases. Consider Figure 1
representing a portion of, say, a G.1.S. database drawn
on several levels.

(a) Top level: Only the axes defining dynamic linear
objects are present here.

(b) Road ezpansion level: Linear objects should be
“intelligently” expanded. Notice how a naive and
independent expansion of the two axis systems on
the figure would yield ill-shaped junctions.

(¢) Semi-dynamic objects: Only the objects sharing
vertices with definition axes are considered.

(d) Lower level: The resulting ideal graph. Notice
how the junctions have been trimmed and the
semi-dynamic objects have been “retracted” to
the limits of their surrounding dynamic neigh-
bors.

As may be inferred from the figure, the probability
that any original semi-dynamic polygon crosses the
expanded version of its adjacent dynamic linear ob-
jects at undesirable places is very high. Indeed if
the “blending” of the two graphs is not performed in
an “intelligent” way, the resulting output degenerates
into many tiny edges, unpredictable at design time.

----- Axis
—— Side expander
—— Terminator

Central node
Expansion vertex

Figure 2: Crossroads terminology.

Supposing we are dealing with a two-dimensional
database, the following problems must be solved:

1. Construct the planar graph of dynamic objects.
At this stage, only the definition axes and their
endpoints are considered.

2. Expand all dynamic objects, and deduce the ge-
ometry of “crossroads” at vertices where different
sections of dynamic objects are connected.

3. Adapt the graph of all semi-dynamic objects hav-
ing at least one vertex in common with at least
one dynamic object in the previous graph, so as
to satisfy the (adjacency) constraints inferred.

3 The expansion process

3.1 Expansion basics and terminology

All graphs to be considered in the generic situation de-
scribed here must be made planar before any other ac-
tion is taken. To that effect, Bentley-Ottmann’s line-
intersection algorithm ([3]) was favoured, for practical
reasons (among which the availability of local planar
maps (section 3.3)).

Referring to Figure 2, let us call (central) nodes
the vertices of the axis definitions graph - shown as
squares. Each definition axis yields two (or in fact
more, for complex profiles) side ezpanders, i.e. line
segments parallel to the main definition axis segment,
each at the distance specified by the associated half-
width. Discs denote the ezpansion vertices, i.e. inter-
section points of successive pairs of expanders around
the same central node.

If we call sector (Figures 2 & 3) the plane wedge
defined by two consecutive definition axes around the
same central node, then it is straightforward that there
is exactly one expansion vertex in each sector of the

-230-

same node and pertaining to it. Clearly, only the def-
inition axes incident upon one given central node may
have any influence on the topology of its associated
crossroads, and hence on its local geometry. Another
application of the line-segment algorithm on expanded
linear objects (and the rest of the database) will be
necessary to determine all “interactions” between fi-
nal objects.

Nodes of degree 1, also called dead cnds, deserve
special care, as shown on the right-hand side of Figure
3. Finally, define as a terminator any edge linking
two consecutive expansion vertices around the same
node (Figure 2). As usual, terminators and expanders
carry pointers to two faces, one of which pertains to
the linear object they are naturally attached to, and
the other to “the outside world™ in general, except for
certain terminators, as explained later.

From a global point of view, an expanded linear ob-
ject consists of two chains of side expanders closed at
each end by terminators. Either end may correspond
to hitting another linear object with higher priority,
or a dead end. From a local point of view, a cross-
roads is a series of terminators (between consecutive
expansion vertices), organized according to the circu-
lar order of definition axes around the central node!.
If desired, some of them may actually be omitted, to
acknowledge the prevalence of the linear object with
highest priority in the junction, for instance.

Hence, the storage space required for the expansion
process remains linear in the number N of axes (each
axis yields at most 4 expansion edges).

3.2 Formula

All the computations required in the construction of
crossroads are based on the same principle: successive
expanders around the same central node define (meet
in) one unique expansion vertex.

For sector (eo, €1) with unit vectors (o, @) (refer to
Figure 3), the following system, correlating the widths
wg, wy, abscissae Mg, A; and sector angle 6, holds:

rsinf = woi; + wydo

- . wi_ij+w;cosf .
N=f-t;= ————— i=0,1
sin 6
F= Nil; + willi

Note that the position of the associated expan-
sion vertex is determined if and only if it + U1 #
0 or wy = w;. Otherwise, the difference of widths
prevents expanders from being matched, and a com-
promise must be reached.

INote on Figure 2 that, depending on the half-widths and

3! Xa

wt w-

,_.eo

Figure 3: Sector and dead end (A~ = At =0).

3.3 Creating expansion vertices

Suppose the graph of definition axes has size N after
it has been made planar. If such structures do not
come free with the line-segment algorithm (as is the
case with Bentley-Ottmann’s), it is possible, in over-
all time O(N log N), to sort, for each vertex v of the
graph, all edges incident upon v in, say increasing po-
lar angle, and to detect the linear object with highest
priority incident upon it, H,. We shall suppose that
such ordered lists, referred to as local planar maps and
noted LP M (v), may be accessed in constant time from
each vertex.

Using these maps and the previous set of formulae,
all expansion vertices may then be constructed in ad-
ditional O(N) time.

3.4 Constructing expanders

Once expansion vertices have been computed it is pos-
sible to create the expansion edges, as follows:

Procedure CONSTRUCT (NODE v)
SET_VIsIT(v)
for each UNDIRECTED EDGE € = vw IN LPM(v) do
if (MusTYIELD(e, H,)) then
CREATE_-GIVEWAY_TERMINATOR(€)
if (!GET-VIsiT(w)) then
INITIATE_SIDE_-EXPANDERS(€)
else TERMINATE-SIDE_EXPANDERS(¢)

for each v IN AXIS GRAPH do
CLEAR._VISIT(v)

for each v IN AXIS GRAPH do
CONSTRUCT(v)

Predicate MUSTYIELD returns true when the linear
object associated with edge e has priority lower than
that of H, (as detected earlier), in which case the ‘out-
ward’ face of the “give-way” terminator is made to
point to H,.

the geometry of axes, the “central node” is not always as central
as intuition has it.. .

-231-

w,; w,

r

R

Figure 5: Graph reduction.

-t
w; wy

Clearly, side expanders are allocated/initialized,
and finalized/output in synchronicity with the first
and second visit of their corresponding definition axes,
whereas terminators are generated “on the fly”.

4 Handling degeneracies

Remark on data structures: The algorithms in
this section make liberal use of the winged-edge struc-
ture of Baumgart ([2]) or its half-edge representation
variant. In such a setting, any edge has from zero to
two adjacent “wing” edges at either end, all accessible
in constant time (refer to Figure 5 for a standard pic-
ture of the “4-winged-edge” structure). In the special
cases where the degree of either endpoint, say {, is 1
or 2, the corresponding number of wings for e around
{is 0 and 1, respectively. Edges also have, associated
with them, exactly two couples of A’s: one “above”,
and one “below”, corresponding to the abscissae of the
four expansion vertices described earlier.

Consider the U-shaped graph of Figure 4: axis e;
and its upper expander are mutually reversed. More
generally, it may be impossible to satisfy both the ge-
ometry (axis lengths and angles) of a given graph, and
the profile of its constraints (half-widths); in such a
case, the graph will be said to be “non-conformant”.

Furthermore, because of imprecision problems or
heterogeneous data, it is frequent that sections of axis
.definitions (resp. vertices) — which should otherwise
meet in one single point (resp. lie on definition axes)
- do not! (See Figure 6 a, b, ¢ for three typical cases.)

4.1 Solution 1: Preserving topology

To eradicate such degeneracies. one may wish to re-
spect the graph topology at any cost, by pinning ex-
pansion vertices of degenerate expanders onto “safe”
positions, regardless of the widths. By “safe”, we
mean in such a way that the abscissa (of the pro-
Jection) of any expansion vertex on either sector axis
involved never exceeds half its length, a strong guar-
antee that A’s will not be “reversed”.

Such a rule may, for instance, be enforced using
a convex linear combination of the three nodes form-
ing the current sector, but, unfortunately, no weight
choice will be suited to all cases: The drawback of
this technique is bad aspect, as expanded objects will
either widen or narrow exaggeratedly, as shown on
Figure 6, cases a;, b1, ¢;.

4.2 Solution 2: Preserving profiles

Let us now consider a new solution, called Reduction,
which will preserve profiles instead of topology: “ill”
edges will be discarded, and the graph will be refined
s0 as to guarantee a clean expansion (Figure 5). Our
goal is now to derive a conformant graph from the
original one.

We shall need a stack with the standard Push
and Pop primitives, respectively setting a specific
StackStatus field to 1 and 0. Supposing all A’s pre-
computed, all StackStatus fields intially set to -1
(“never pushed”), and one canonical edge for each con-
nected component of the axis graph initially pushed
into the stack, the following scheme is applied:

while ((e = Popr() !=0) do
DETERMINE ALL WINGS OF e
if (A-REVERSED(¢)) then
DISCARD e
RESTORE BOTH LOCAL PLANAR MAPS
RECOMPUTE A’S FOR THE UPDATED SECTORS
for each WING w; do
if (STACKSTATUS(w:) < 1) then PusH(w;)
else
for each WING w; do
if (STACKSTATUS(w;) < 0) then PusH(w;)

A-REVERSED is a predicate returning true if and
only if either couple of A’s above and below e are re-
versed compared with the mutual order of the original
definition vertices.

Typical effects of this technique are shown on cases
6 az, ba, c2, where the edges of the reduced graphs
are shown dotted. Notice that, despite the potential
discontinuities in the resulting road system, objects
overlap, as in cases b, and c;, according to intuition.

-232-

Before

Figure 7: Automatic retraction.

4.2.1 Running time

The reduction algorithm runs in time linear in the
number of edges.

Proof. Obviously, time complexity is equivalent to
the number of elements popped from the stack. Any
edge may be popped more than once, but any pop
may be imputed to one unique edge (itself or some
previously discarded edge).

Therefore, the while loop is iterated at most N, +
4N, times — where N, € O(N) is the total number of
definition axes, and N4 € O(N) the amount of those
discarded — which is less than 5N. Hence, the algo-
rithm runs in O(N) time & -

5 Automatic retraction

This section presents an automatic process to force
semi-dynamic objects to “skirt” the expanded linear
objects they have been semantically attached to at
design time. Although a typical G.I.S. application
will include standard clipping facilities (to solve su-
perimposition problems for faces, according to well-
established semantic rules), one should not leave such
problems to them alone: The initial adjacency rela-
tionships between semi-dynamic objects and definition
skeletons are lost after expansion, and should be cor-
rectly restored, without any artefact (micro-edges, in
particular).

5.1 Principle

Basically, one has to synchronize the graphs for dy-
namic and semi-dynamic objects. If unicity of vertices
is ensured in the database representation (through
some basic scheme, for instance balanced trees), it
is possible to locate vertices shared both by semi-
dynamic and dynamic objects, in one single sweep.
Consider this sweeping process as it reaches node
v. If v does not belong to both graphs, proceed to the
next vertex. Else, each semi-dynamic edge incident

Before

Figure 8: Turning polygons inside out.

upon v must simply be “matched” to one unique def-
inition axis sector: Semi-dynamic edge e is matched
to sector (e, e;) if e strictly lies within the wedge, or
else coincides with either e; or e; and the interior of
the object it represents (partially) lies in the wedge.
Both cases arise at the black square node on Figure
7 for the north-eastward axis separating the hatched
and dark grey objects on the one hand, and for the
three other incident axes on the other.

Because they are both sorted by increasing polar
angle, the local planar maps for v of both graphs may
thus be synchronized in time linear in their total size.
While doing so, each semi-dynamic edge e incident
upon v is “retracted” using the unique expansion ver-
tex in the sector matched to e.

The last action that remains to be taken before pro-
ceeding to the next sweep vertex consists in “closing”
semi-dynamic objects around v in case they enter and
leave through different sectors. This may be done in
linear time still, by creating an edge between v and all
relevant expansion/retraction vertices, with the help
of local face information consistency.

5.2 Consistency considerations

The reconstructed planar maps for auto-retracted
semi-dynamic objects may unfortunately be incorrect
in situations where the original edges of such ob-
jects unexpectedly “double-cross” sector boundaries.
Take as a very simple example Figure 8. The central
node-vertex of the semi-dynamic object depicted is re-
tracted to the appropriate expansion vertex, while all
its others vertices remain unchanged. The resulting
auto-retracted object is turned inside out, and has an
incorrect topology.

Such cases - which frequently happen when the
objects in the database come from very different
sources — may only be detected by testing the result-
ing semi-dynamic objects for simplicity and face con-
sistency (again using a specialized version of Bentley-
Ottmann’s algorithm, for instance): All retracted ob-

-233-

<--—--> /.\ _—"7 A

. <---B-.F---->

: e e
Wy <y v i
(@) l | | l(cl)
= i (-
(02) l l l (Cg)

Figure 6: Handling typical degeneracies.

jects failing the test are simply reassigned their input
definition for all subsequent processing.

6 Extensions and Conclusion

The algorithms presented in this paper have been im-
plemented in a real-scale application for flight simula-
tion, where road design plays an important role. A for-
mer expansion algorithm showed major defaults, one
of them being that both dynamic and semi-dynamic
objects very often degenerated into tiny edges.

There are obvious generalizations that should be
brought to the solutions described here. For instance,
one may wish for each section of linear objects to have
its own four half-widths, which results in trapezoidal
sections. It is also desirable to allow multiple pro-
files. Although such generalizations are by no means
straightforward, their nature is not fundamentally dif-
ferent from the generic schemes presented above, and
should be implemented in the future using similar
strategies.

References

[1] Defense Mapping Agency. Product specifications
for digital landmass system (dlms) data base.
Technical report, DMA Aerospace Center, St.
Louis, Missouri, July 1977.

[2] B.G. Baumgart. A polyhedron representation for
Computer Vision. In National Computer Confer-
ence, pages 589-596, 1975.

[3] J.L. Bentley and T. Ottmann. Algorithms for
reporting and counting geometric intersections.
IEEE Trans. Comp., C-28(9):643-647, 09 1979.

[4] C. Gold. Spatial data structures - the extension
from one to two dimensions. In Mapping and Spa-
tial Modelling in Navigation, pages 11-39, NATO
ASI Series F No. 65, Springer-Verlag, Berlin, 1990.

[5] O. Ginther. Efficient Structures for Geomei-
ric Data Management. Number 337 in Lec-
ture Notes in Computer Science, Springer-Verlag,
Berlin, 1988.

[6] P. van Oosterom. Spatial data structures in Geo-
graphic Infomation Systems. In NCGA’s Mapping
and Geographic Information Systems, pages 104-
118, Orlando, Florida, 1988.

-234-

