
CCCG 2011, Toronto ON, August 10–12, 2011

An Experimental Analysis of Floating-Point Versus Exact Arithmetic∗

Martin Held† Willi Mann†

Abstract

In this paper we investigate how sophisticated floating-
point codes that are in real-world use – VRONI for com-
puting Voronoi diagrams, FIST for computing triangu-
lations, and BONE for computing straight skeletons –
can benefit from the use of the Core library (for exact
geometric computing) or the MPFR library (for multi-
precision arithmetic). We also discuss which changes
to the codes were necessary in order to get them to run
with these libraries. Furthermore, we compare our codes
to codes provided by the CGAL project. By means
of GMP-based (brute-force) verifiers we check the nu-
merical validity of the outputs generated by all codes.
As expected, the output precision of VRONI increases
when MPFR is used, at a cost of an average slow-down
by a multiplicative factor of 70. On the other hand,
FIST demonstrates that a careful engineering can en-
able a code that uses floating-point arithmetic to run
flawlessly, provided that the input coordinates are in-
terpreted as genuine floating-point numbers. To our
surprise, we could not get VRONI and BONE to work
with CORE. It is similarly surprising that their CGAL
counterparts did not fare well at all: we recorded drasti-
cally increased CPU-time consumptions combined with
decreased accuracy of the numerical output.

1 Introduction

Robustness problems that occur for geometric codes
when executed on a floating-point (fp) arithmetic are
notorious. Typically, robustness problems are caused
by numerical quantities being approximated, up to some
quantitative error. While most errors tend to be benign,
some errors may cause a program to end up in a state
with no graceful exit, i.e., it crashes.

Various alternatives to standard floating-point com-
putations have been advocated in recent years in an
attempt to such robustness problems, such as the use
of multi-precision arithmetic or exact geometric com-
puting (EGC). The Core library, CORE [1], is an im-
plementation of state-of-the-art EGC algorithms and
techniques. It is written in C++, and was designed
to be used easily as an alternative arithmetic back-
end to existing C/C++ programs. CORE is a general-

∗Work supported by Austrian FWF Grant L367-N15.
†Univ. Salzburg, FB Computerwissenschaften, 5020 Salzburg,

Austria; {held,wmann}@cosy.sbg.ac.at

purpose tool that allows the correct evaluation of the
sign of real predicates and, thus, is a way to ensure that
the combinatorial part of an algorithm is computed ex-
actly. The CGAL project [5] makes use of this EGC
approach. Shewchuk [12] offers a small collection of ge-
ometric predicates that also support an exact evalua-
tion based on standard fp-arithmetic. Another option is
given by the MPFR library [3]: it is a “multi-precision
floating-point library with correct rounding”, and can
be considered as an intermediate step between IEEE 754
double-precision fp-arithmetic [10] and CORE.

Just how easy is it really to interface an existing ge-
ometric code with MPFR or CORE? And what do we
gain or lose by resorting to MPFR, CORE or CGAL?
In this paper we carry out an experimental case study
that attempts to provide an answer to this question be-
yond personal beliefs or wide-spread myths. We con-
sider three problems of imminent practical interest – the
computation of triangulations, Voronoi diagrams and
straight skeletons of polygons – and take three codes
that compute these structures on a fp-arithmetic: the
C codes FIST [6] and VRONI [7, 8], and the C++ code
BONE [9]. All three codes were engineered to be reli-
able, and FIST and VRONI have been used extensively
in industry and academia for more than a decade.

In Sec. 2 we discuss the modifications of our codes
required to adapt them to a use with MPFR 3.0.1 or
CORE 2.1, and report on problems encountered. (Due
to lack of space we omit details on our results for BONE;
they are similar to those for VRONI.) Section 3 docu-
ments the results of our run-time and verification tests.

2 Preparations

2.1 Modifications Required for CORE

CORE 2.1 data types do not work with C functions like
printf() and scanf(), which we wanted to preserve
in order to allow FIST to be compiled as a standard
C program. For scanf() the problem can be worked
around by implementing a custom version of scanf()
that interprets the format specifiers for floating-point
data types as specifiers for the CORE Expr type. Sup-
porting printf() required more work because the ar-
guments of a printf() command need to be converted
to pointers. (Variable-argument functions cannot take
C++ objects as arguments.)

Memory management also needed to be changed: The

23d Canadian Conference on Computational Geometry, 2011

C functions malloc() and free() do not call construc-
tors and destructors of C++ objects. We replaced them
by the C++ operators new and delete.

And, of course, all precision thresholds used in com-
parisons of a numerical value with zero were set to zero.
We were once again reminded of the fact that an ε-based
comparison of some variable x with zero should be en-
coded as “|x| ≤ ε” rather than as “|x| < ε”. (Otherwise,
setting ε := 0 does not work.)

We also learned quickly that algorithmically equiva-
lent code fragments may result in substantially different
expression trees and, thus, runtimes for a CORE-based
execution. For instance, in order to compute an (ap-
proximate) normal vector of a 3D facet whose vertices
might be not perfectly co-planar it is advisable to first
test whether the facet is truly planar. If yes then any
three vertices that are not collinear allow to compute
the correct normal vector. Otherwise, no correct nor-
mal vector exists and an approximate normal obtained
by averaging normals defined by triples of vertices of the
facet should be computed by using standard floating-
point arithmetic, rather than by resorting to CORE and
blowing up the size of the expression trees by making
the normal dependent on all vertices of the facet.

2.2 Difficulties with CORE

Our work helped to reveal two major problems in
CORE 2.0.8. The first problem concerns the parsing of
the input: Some values in the interval (−0.1, 0.1) were
not parsed correctly. The CORE developers fixed the
problem for positive numbers, and we extended the fix
to negative numbers; it has become part of CORE 2.1.

Another problem is caused by the conversion from
real to integer types. The CORE type for real numbers,
Expr, supports a method called intValue(). The doc-
umentation shipped with CORE describes this method
(and a few others) by the sentence “The semantics of
these operations are clear.” So we felt it safe to as-
sume that intValue() behaves like the (int) conver-
sion known from C. Unfortunately, it turned out the
CORE conversion sometimes rounds up and sometimes
rounds down. (It bases its rounding decision on a fi-
nite approximation of binary digits.) As a work-around
we resorted to using the floor() function which works
reliably on Expr numbers.

So far, we have been unable to execute CORE-based
versions of VRONI or BONE on even trivial inputs. The
apparent problem is that both codes cause large expres-
sion trees, where several minutes of CPU time do not
suffice for CORE to evaluate the sign of one expression
tree. (We created test cases and sent them to the de-
velopers of CORE, but no fix has been released yet.)

2.3 Adding MPFR Support

MPFR was not shipped with an integrated C++ wrap-
per, and the existing wrappers did not work with MPFR
3.0.1 when we tried them. (This has changed in the
meantime.) So we wrote our own wrapper that sup-
ports precisely the operations needed in our applica-
tions, without adding any extra magic that might hurt
the run-time performance.

As MPFR allows to set the precision at run-time, we
have to adjust the precision thresholds used in the com-
parisons of fp-numbers. After some tests we ended up
using the following formula1:

εprec := εfp/2
100·

(√
prec/53−1

)
,

where εfp is the standard threshold used for the fp-

computations and prec is the precision (number of bits)
requested. (The standard IEEE 754 precision assigns
53 bits of precision to the mantissa; see [10].)

We note that setting the default precision of MPFR in
main() with the mpfr_set_default_prec library call
does only affect variables created after this library call.
In particular, the precision of global variables is not set
adequately by default — and missing the correct setting
of even just a few global variables turned out to down-
grade the precision of the output quite significantly. So
we modified our wrapper to ensure that the target vari-
able in assignments has the default MPFR precision set.

2.4 Using Shewchuk’s Predicates in FIST

Since correct sidedness tests are important for FIST we
inserted a compile-time option that allows us to replace
FIST’s standard determinant evaluation by Shewchuk’s
2D orientation predicate [12]. It was easy to integrate
his code into FIST but one caveat remains: Shewchuk
explicitly warns that his predicates will not work cor-
rectly if extended-precision registers are used. We cir-
cumvented this problem by running our tests on an x86-
64 hardware; see the discussion in Sec. 3.2.

3 Tests and Experimental Results

3.1 Speeding up the CORE Library

The default constructor in CORE initializes an object
that represents the constant zero. A closer inspec-
tion revealed that it always creates a new node repre-
senting zero. However, FIST very often uses variables
in a way that causes their default constructor to be
called: The programming language C (prior to the 1999
standard of C) forces variables to be declared prior to
the body of the function, which often happens with-
out an assignment in FIST. The default constructor is

1Thanks go to Stefan Huber for coming up with this formula.

CCCG 2011, Toronto ON, August 10–12, 2011

also called frequently when arrays containing Expr ob-
jects are enlarged. A simple modification of this feature
of CORE 2.0.8 resulted in an increase in speed of the
CORE-based version of FIST by about 31%. (Our patch
has been integrated into CORE 2.1.)

3.2 Influence of Compiler Options

In general, it is easier to debug non-optimized builds
than optimized builds because compilers instructed to
optimize may reorder instructions on machine-code level
to gain performance. This often leads to a non-
monotonic control flow with respect to the C sources.
However, a key aspect of optimized builds is the at-
tempt to keep variables inside registers across multiple
statements in the source code.

On the x86 architecture, the floating-point registers
are 80 bit wide, with a mantissa of 64 bit [11]. How-
ever, floating-point variables of type double as defined
by IEEE 754-1985 [10] only have a mantissa of 53 bit.
So, whenever a floating-point value is moved from a
floating-point register to main memory, a loss of pre-
cision occurs. Or, in other words, the precision of nu-
merical data computed depends on which variables and
which intermediate results were kept in the registers.
As a result, the output may change drastically once op-
timization is turned on.

Tests with FIST on our test data – see below – re-
vealed that the outputs of the optimized build (using
gcc -O) and the debug build (using gcc -O0) differ for
about 15% of the inputs. We simply took the trian-
gles (in the order computed by FIST) as the output.
Hence, different outputs may nevertheless describe the
same triangulation. Still, this means that at least one
comparison in FIST returned different results on 15% of
our inputs, depending on the compiler options.

There are multiple ways around this problem:
• Force the use of SSE instructions. This is not sup-

ported on all x86 CPUs. Many compilers including
gcc use this as default on x86-64.
• Link the executable with a flag that limits the pre-

cision of the FPU. (E.g., -mpc64 for gcc).
• Use a compiler flag that forces the write-back of all

calculated values from the registers to main mem-
ory. (E.g., -ffloat-store for gcc.)

3.3 Test Results for Triangulations of Polygons

3.3.1 Comparison of Different Arithmetic Backends

The following tests were conducted on the first author’s
set of polygonal areas which currently consists of 21 175
polygons with and without holes. The tests were run on
an x86-64 hardware, an Intel Core i5 CPU 760 clocked at
2.80GHz. The test machine has 8 GiB of main memory,
but virtual memory was limited to 6 GiB by the ulimit
command. All codes were compiled with gcc 4.4.3.

We ran FIST with six different arithmetic back-ends:

• ordinary IEEE 754 double-precision fp-arithmetic
(fistFp),

• Shewchuk’s predicates (fistShew),

• CORE (fistCore),

• three precisions of MPFR: 53 bits (fistMp53), 212
bits (fistMp212), and 1000 bits (fistMp1000).

Figure 1 shows the run-time plots of fistFp, fistMp212,
and fistCore. (The plots for the other three variants
have been omitted due to lack of space.) The use of
Shewchuk’s exact predicates (fistShew) does not change
the runtime behavior and results in a negligible speed
penalty compared to fistFp: fistFp averages 0.155·n log n
microseconds, while fistShew averages 0.157 ·n log n mi-
croseconds. All MPFR-based versions are about 24
times slower than fistFp on average, with fistMp212 aver-
aging 3.786·n log n microseconds, while fistCore is about
50 times slower. Increasing the precision requested for
the MPFR-based versions causes no significant speed
penalty. It is noteworthy, though, that the runtime of
all MPFR-based versions varies much more significantly
than for fistFp, fistShew, and fistCore.

In a second test we examined that numbers of data
sets that were triangulated differently by the six variants
of FIST. As it could be expected, there is no difference
between fistFp and fistMp53. It is also not surprising
that the use of exact predicates will cause some differ-
ences, despite the fact that considerable efforts were put
into making FIST reliable. The difference between fistFp
(fistMp53, resp.) and fistShew is small, though: Only
0.34 percent of the inputs were triangulated differently
by fistShew. Contrary to our initial assumption, using
MPFR with larger precisions in conjunction with FIST
does not form an intermediate step between fistFp and
fistCore: fistCore triangulates 10.38% of the inputs dif-
ferently, while the outputs of fistMp212 and fistMp1000
deviate for 10.55% respectively 10.44% of the inputs.

3.3.2 Verification of Triangulations Computed

Recall that different outputs need not indicate different
or even incorrect triangulations. Since the number of
differences was too large to be analyzed by hand, we
wrote a code for verifying triangulations. A polygonal
area is considered to be triangulated correctly only if the
segments of the triangles neither intersect each other nor
intersect the segments of the polygonal area. Note that
we also consider triangulation edges that coincide (par-
tially) with edges of the polygon or that pass through
vertices of the polygon – termed “overlay” problems –
as errors. Additionally, we check whether any segment
of the triangulation passes outside of the polygon.

We use the Bentley-Ottmann algorithm [4] to find in-
tersections. As arithmetic back-end, we use exact arith-
metic based on the mpq_t data type provided by the
GMP package (GMP 5.0.1, [2]). In an attempt to cut
down the verification efforts, and lacking better means

23d Canadian Conference on Computational Geometry, 2011

10−8

10−7

10−6

10−5

10−4

103 104 105 106

0.08 to 0.20 · n log n µs

103 104 105 106

1.5 to 8 ·n log n µs

103 104 105 106

4 to 10 ·n log n µs

Figure 1: Run-time plots for fistFp, fistMp212, and fistCore. The y-axis corresponds to the run-time divided by
n log n, where n is the number of vertices shown on the x-axis.

for establishing reference triangulations, we simply as-
sume that all CORE-based outputs correspond to cor-
rect triangulations. Under this assumption it suffices to
check all outputs that differ from outputs of fistCore.

In our first attempt to check the triangulations our
GMP-based verifier took the input coordinates as exact
values. (That is, 0.1 was regarded as 1/10.) We were
shocked to learn that the verifier reported about 4.92%
of the triangulations to be faulty — uniformly for all
variants of FIST which are not based on CORE. A more
detailed analysis revealed that only fistFp, fistShew, and
fistMp53 suffered from genuine intersection problems in
their outputs, whereas the outputs of fistMp212 and
fistMp1000 contained only overlay problems.

Still, nearly 5% faulty triangulations seemed too bad
to be true. We implemented a viewer that does not suf-
fer from floating-point errors and examined a few faulty
triangulations: The errors reported by our verifier were
only visible in the viewer when we used a zoom factor
of at least 1015, which is approximately the reciprocal
value of the precision of double precision fp-numbers.

So we switched to using the double-precision fp-
approximations of the input coordinates as the true
input numbers for our verifier, and again tested the
triangulations reported to be faulty for fistFp: This
test revealed no faulty triangulation at all. We con-
clude that the errors found with the first version of
the verifier were only caused by input errors, i.e., by
the small differences between real numbers and their
fp-approximations. Since all real-world applications of
FIST that we are aware of are based entirely on fp-
numbers, triangulations computed by fistFp can right-
fully be assumed to be correct from the point of view of
these applications.

3.4 Test Results for Voronoi Diagrams of Segments

In the sequel, we report on tests of four variants of
VRONI – VRONI based on fp-arithmetic (vroniFp), and
VRONI based on MPFR with precisions 53, 212, 1000
(vroniMp53, vroniMp212, vroniMp1000) – and compare
them to the Voronoi code shipped with CGAL 3.8.

We tested three variants of CGAL’s Voronoi
code. The first variant is fully based on double-
precision fp-arithmetic (cgvdFp), the second variant
uses CGAL::Quotient<CGAL::MP_Float> as predi-
cate kernel (cgvdQu)and the third uses CORE::Expr

as predicate kernel (cgvdEx). All variants use
Segment_Delaunay_graph_filtered_traits_2 tem-
plate parameter to the underlying segment Delaunay
graph class.

To ensure that CGAL and VRONI work on precisely
the same input, we scale the input data to fit into the
unit square as it is done per default in VRONI. For the
same reason we add four dummy points outside of the
bounding-box of the input explicitly to the input data
for CGAL, at the positions specified by VRONI. (These
points guarantee that each Voronoi cell of the actual
input is bounded.) In order to ensure that the perfor-
mance of CGAL is not influenced by file I/O we parse
an input file and store the data in an intermediate data
structure. Then we call the insert() method on the
segment Delaunay graph, and construct the Voronoi di-
agram object based on the segment Delaunay graph.
Only the insertions and the construction of the segment
Delaunay graph are timed in our tests.

Our test bed consists of 18 787 input files with poly-
gons, polygon areas, and polygonal chains. In order to
ensure that all tests could be carried out within an ac-
ceptable time period we considered only inputs with at
most 100 000 segments and limited the cpu-time con-
sumption to 30 minutes per input. All tests were con-
ducted on an Intel i7 CPU X 980 clocked at 3.33GHz.
The test machine was equipped with 24 GiB of main
memory.

The run-time performances of the variants tested are
shown in Fig. 2. As expected, vroniFp is by far the
fasted variant, averaging about 0.6 · n log n microsec-
onds for inputs with 2 000 or more segments, while the
MPFR-based variants all are 50–70 times slower. How-
ever, the variation of the run-time for different inputs of
the same size is much smaller for the different variants
of VRONI than for CGAL: Once the input size is large
enough to make the timing reliable for VRONI there are

CCCG 2011, Toronto ON, August 10–12, 2011

10−7

10−6

10−5

10−4

10−3

10−2

102 103 104 105

0.5 to 1.6 · n log n µs

102 103 104 105

25 to 80 · n log n µs

102 103 104 105

9 to 170 · n log n µs

Figure 2: Run-time plots for vroniFp, vroniMp212, and cgvdEx. The y-axis corresponds to the run-time divided by
n log n, where n is the number of vertices shown on the x-axis.

few data points outside of a small and dense band. On
the contrary, the run-times of all CGAL variants vary by
at least a multiplicative factor of 20. On average, CGAL
performs slightly better than the MPFR-based variants
of VRONI, but due to the big variance, there are several
data sets that cause CGAL to perform worse than MPFR-
based variants of VRONI. Interestingly, switching CGAL
entirely to fp-arithmetic speeds up the code by only a
factor of 1.5 on average. In any case, vroniFp completely
outperforms CGAL on all data sets, being roughly 50–80
times faster than the CGAL variants. For about 0.36%
of the inputs the CGAL variants did not finish within
the limits imposed on runtime and memory.

The multiple outliers in the CGAL plots made us won-
der whether there exist inputs for which the run-time
complexity is worse than O(n log n). And, indeed, spe-
cific tests showed that smooth polygonal approxima-
tions of elliptical arcs or some free-form curves may
cause all CGAL variants tested to consume Ω(n2) time,
with and without exact kernel, with and without filtered
traits. (Unfiltered traits cause CGAL’s built-in consis-
tency checker to declare the solution as invalid quite
frequently, which we also confirmed by our tests.)

Since the CGAL code was not designed to be run
with conventional fp-arithmetic it is not surprising that
cgvdFp fails frequently with fp-exceptions. (It crashed
on 937 inputs.) It is more surprising, though, that the
smallest input on which cgvdFp crashed also results in
cgvdQu and cgvdEx computing Voronoi nodes which are
numerically clearly wrong.

This observation made us wonder whether we had
stumbled upon some isolated bug in CGAL, and we
started to investigate the numerical accuracy of the
Voronoi diagrams computed. We use an output format
that stores the coordinates of the input sites and the
coordinates of the Voronoi nodes calculated along with
a reference to the defining sites. (We do not unscale
the coordinates as this would introduce an unnecessary
source of error.) We use a decimal precision of 60 digits
in the output format. For each node, our verifier

• calculates differences in the distance to the defining
sites of the node as the squared minimum distance
divided by the squared maximum distance;

• checks whether any site s is closer to the node than
its closest defining site, and reports the squared
distance to s divided by the squared minimum dis-
tance.

In order to avoid introducing new errors in the verifier,
all distance computations are based on GMP’s mpq_t

data type. Since brute-force all-pairs distance computa-
tions are used, we could afford to run our verifier only on
comparatively small inputs with up to 2 000 segments.

Due to the use of fp-numbers in the output files of
CGAL and VRONI we cannot expect any variant to have
no error – but we can hope for small errors. The larger
the error, the more such a ratio differs from one. For
each variant all ratios different from one are sorted in
increasing order and the square roots of the sorted ra-
tios are subtracted from one. (These computations are
based on standard fp-arithmetic.) In order to avoid
plotting millions of points, we compute the averages of
groups of 100 consecutive error values (in the sorted
order) and plot the resulting errors.

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

20000 40000 60000 80000

cgvdEx

vroniFp

vroniMp212

Figure 3: Error values that correspond to inconsistent
distances to the defining sites of a node.

Figures 3+4 depict these sorted sequences of error
values for vroniMp212 (lowest, red curve), vroniFp (mid-
dle, green curve), and cgvdQu (top, blue curve). Fig. 3
shows the errors that correspond to inconsistent dis-
tances to the defining sites of a node, and Fig. 4 shows
the errors that represent violations of clearance disks by
other sites.

23d Canadian Conference on Computational Geometry, 2011

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

2000 4000 6000 8000 10000

cgvdEx

vroniFp

vroniMp212

Figure 4: Error values that represent violations of clear-
ance disks by other sites.

It is evident and not surprising that VRONI runs into
numerical errors, and that using MPFR clearly helps
VRONI to improve the accuracy of its output. But
it is surprising to learn that all VRONI variants pro-
duce outputs which, on average, seem to be numerically
much more accurate than any of the CGAL variants:
vroniFp shows significantly fewer and smaller errors than
cgvdQu. The numerical errors of cgvdEx are even more
severe than those of cgvdQu, and cgvdFp is completely
unreliable, given the large number of crashes observed.

Hence, if the numerical accuracy provided by the
standard floating-point arithmetic is deemed insuffi-
cient in a real-world Voronoi application then it seems
advisable to use VRONI in conjunction with MPFR,
given the current state-of-the-art of Voronoi implemen-
tations. However, we note that the exact CGAL vari-
ants might determine correct Voronoi topologies even
though the Voronoi nodes are less accurate than what
can be achieved on a standard fp-arithmetic. (We had
no means to assess and check this quality criterion.)

3.5 Test Results for Straight Skeletons

Due to lack of space we summarize our results for the
computation of straight skeletons as follows: the MPFR-
based versions of BONE are about 10–20 times slower
than boneFp, with boneFp averaging about 30 · n log n
microseconds on our test platform. CGAL’s straight-
skeleton code exhibits both a quadratic run-time as well
as a quadratic memory consumption and, thus, is only
feasible for very small inputs.

4 Conclusion

In this paper we discussed the problems that arose when
we attempted to interface FIST, VRONI and BONE with
the MPFR library or the CORE library. While MPFR
was fairly easy to integrate into our C/C++ codes, the
integration of CORE required significantly more efforts
and non-trivial changes to the codes. Furthermore, the

CORE-based version of FIST suffered from a substantial
performance hit. Our tests suggest that the MPFR li-
brary should be considered if the numerical precision of
a geometric code such as VRONI is of concern: It does
indeed succeed in boosting the precision without caus-
ing the increase in runtime to become completely un-
bearable. As discussed, the numerical precision of the
output of a geometric code may depend substantially
on the compiler settings.

To our surprise, FIST run on a standard floating-point
arithmetic performed flawlessy: all triangulations com-
puted by FIST were correct. Also to our surprise, the
CGAL alternatives to VRONI and BONE hardly are an
alternative in practice; we observed a tremendously in-
creased runtime (compared to VRONI and BONE) and
a decreased numerical precision of the output.

Of course, our tests constitute case studies for only
three specific applications with a small number of codes.
Hence, generalizations of our findings need not be legit-
imate without probing the grounds. In particular, the
mere fact that CGAL performed poorly in our test ap-
plications cannot be construed as an indication for a
general weakness of CGAL for other applications.

References

[1] CORE. http://cs.nyu.edu/exact/core_pages/.

[2] GMP. http://gmplib.org/.

[3] MPFR. http://www.mpfr.org/.

[4] J. Bentley and T. Ottmann. Algorithms for Reporting
and Counting Geometric Intersections. IEEE Trans.
Comput., C-28:643–647, 1979.

[5] CGAL. http://www.cgal.org/.

[6] M. Held. FIST: Fast Industrial-Strength Triangulation
of Polygons. Algorithmica, 30(4):563–596, Aug 2001.

[7] M. Held. VRONI: An Engineering Approach to the Re-
liable and Efficient Computation of Voronoi Diagrams
of Points and Line Segments. Comput. Geom. Theory
and Appl., 18(2):95–123, Mar 2001.

[8] M. Held and S. Huber. Topology-Oriented Incremen-
tal Computation of Voronoi Diagrams of Circular Arcs
and Straight-Line Segments. Comput. Aided Design,
41(5):327–338, May 2009.

[9] S. Huber and M. Held. Theoretical and Practical
Results on Straight Skeletons of Planar Straight-Line
Graphs. In Proc. 27th Annu. ACM Sympos. Comput.
Geom., pages 171–178.

[10] IEEE. IEEE 754-1985, Standard for Binary Floating-
Point Arithmetic, 1985.

[11] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual, Vol. 1, April 2011. http:
//www.intel.com/products/processor/manuals/.

[12] J. Shewchuk. Adaptive Precision Floating-Point Arith-
metic and Fast Robust Geometric Predicates. Discrete
Comput. Geom., 18(3):305–363, Oct 1997.

