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Abstract

We show that a sel of points in E3 is not al-
ways greedy tetrahedralizable if the definition of greedy
tetrahedralization is a straight-forward extension of the
E? counterpart. Sorted lists in ascending order of edge
length and triangular area, are considered. If the defi-
nition of greedy tetrahedralization is modified such that
a set of points in E3 is always tetrahedralizable under
the greedy approach, we can show that the problem is
N P-complete.

1 Introduction

Triangulation of a set of points is a fundamental
problem in computational geometry and in many ap-
plications, such as surface interpolation, finite-element
computation, etc. This problem has many variations
when constraints are imposed on the triangulation, for
example, Delaunay triangulation [6], greedy triangu-
lation [2,3,7,8,9], minimum-weight triangulation [2,5],
MinMax-angle triangulation [1], just to name a few.

While the above problem in E? have been exten-
sively studied, few results are known in E3 [12]. This
is because in general, the problems in E3 are more
complex than those in E2. In E?, the greedy triangu-
lation method adds one edge or a set of edges of the
triangulation at a time until the point set has been
totally triangulated according to the ordering of some
parameters. If this edge does not intersect any of the
previously selected edges, it is added to the triangula-
tion, otherwise, it is discarded. It can be shown that
triangulation in E? is always possible for the greedy
approach even when other selection criteria are ap-
plied.
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We shall present in this paper a result related to
greedy triangulation in E3. When the greedy ap-
proach is applied to point sets in E3, it is a common
belief that this approach, even though might not give
an optimal tetrahedralization (triangulation in E3),
can at least tetrahedralize the point set. In this pa-
per, we show that tetrahedralization is not always pos-
sible when edges are added to the tetrahedralization as
long as they do not intersect the previously selected
elements (which may be edges, triangular facets, or
tetrahedra). Edges and their induced triangles, which
do not intersect each other, can ‘interlock’ each other
such that tetrahedralization including these edges is
impossible (Section 2).

As a ‘greedy’ method never undoes what it did ear-
lier, one way to solve this problem is not to add the
selected edge or set of edges to the tetrahedralization
as soon as it creates ‘interlocks’, even though there is
no intersection with the previously selected elements.
However, checking interlock is not easy. In Section 3,
we show that the checking interlock is N P-complete
when the greedy elements are selected in ascending
order according to their edge lengths and triangular
areas.

2 Greedy Tetrahedralizability of Point
Set in 3-D

Let G be the sorted list of edges or triangles ac-
cording to some parameters. Greedy tetrahedral-
ization of S upon G is a tetrahedralization of S ob-
tained by repeatedly selecting the front element from
the remainder of list G as long as the selected element
itself and its induced component do not intersect with
any greedy element. Two elements (that is, line seg-
ments, triangular facets, and tetrahedra) are said to
intersect each other if they share at least one of their
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interior points. A greedy element is any previously
selected element or any component induced by the pre-
viously selected elements (e.g., a greedy triangle is a
component induced by its three greedy edges and a
greedy tetrahedron is one induced by its four greedy
triangular facets).

As a consequence, all greedy elements should not
properly intersect each other, and the selected element
from the remainder of G should not intersect with the
greedy elements. A natural question is to ask whether
or not the nonintersecting greedy elements, which are
selected in this manner, can eventually tetrahedralize
S. Unfortunately, it can be shown that nontetrahe-
dralization is possible.

Given a point set S, a set of elements are said to
interlock each other iff there does not exist any tetra-
hedralization of S which contains this set of elements
as a subset of the tetrahedralization. It is easy to see
that the set of interlocked elements contains at least
three elements and the convex hull of the vertices of
these interlocked elements is not tetrahedralizable.

Readers can easily verify the following theorem by
examining Figure 1 and Figure 2, and we omit the
proof here. In the theorem, G4 denotes the list of
the complete connecting edges of point set S sorted
by their lengths in ascending-order and G a4, that of
triangles sorted by their areas in ascending order.

Theorem 1 There ezists a set of points that cannot
be greedy tetrahedralized upon each of Gaa and Gra.

3 Modified Greedy Tetrahedralization
of §

We shall give a modified definition of greedy tetra-
hedralization and present an algorithm to compute the
tetrahedralization upon G. Basically, the new element
will not be selected if it leads to an interlock situation.

Modified Greedy tetrahedralization of S upon
G, denoted by GT(S), is a tetrahedralization of S ob-
tained by repeatedly selecting the first element from
the remainder of list G into the tetrahedralization as
long as the element and its induced components do not
intersect any greedy element nor interlock each other.

The greedy tetrahedralization of a set of points un-
der the modified definition always exists because the
introduction of the non-interlock condition ensures the
tetrahedralizability of convex hull of the point set all
the time.

3.1 Checking Tetrahedralizability

Given a set of greedy elements upon a sorted list.
testing whether this set of greedy elements “interlock”
each other is related to its complement question of de-
ciding whether the given point set S has a tetrahedral-
ization which includes the set of greedy elements, i.e.,
the tetrahedralizability problem. We shall show
that the tetrahedralizability problem for the sorted
lists G4 and G44 is N P-complete. The proof for
N P-completeness follows the idea used in [12] for the
non-convex polyhedron by transforming the satisfia-
bility problem to the tetrahedralizability problem. In
(12], it has been shown that, for any Boolean for-
mula in conjunctive normal form, one can construct
a 3-dimensional polyhedron that is tetrahedralizable
iff the Boolean formula is satisfiable. The main tool
in the construction is a niche, which, when attached
to a ‘basis’ polyhedron @, restricts the possible tetra-
hedralizations. In particular, niches can force certain
tetrahedra to appear (clause satisfaction) and they can
prevent certain pair of tetrahedra from appearing si-
multaneously (truth-setting).

The niche is a ‘twisted prism’ with edges 3192, 32P3,
and @3p;, called cut-in edges, concave inward as
shown in Figure 3. Because of these cut-in edges,
the triangular face Ag1g2¢qs cannot be fully ‘seen’ by
p1, P2, and p3, this ‘twisted prism’ cannot be tetra-
hedralized. Let Ap)phps be the triangle obtained by
the intersection of the three extended planes contain-
ing Ag1gop2, Dgagaps, Dgaqipr with Apipaps. Since
points in Ap}p,p5 (shaded area) might be able to see
the whole triangular face Agi¢2¢3 and this niche can
be tetrahedralized iff extra point(s) is (are) introduced
in Appyp5. In fact, any points within the cone or
prism above Ap)p5ps and bounded by the three ex-
tended planes of Ag1g2p2, Hg293p3, and Agaqip; can
see the whole triangular face Agy¢2¢3 and can be used
to tetrahedralize this niche. This cone or prism of
visibility above Ap/phps, is called illuminant. It is
proved that it is always possible to construct a niche
whose illuminant is exactly equal to any given trian-
gular cone or prism with base Ap)p5p; [Illuminant
Lemma)]. If Ag;g2gs of a niche has to be realized in
the tetrahedralization, then there must exist a point in
the illuminant to be the fourth vertex of the tetrahe-
dron containing q;, g2 and g3. Note that truth setting
of a variable can be achieved if exactly two points, ¢
and f denoting ‘true’ and ‘false’, are inserted in the
illuminant of a niche as exactly one of the tetrahe-
dra, T; = Atq19293 and Ty = A fq192¢3, can and must
exist in the tetrahedralization. The niche for clause
satisfaction can be constructed in a similar fashion.
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In the N P-completeness proof [12], considerable ef-
forts are spent to the construction of P, the ‘basis’
polyhedron @ with the attached niches corresponding
to a given boolean formula E, such that E is satisfiable
iff P is tetrahedralizable.

Our task is to construct a niche pypap3gi1¢293 with
the greedy elements of Ga4 or G, such that its illu-
minant is exactly the triangular cone or the prism with
base Ap}phps. To do so, we shall first show in the next
lemma that such a niche is sufficiently represented by
its three cut-in edges in the illuminant formation.

Lemma 1 Given a set of poinis S and a set of three
cut-in edges {qap1, Q1P2, §2pa} (Figure 3), assume that
no points of S lie inside the niche defined by the threc
cut-in edges, S U {q3p1, q1P2, G2P3} is tetrahedraliz-
able iff there exists a point p € S thal lies inside the
tlluminant of the niche.

Proof (Sketch): “If’ case is easy. “Only if”
case (Figure 3) is proved by contradiction. Assume
S U {g3p1, §iP2, q2p3} is tetrahedralizable, and all
points in S lie outside the niche and its illuminant.
Then there must exist three points s;,s2,s3 € S,
each associated with a cut-in edge, such that Agsp; s,
Aqipass and Agopsss are in the tetrahedralization
and intersect with the niche. Without loss of gen-
erality, let us consider Agapsss, point s3 is outside
the plane(s) containing Agsp1q:1 or Agip2q2 (or both)
of the niche. If s3 lies outside the plane of Agspiq1,
then s3 must lie above the cut-in edge §3p;, other-
wise Ap3qas3 would be intersected. Similarly s3 must
lie below g1p7 if it lies outside the plane containing
Aqipaga. It can be shown that either 3353 or Pass
would replace §;p3 to interlock with g3p7 and 1Pz
and results a smaller illuminant.

With the same arguments, when Agsp;s; and
Aqipa2s, are considered, the cut-in edge g3p; would
be replaced by p137 or §3s; and the cut-in edge §1p2
by Pass or G157 respectively. These three new cut-in
edges would interlock each other and define a smaller
illuminant. This process can be carried out recursively
until it leads to a non-tetrahedralizable situation. O

We shall describe how to construct these three cut-
in edges of a niche for a given illuminant according to
Gaa and Gr 4. Sections 3.2 and 3.3 prove the Illumi-
nant Lemma for G44 and G4 respectively and the
N P-completeness proof will be completed in Section
34.

3.2 Illuminant lemma for G44

Given an illuminant, we can construct its corre-
sponding niche p; p2p3qi19293 as described in [12]. Ex-

tend the line segmegﬁ_]ll_’;’g_ to pjp2 such that pips is
slightly longer than p)p5. and obtain p5ps and pzpy in
a similar fashion.

Based on Lemma 1, the niche can be represented
by three cut-in edges {qipz, q2p3, qap1}. According
to Ga4. elements are inserted according to the sizes
of the triangles in ascending order, a niche is formed
if the inserted greedy elements, i.e., triangles, include
the three cut-in edges.

The main idea is to insert an extra point very close
to each cut-in edge such that the triangle formed by
each cut-in edge and this extra point is of very small
area and thus is chosen as a greedy element. For ex-
ample, let A be the current smallest area of triangle
and let A =| g3p; | *€ for some small positive real ¢.
Let ¢(g3p1) be the cylinder with g3p; as axis and ¢ as
radius. A similar cylinder is constructed for each line
segment of the niche. Choose a point p{ such that it
lies inside cylinder ¢(p1¢3), outside the niche, outside
the cylinders of other line segments, and close to p;.
Then, Ap;pYqs is the desired triangle corresponding
to the cut-in edge g3p;. Similarly, obtain the other
two triangles, namely Ap2p5q: and Apap3ge for the
cut-in edges, §1pz and §2p3.

By the above construction, we ensure that the areas
of triangles Ap;pYq3, Ap2pyq1 and Apsp3g2 are cur-
rently the smallest. By Lemma 1, the three triangles
containing the cut-in edges function as a niche. We
conclude this by the following lemma.

Theorem 2 There always erists a niche which satis-
fies the greedy criterion on G 44 and whose tlluminant
covers a given iriangular cone/prism, and the niche
can be constructed in polynomial time. O

3.3 Illuminant Lemma for G4

Given an illuminant, we shall construct the cor-
responding niche which satisfies the greedy criterion
on Gra. The main idea of the construction is to en-
sure that the cut-in edges can be selected as greedy
elements according to their edge lengths (Figure 5).
Without loss of generality, let the lengths of p3p5, p3p},
and p,p| be in descending order. Points ¢, ¢z, and
g3 are chosen such that they are very close to pi, p5,
and pj, respectively. Properly choose p; such that the
cut-in edge §1Pz is slightly shorter than $1g2 and the
length of gip7 is almost equal to that of Eﬁg, and
also properly choose p3 such that cut-in edge g3p7 is
slightly shorter than p3q7. Thus, it is always possible
to construct a niche such that two of the three cut-in
edges can be included into the tetrehedralization as
greedy elements. However, the third cut-in edge G2p3
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would be longer than p2¢3, and in order to prevent
P2¢5 from being selected as a greedy element before
7273 is considered (if 50, 72p3 cannot be a greedy ele-
ment). an extra edge gaps, slightly shorter than p2gs.
crossing the facet Apspspa, nearly parallel to paga.
and lying outside the triangular cone, is inserted to
the niche (Figure 4). Since gzps lies outside the cone,
by Lemma 1, py cannot tetrahedralize the niche and
these vertices of the niche themselves cannot form a
tetrahedralization.

As pa is chosen close to ph, Dz will be longer than
both §7¢3 and §ips because ¢; and g3 are close to p)
and pj respectively, and phph is longer than p\ph and
P’ ph. Since gzp3 crosses the triangular facet Agsp2qi,
P2¢3 cannot be selected as a greedy element. By the
above construction, g2p2, §1P1, 192, 93P3, q1P2, 42P1,
PaP1. G193, and gapa, would be the first group of the
shortest edges. This group of edges can all be selected
since they and their induced components do not inter-
sect. The next shortest edges will be g3pz, but since it
will induce a triangle Apaqiqs intersecting edge g2pq,
73p: cannot be selected. As we can show by case anal-
ysis that p3q3 is longer than §zp3 and @3p1, ¢3p1 and
G2p3 will be selected as greedy edges satisfying the
greedy criterion on Gp4. By Lemma 1, the three cut-
in edges, 192, §2P3 and gapi, will be chosen as greedy
elements and define the niche. Thus, we have the fol-
lowing lemma.

Theorem 3 There always exists a niche which satis-
fies the greedy criterion on G4 and whose illuminant
covers a given triangular cone/prism, and the niche
can be constructed in polynomial time.

3.4 Basis Polyhedron

The ‘basis’ polyhedron @ in [12] consists of a num-
ber of distorted wedges (one for each variable), each
with a convex roof and sticking together. Each dis-
torted wedge is of the shape as shown in Figure 6,
where the base of the wedge consists of 2m + 1 ver-
tices ¢;, €2, ..., Cam+1 lying on a parabola, where m is
the number of clauses in the Boolean formula. These
vertices bound m triangular faces Acjcacs, Acscacs,
very DNCam—1€2mCam+1- A clause niche will be attached

to each of these triangles. The top of the wedge is a’

‘roof’, convex in shape and containing the variable’s
literal vertices. A variable niche will be attached to
one side of roof Ay y2ys. In the construction of the
polyhedron, there is no restriction about the sizes of
these niches. In order to simplify our proof, we as-
sume that the niches are relatively small in size when
compared with the triangular faces to which these

niches are attached. Besides, the polyhedron has to
satisfy a number of constraints in order to fulfil the
N P-completeness proof for the reduction from a given
Boolean formula E. The detailed shape of the poly-
hedron is described in [12] and the understanding of
the above is sufficient for proving our claims.

The same construction for P is adopted in our
proof, but instead of tetrahedralizing P, we shall show
in the following lemmas that E is satisfiable iff the ver-
tex set of P with the set of cut-in edges of the niches
is tetrahedralizable. Before we proceed to prove the
main result, let us define CH(P) as the convex hull
of the vertices of polyhedron P. We then extend the
results by Goodman and Pach [4] on tetrahedralizabil-
ity that if C; and C, are two nonintersecting convex
polyhedra. then CH(C,UC>)—C; UCs is tetrehedral-
izable.

Lemma 2 Let {Cy, Ca, ..., Cn} be a set of noninter-
secting convez polyhedra (sharing at most one common
edge) such that CH(UX_,Ci)NCiyy = ¢ for1 < k < n.
Then CH(U_,C;) — U, C; is tetrahedralizable.

Lemma 3 CH(P)— P is tetrahedralizable.

Proof (Sketch): The difference of CH(P) and P
consists of three parts: (1) the part associated with the
roof, (2) the part associated with niches (at the root
and the base triangles) and (3) the convex polyhedron
formed by c¢1, c2m+1, 25, y1 (Figure 6). Since part (3)
is convex and hence tetrahedralizable. The tetrahe-
dralizability of the first two parts can be proved with
Lemma 2 by considering the volume of the convex hull
of these roofs minus all the roofs and the volume of
the convex hull formed by the niche and its basis facet
minus the niches itself. O

Theorem 4 There ezists a tetrahedralization which
includes all the niches of P for CH(P) iff P 1s tetra-
hedralizable iff Boolean formula E is satisfiable.

Theorem 5 The tetrahedralizability problem for G aa
and G4 is N P-complete.

Proof: This proof is based on the construction
given in [12]. For any Boolean formula E, a non-
convex polyhedron P is constructed with a number
of niches corresponding to the variables and clauses in
E. Let us consider the vertices of P and apply the
modified greedy tetrahedralization to this vertex set.
We want to show that the modified greedy tetrahedral-
ization of P according to G 44 or G4 will eventually
include all the niches, i.e., the three cut-in edges of
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each niche (Section 3.1). The tetrahedralization prob-
lem at that stage is equivalent to the determination
whether or not the Boolean formula F is satisfiable,
and thus is N P-complete.

Depending on the sorted list for G44 or Gpa, dif-
ferent types of niches (as described in Sections 3.2 and
3.3) are constructed. In both cases, and niche with its
triangular face Ag;¢ag3 as part of CH(P) can be made
relatively very small when compared with the facet on
which the niche is located. Thus, the other vertices of
P will be far away from the niche and would not affect
the tetrahedralization of the niche. As for G4, the
extra points should be inserted to each cut-in edges of
the niches in such a way that they would not form any
small area triangles with other vertices in P other than
with their associated cut-in edges. This is achievable
as these niches for variables/clauses all lie on a plane.
a
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Figure 3: A Niche and Its Illumi-
nant
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Figure 4: A Special Niche Tetra-
hedralizable by z

P3Py > papy > papy

q,P3 is slightly shorter than p,¢2
G, is slightly shorter than p3q1
G3pa 1s slightly shorter than p,gs

Figure 5: An Example for Con-
structing Length Niche
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Figure 6: A “Distorted” Wedge
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