Expected Case Analysis of 8-Skeletons with Applications to the
Construction of Minimum-Weight Triangulations

(Extended Abstract) *

Siu Wing Cheng

Abstract: This note is divided into two parts. The first
mathematically aralyzes some properties of the B-skeleton
of a set of n points independently chosen from the uniform
distribution over the unit square and compares this analysis
to empirically derived data. The second part describes a
dynamic programming algorithm to construct the minimum
weight triangulation for a planar point set.

1 Introduction

Let S be a finite set of points-in the plane. A triangu-
lation of S is a maximal collection of non-intersecting
edges whose endpoints are all in S. The weight of a tri-
angulation is the sum of the lengths of its edges. A
mintmum weight triangulation (MWT) of S is a tri-
angulation that has minimum weight among all trian-
gulations of S (Figure 1). The problem of finding a
minimum-weight triangulation possesses an ambiguous
status; having been open for many years it is still un-
known as to whether an MWT is constructible in poly-
nomial time.

Suppose, though, that besides being given the set S
we are also given a set of edges, E C Sx .S, that is known
to be contained within some MWT of S and, further,
that G = (S, F) has k connected components. Then, it
is possible to piece together various facts known about
constrained MWTs and design an algorithm that finds
an MWT in time O (n**2) (details of such an algorithm
are provided later in this note).

An obvious approach to efficiently constructing con-
structing an MWT would therefore be to find an edge

* Authors’ address: Hong Kong University of Science and Tech-
nology, Clear Water Bay, Kowloon, Hong Kong. Authors email:
{scheng, golin, csjefl}@cs.ust.hk. The work of the first author
was supported by HK RGC CRG grant HKUST 190/93E The
work of the last two authors was supported by HK RGC CRG
grant HKUST 181/93E.

Mordecai J. Golin

Jeffrey C.F. Tsang

Figure 1: MWT example.

set E such that G = (S, F) has a small number of con-
nected components or, even better, is connected.

Unfortunately it is unknown how to find such a set,
E. The only immediately obvious candidate E is the
convex hull of S which is contained in every triangula-
tion of S. The convex hull can be very small, though,
and is therefore unhelpful because in the resulting graph
can therefore have a large number of connected compo-
nents.

Recently though, Keil [8] proved that the v/2-skeleton
of S is contained in every MWT.

At this point we digress slightly and describe what
is meant by a (-skeleton. These were originally defined
by Kirpatrick and Radke [9] (who defined both lune
and disk based skeletons. The ones we use are, as in
[8], the disk based ones). Let p,q € S. The forbidden
neighborhood F(p, q) for p, q is defined to be the interior
of the union of the two disks of radius 3 - d(p, ¢)/2 that
pass through both p and ¢ (Figure 2). The edges in the

-279-

NN/
N

Figure 2: The forbidden neighborhood F(p,q). |pv| =
lpw| = Blpg|/2.

A

)

A W

Figure 3: (-skeleton for 50 points; § = 1.17682.

B-skeleton of S are exactly the set of edges

B(S) ={(p,q) : F(p,9)n{S\ {p,q}} =0}

(Figure 3). The 1-skeleton (i.e., the (-skeleton with
B = 1) is the well known Gabriel graph.

Cheng and Xu [3] improved upon Keil’s result and
proved that the (-skeleton is contained in a MWT for
8> 1.17682.

In this note we examine some properties of the §-
skeleton of random points and discuss the implications
of our findings on the study of MWTs.

More specifically we assume that Sy, is a set of n
points chosen independently from the uniform distri-
bution over the unit square in R2. The cost of the f-

skeleton is defined to be the sum of the lengths of its
edges. In section 2 we mathematically prove that the
expected number of edges in the F-skeleton of S, is
asymptotically equal to bg - n while the expected cost
is asymptotically cs - \/n where bg and ¢z are calcu-
lable constants dependent upon 3. We also prove that
the expected number of isolated points (points with no
neighbors) in the 3-skeleton is Q(n). Finally, we present
empirically observed data collected by constructing the
B-skeleton of random points and compare this data to
our mathematical predictions.

In section 3 we first describe an algorithm for con-
structing an MWT of n points in O (nf*?) time given
a graph G contained in the MWT that has at most &
connected components. We are currently experiment-
ing with this algorithm to construct minimum weight
triangulations for moderately sized random point sets.

It is known [5] that the weight of the MWT of n
random points grows asymptotically as ¢\/n where ¢
is some unknown constant. The results of this section
permit us to make a preliminary guess as to what ¢
might be. We conclude this section with a discussion of
what the results of Section 2 imply about the efficiency
of our routines as n becomes large.

2 (-Skeletons

In this section we describe some properties of the §-
skeleton of random points. More specifically we assume
that B > 1 is fixed and S, is a set of n points chosen
independently from the uniform distribution over the
unit square [0, 1)? and then mathematically analyze how
properties of the skeleton evolve as n grows to infinity.

Theorem 1 Let B, S, be as defined above. Set B, =
|B(Sp)| to be the number of edges in the (-skeleton
and C,, = E(p,q)EB(S,.)d(p’ q) to be the cost of the B-
skeleton. Then

and E(Ca)~ (1)3/2\/5

s
E(Bn)N %—‘;n s

where

2 2
BT L (55

apg = —ﬁ2

Proof. The value ag is a quite natural one in this

setting; it arises because Area(F(p,q)) = ag (d(p, 9)%.
(This can be proven by standard geometric arguments).

-280-

Now, for all p.q € S,, p # ¢ define

v 1 i F(p,g)N{Su\{p,q}} =10
P47} 0 otherwise

v = f dp9) (PN {Sa\{p.g}} =0
re =13 o otherwise

(ifp=gset X, 4 = Ypq =0). Let p, ¢ be random points
in S,. Summing over all p, ¢ and using symmetry shows
that

n

E(B,) = (5).z(.\',,’q) and E(Cp) = (’;)-E(Y,,,,,).
To prove the theorem it therefore suffices to evaluate
E(Xpq) and E(Y;,,).

Define W be the region containing all points within
distance %‘E{l of the boundary of the unit square (Fig-
ure 2). Our approach is to calculate E(X,) by using
the formula

E(Xpq)=Pr(Xp=1peEW)+Pr(Xp,=1p¢ W)

Now let p be fixed and set a = d(p,q). If a > '—"}-«"%
then)
Arca(F(p.g) N [0,1]%) 2 12T

SO
Inn rlnZn n-2
Py = >—] < -
Pr (Apxq 1 |d(P1 q) et \/ﬁ) S (l in)
= n—ﬂ(lnn).
Thus
Pr(X,,=1) < Pr (d(p, q) < !\I}_;) + n~%(nn)

0 (lnzn) -
n

This last equation is true for any fixed p. We can
therefore combine it with Pr(p € W) = O ('{}ﬁ) to find

Pr(Xpq=1,p€W)=Pr(X,,=1|p€E W)-Pr(pe W)

. 3
is O (’;'137'%)
We must now calculate

Pr(Xpe=1,pg W)=Pr(Xpo =1|p¢ W)Pr(p ¢ W)

where Pr(pg W)=1-0 ('{}g)

Figure 4: W is the gray region in the figure.

Inn

To continue, notice that if p @ W and o < v then

Pr(d(p,q) < a) = 7a? so £ Pr(d(p,q) < a) = 27a.
Furthermore, for these a, F(p,q) is totally contained
inside of [0, 1] so

Pr(X,,=1|pg W,d(p,q) = a) = (1 - aga?)" "

Combining everything we therefore find that

E(XP,Q) ~ Pr(Xqu = 1’ p ¢ W)
Inn
7: o\ n—2=
~ / (1-aga?) *orada
0
™
agn

n

and E(B,) = (9

A similar calculation shows that,

E(Xpq) ~ 52—,"-

n

v n—
E(Yp,) ~ /0 (1-apa?) *9ra’da

1 x \?
~ 3(2%)
3/2
e = (5) B ~i(2) va O

Table 1 presents observed data on the number of
edges and costs of (-skeletons observed for different val-
ues of (.

Note that when 3 = 1.18 the (-skeleton contains
roughly 0.87n edges on average. For moderately sized
n this graph will have a relatively small number of con-
nected components. We can therefore use a dynamic
programming algorithm to find the MWT of the point
set using the f-skeleton plus the convex hull as a start-
ing set of edges. (See Section 3.) We should point out,
though, that as n gets large this approach can no longer
be used. This follows from the following observation:

-281-

Theorem 2 Let 3 > 1 be fized and S,,. For i =
0,1,2,3,... define

Vi(n) = E(|{p € S» : p has degree 7 in B(S,)}).

Vi(n)

= v;. Fur-
n

Then there erists v; such that lim,,
thermore vg > 0.

Proof. Omitted in this extended abstract except to
mention that this can be proven using techniques de-
veloped in [5]. a

The theorem implies that the expected number of
isolated points in B(S,) grows linearly in n so the ex-
pected number of connected components also grows lin-
early in n (since the expected size of the convex hull is
O(In n) adding the convex hull edges will therefore not
dramatically change the number of connected compo-
nents). Thus, as n gets large we are guaranteed that
the number of components will grow large and that the
dynamic programming algorithm will become very slow.

3 Minimum-Weight Triangula-
tions

Overview. In this section, we describe an exhaustive
search algorithm for finding a minimum weight triangu-
lation of n points in the plane. It consists of two phases.
The first phase identifies the convex hull and the 1.18-
skeleton. The Graham-scan algorithm [6] is used to find
the convex hull in O(nlogn) time. B-skeletons can be
constructed in O(n logn) time [9]. Taking advantage of
the fact that the points being processed are randomly
chosen from the unit square. We can construct the
Voronoi diagram using the O(n) expected time Voronoi
diagram algorithm of [1]. Using the same techniques
in [9], we are able to construct the f-skeleton in O(n)
time from the Voronoi diagram. Let Hg be the plane
graph obtained at the end of the first phase. A plane
graph is a fixed plane embedding of a planar graph.
Thus, Hy induces a planar subdivision. Let k¥ be the
number of connected components in Hg. The second
phase adds k — 1 diagonals to Hy to make it connected
and then use dynamic programming to find the optimal
triangulation of each polygon in the planar subdivision.
A line segment is a diagonal if its endpoints are in Hy
and it does not cross any existing edge. If the k — 1
diagonals are in a minimum weight triangulation, then
the collection of the triangulated polygons is a mini-
mum weight triangulation. Hence, backtracking is used
to exhaust all possible choices of the k¥ — 1 diagonals.

The running time is O(n**?). We provide below the

details and timing analysis of the second phase.

Data structures. At any moment in time, one plane
graph H;. 0 <7< k — 1, is maintained which is repre-
sented by adjacency lists. Each vertex of H; is a point
pin S. Li(p) is the adjacency list for p organized as a
doubly linked list. The vertices in L;(p) are ordered in
clockwise order around p. The connected components
Ciy, Cia. ..., Cip of H; are stored in a doubly linked
list CL;. Cj;; contains the convex hull of S and it is
always the leftmost entry in CL;. Each Cjj in CL; is
stored as a list of vertices and edges. The vertices are
labeled such that given any p € H;, the Cj; containing
p can be reported in O(1) time. Each Cj; is also associ-
ated with its convex hull conv Cj; which is represented
as an ordered sequence of vertices and edges. For each
vertex p on conv Cjj, we maintain a list diag;(p) of di-
agonals in H; with p as one endpoint and each such
diagonal does not intersect the interior of conv Cj;.

Backtracking algorithm. Recall that Hg is the
plane graph containing the convex hull and the 1.18-
skeleton of S. The recursion bottoms out at the kth
recursive call. CLj;_; contains one connected compo-
nent and dynamic programming is used to optimally
triangulate each polygon in Hi_;. The solution is used
to update the current best solution. In the ith recursive
call 1 <i < k-1, we try to add a diagonal to H;_;
as follows. Take an arbitrary vertex p in conv Ci_1 2 €
CL;—;. Remove a diagonal e € diag;_,(p), add e to
H;_; to generate H;, and remove e’ from diag;_,(q)
for every ¢’ and ¢ such that e crosses e¢’. Suppose that
e connect C;_; 2 and C;_; j. Then remove Cj_; ; from
CL;_1, merge C;_1 2 with C;_, j, and merge conv C;_1 2
and conv C;_1, ;. We are now ready to make the (i+1)th
recursive call to process H;. After returning, restore
H;_,, diagonals intersecting with e, and CL;_;. Then
remove another diagonal f from diag,_,(p), generate a
new H;, and make another recursive call. This is re-
peated until diag;_,(p) becomes empty. Then restore

- diag;_,(p) and return. This completes the description

of the backtracking algorithm. We provide below the
details of identifying diagonals, merging connected com-
ponents, and optimally triangulating a polygon.

Diagonals. For each vertex p in Hy, diagy(p) is com-
puted before the backtracking algorithm starts. Also,
for each diagonal e, we maintain a doubly linked list
of diagonals in Hy that intersect e. Thus, in the ith

-282-

recursive call, when ¢ is added to H;_;, it suffices to
scan this list for € in order to remove all diagonals that
intersect . Note that this list may contain some re-
dundant diagonals that do not exist in H;—_;. Thus, in
each recursive call, we could spend O(n?) time for this
which leads to O(kn?) time for each possible sequence
of Hi,1<i<k-1

Merging. The merging of two connected components
Ci—1,2 and Ci_1j is due to the insertion of a diagonal
e to H;_;. Thus, it suffices to put the two adjacency
lists for the two connected components together. In-
sertion of e to the adjacency lists of its two endpoints
takes linear time because we need to search for the
correct position in the sorted order. The two convex
hulls conv C;_1,2 and conv Ci_; ; can be merged in lin-
ear time [11]. Therefore, for each possible sequence of
H;, 1<i< k-1, O(kn) time is spent for merging.

Triangulate polygons. A polygon P of size m is op-
timally triangulated in O(m?) time by a dynamic pro-
gramming algorithm [4]. For completeness sake, we pro-
vide the recurrence relation below. Number the vertices
of the polygon from p; to py, in the clockwise order. For
any p;, pj, Pk in clockwise order such that p;pi, prp; and
pip; are diagonals or edges of P, p;pcp; is the triangle
formed by them. For any p;, p; such that p;p; is a diago-
nal or an edge of P, A;; is a minimum weight triangula-
tion of the polygon enclosed by the p;p; and the edges of
P traversed clockwisely from p; to p;. Then A;; equals
to Aix U Arj U pipipj — {pipr, pep;} for the choice of
k such that p;p; and pyp; are diagonals or edges of P
and the resulting weight is minimized. Thus, comput-
ing each A;; takes O(m) time which leads to a total of
O(m3) time. Ay, is the solution desired.

Theorem 3 The MWT for a set S of n points can be
computed in O(n**+?) time, where k is the number of
connected components of the plane graph consisting of
the convez hull and the 1.18-skeleton of S.

Proof. The backtracking algorithm is essentially an ex-
haustive search, except that only diagonals incident to
an arbitrary vertex on the boundary of conv C;2 may be
added to H;_; to obtain H;. This is correct because ev-
ery vertex on the boundary of conv Cj2» must connect to
some other connected component along a diagonal that
does not intersect the interior of conv Cj;. Otherwise,
in the final triangulation, some triangle will contain an
internal angle greater than = which is impossible. For
each possible sequence of H;, 1 < i<k —1, we need to

spend O(kn®) time to eliminate diagonals. O(kn) time
to merge connected components and convex hulls, and
O(n®) time to optimally triangulate all the polygons in
Hj_1. There are n*~! possible sequences and therefore,
the total running time is O(n*~1-n3) = O(n*+?). O

References

[1] J.L. Bentley, B.W. Weide, and A.C. Yao, “Opti-
mal Expected-Time Algorithms for Closest Point Prob-
lems,” ACM Trans. on Mathematical Software, 6(4)
(Dec. 1980) 563-580.

[2] R. C. Chang and R.C.T. Lee, “On the Average
Length of Delaunay Triangulations,” BIT, 24 (1984)
269-273.

[3] Siu-Wing Cheng and Xu, Yin-Feng, “Approach the
Largest [(3-skeleton within a Minimum Weight Trian-
gulation,” Manuscript, (1995).

[4) P. Gilbert, “New Results on Planar Triangulations,”
Master’s Thesis, University of Illinois, 1979. Report
No. UILUENG 78 2243.

[5] M. J. Golin, “Probabilistic Recurrence Relations,
Euclidean Functionals and Minimum Weight Triangu-
lations,” Manuscript, (1995).

[6] R.L. Graham, “An Efficient Algorithm for Determining
the Convex Hull of a Finite Planar Set,” Information
Processing Letters, 1 (1972) 132-133.

[7] L. Heath and S. Pemmaraju, “New Results for the
Minimum Weight Triangulation Problem,” Algorith-
mica, 12 (1994) 533-552.

[8] J. Mark Keil, “Computing a Subgraph of the Min-
imum Weight Triangulation,” Computational Geome-
try: Theory and Applications, 4 (1994) 13-26.

[9] D. G. Kirpatrick and J. D. Radke, “A Framework
for Computational Morphology,” Computational Ge-
ometry (G.T. Toussaint, ed.), (1985) 217-248.

[10] C. Levcopoulos and A. Lingas, “Greedy Triangula-
tion Approximates the Minimum Weight Triangulation
in the Average Case and Can be Computed in Linear
Time in the Average Case,” Proceedings of the 3rd In-
ternational Conference on Computing and Information
(IcCI’91), Lecture Notes in CS, 497 (1991) 139-
148.

[11] F.P. Preparata and M.I. Shamos, “Computa-
tion Geometry,” Tezts and Monographs in Computer
Science (David Gries, ed.), (1985).

-283-

3] n 100 200 300 400 500 600 700 800 900 1000 | predicted
values

1 | edges 195.49 | 39542 | 594.82 | 794.54 | 995.97 | 1192.51 | 1397.51 | 1593.09 | 1794.43 | 1992.84
edges/n 1.95 1.8 1.98 1.99 1.99 1.99 2.00 1.99 1.99 1.99 2.00

Cost 19.10 | 2743 | 33.67 | 38.98 | 43.82 | 47.82 52.00 55.46 58.96 62.13
cost//n | 1.91 1.94 1.94 1.95 1.96 1.95 1.97 1.96 1.97 1.96 2.00

1.1 | edges 109.80 | 221.30 | 335.34 | 443.67 | 554.67 | 668.64 | 777.72 | 883.73 | 998.98 | 1107.28
edges/n 1.10 1.11 1.12 1.11 1.11 1.11 1.11 1.10 1.11 1.11 1.09

cost 8.06 | 11.60 | 14.29 | 16.37 | 18.33 | 20.22 21.74 23.09 24.66 25.84
cost//n | 0.81 0.82 0.83 0.82 0.82 0.83 0.82 0.82 0.82 0.82 0.81

1.18 | edges 9041 | 179.35 | 269.76 | 358.29 | 447.90 | 538.58 | 625.90 | 714.62 | 803.90 | 892.03
edges/n | 0.90 0.90 0.90 0.90 0.90 0.90 0.89 0.89 0.89 0.89 0.87

cost 5.93 8.38 1038 | 11.93 | 13.33 14.65 15.71 16.77 17.7 18.77
cost//n | 0.59 0.59 0.60 0.60 0.60 0.60 0.59 0.59 0.59 0.59 0.58

1.2 | edges 84.97 | 171.00 | 25942 | 342.02 | 426.94 | 512.44 | 596.67 | 681.49 | 766.19 | 849.96
edges/n | 0.85 0.86 0.86 0.86 0.85 0.85 0.85 0.85 0.85 0.85 0.83

cost 5.47 7.90 977 | 11.11 | 12.32 13.62 14.64 15.61 16.56 17.46
cost//n | 0.55 | 0.56 0.56 0.56 0.55 0.56 0.55 0.55 0.55 0.55 0.54

1.3 | edges 68.73 | 141.29 | 209.36 | 279.10 | 347.70 | 414.72 | 484.19 | 550.40 | 622.35 | 690.53
edges/n | 0.69 0.71 0.70 0.70 0.70 0.69 0.69 0.69 0.69 0.69 0.67

cost 4.04 5.94 7.16 8.20 9.13 9.90 10.74 11.37 12.20 12.78
cost//n | 0.40 042 | 0.41 0.41 0.41 0.40 0.41 04 0.41 0.40 0.39

1.4 | edges 59.35 | 120.01 | 174.76 | 232.55 | 290.54 | 349.03 | 403.20 | 463.82 | 520.92 | 576.01
edges/n | 0.59 0.60 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.56

cost 315 1.64 5.41 6.27 7.00 7.65 8.17 8.80 9.32 9.78
cost//n | 0.32 0.33 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.30

V2 | edges 58.29 | 114.56 | 171.10 | 229.27 | 286.83 | 338.22 | 396.77 | 451.87 | 509.02 [564.57
edges/n | 0.58 0.57 0.57 0.57 0.57 0.56 0.57 0.56 0.57 0.56 0.55

cost 3.14 1.34 5.27 6.08 6.82 7.32 7.93 8.49 8.99 9.46
cost//n | 0.31 0.31 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.29

1.5 | edges 17.55 | 99.96 | 149.33 | 199.46 | 249.15 | 298.44 | 344.92 | 395.60 | 442.54 | 494.43
edges/n | 0.48 0.50 0.50 0.50 0.50 0.50 0.49 0.49 0.49 0.49 0.48

cost 2.43 3.48 4.26 4.99 5.53 6.05 6.47 6.94 7.31 7.75
cost//n | 0.24 0.25 0.25 0.25 0.25 0.25 0.24 0.25 0.24 0.25 0.24

1.6 | edges 43.03 | 87.86 | 129.03 | 171.04 | 214.83 | 255.63 | 298.95 | 345.07 | 384.47 | 426.87
edges/n | 0.44 0.44 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.42

cost 2.08 2.91 3.46 3.97 1.46 1.85 5.24 5.68 5.92 6.21
cost//n | 0.21 0.21 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.19

1.7 | edges 30.40 | 77.03 | 114.42 | 149.46 | 188.41 | 225.98 | 262.91 | 298.82 | 336.66 | 373.76
edges/n | 0.39 0.39 0.38 0.37 0.38 0.38 0.38 0.37 0.37 0.37 0.36

cost 1.84 2.39 2.89 3.24 3.66 3.98 4.30 4.60 4.88 5.10
cost/\/n | 0.18 0.17 0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16

1.8 | edges 35.22 | 67.80 | 102.52 | 135.09 | 167.43 | 198.52 | 230.52 | 267.56 | 298.87 | 331.77
edges/n | 0.35 0.34 0.34 0.34 0.33 0.33 0.33 0.33 0.33 0.33 0.32

cost 1.44 1.94 2.43 2.76 3.09 3.33 3.58 3.88 4.06 1.26
cost//n | 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13

1.9 | edges 28.01 | 61.72 | 91.62 | 120.91 | 148.95 | 177.55 | 209.13 | 235.48 | 266.22 | 294.26
edges/n | 0.29 0.31 0.31 0.30 0.30 0.30 0.30 029 |. 0.30 0.29 0.29

cost 1.10 1.74 2.06 2.34 2.59 2.79 3.05 3.21 3.41 3.58
cost/\/m | 0.11 0.12 0.12 0.12 0.12 0.11 0.12 0.11 0.11 0.11 0.11

2 | edges 27.25 | 56.38 | 80.05 | 108.32 | 135.20 | 162.96 | 185.77 | 213.89 | 239.97 | 266.06
edges/n | 0.27 0.28 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.26

cost 0.96 1.47 1.69 1.99 2.22 2.44 2.55 2.76 2.92 3.06
cost//n | 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Table 1: Data collected during the construction of (-skeletons. For every 8 and every n, 100 random point sets
of size n were generated. Each entry in an edges row contains the average number of edges in the 100 constructed
skeletons while the entries in the cost rows contain the costs. Each entry is presented along with its appropriately
scaled value. The last column contains the predicted values from our analysis.

.284-

