
CCCG 2011, Toronto ON, August 10–12, 2011

Geometry-Free Polygon Splitting
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Abstract

A polygon splitting algorithm is a combinatorial recipe.
The description and the implementation of polygon
splitting should not depend on the embedding geome-
try. Whether a polygon is being split in Euclidean, in
spherical, in oriented projective, or in hyperbolic geo-
metry should not be part of the description of the algo-
rithm. The algorithm should be purely combinatorial,
or geometry free.

The geometry ultimately needs to be specified, and
the geometric predicates can only be implemented after
specifying the coordinate type and the number type.
But the geometry, along with the coordinates and num-
ber type in that geometry, remain a late “plug-in”, to
be added only to the finished algorithm.

We describe a kernel for hyperbolic geometry. Once
classes and predicates in that geometry are developed,
hyperbolic geometry can be used as a plug-in to polygon
splitting alongside other geometries.

We also describe an algorithm for the splitting of a
polygon represented using its bounding lines. The use of
this dual representation ensures that all predicates are
computed directly from input data. This remains the
case even if the same polygon is split multiple times, as
occurs in BSP tree construction.

1 Introduction

Polygon clipping and splitting algorithms are described
in the literature for a specific geometry. An algorithm is
described either for Euclidean geometry [10] or for ori-
ented projective geometry [17, 2]. Initially, intersections
in oriented projective space were performed by mak-
ing observations about the homogenizing coordinate, w.
As kernels for different geometries were developed, it
became better understood that intersection operations
can be performed while the coordinates remain invisi-
ble [2, 15, 6].

Yet there is no reason for clipping and splitting algo-
rithms not to be designed and implemented as purely
combinatorial algorithms. The geometry remains a vari-
able, one that is bound to the algorithm at a late stage
during compilation.

The art of geometric computing has been scattered,
with computational geometry mainly seeking solutions
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in Euclidean spaces and with computer graphics seek-
ing ones in oriented projective space. Recent work
has shown that geometric algorithms can be made neu-
tral [5, 4]. The same algorithm can be instantiated in
either Euclidean or oriented projective geometry. We
take at present another step and show that a kernel for
hyperbolic geometry can also be defined. We show how
a geometry kernel can be a late addition to an algorithm
to produce a concrete algorithm in that geometry.

The problem addressed here is polygon splitting—two
parts result from the split. If only one of the two parts is
needed, the problem is termed polygon clipping instead.
Given a splitting algorithm, regardless of whether it is
geometry free, one can easily produce a clipping algo-
rithm by removing the algorithm subset that generates
the part that is not needed.

1.1 Number-Type, Coordinate, and Dimension
Freedom

By liberating an algorithm from its number type, co-
ordinates, dimension, or from geometry, an algorithm
becomes number-type free, coordinate free, dimension
free, or geometry free, respectively.

Number-type freedom refers to the ability to modify
an implementation by changing as little as one program
line, to make the implementation operate on one num-
ber type or another [13]. Minimal modification is im-
portant. Modifying an algorithm to use ’float’ instead of
’double’, for example, can in general not be performed
simply by replacing one string with another. One must
also confirm that each instance does indeed represent a
coordinate in the geometric system.

Coordinate freedom [11] is as important to writing
maintainable geometric systems as number-type free-
dom. A geometric system is said to be coordinate free
if coordinate manipulation is restricted. Coordinates
are needed in the input and output stages of an al-
gorithm, but the intermediate stages of an algorithm
are designed and implemented such that coordinates
are not accessed. Aside from the objectives of gener-
ality and reuse, coordinate freedom promotes the use of
a vectorial language to resolve geometric predicates [5,
Chap. 17].

Dimension freedom involves defining a geometric al-
gorithm that can operate in any dimension. The only
algorithms that appear to be amenable to dimension
freedom at this time are BSP algorithms.
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1.2 Geometry Freedom

Geometric freedom proposes to turn a geometric algo-
rithm into a purely combinatorial one [5, Chap. 29].
Figure 1 illustrates a few low-dimensional geometries.
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Figure 1: Low-dimensional kernels for Euclidean, spher-
ical, projective, oriented projective, and hyperbolic geo-
metries.

Consider that we have defined classes (datatypes and
functions) for objects in each geometry. In the real Eu-
clidean plane RE 2 we will define classes for a point,
a line, and a polygon—called, respectively, Point E2,
Line E2, and Polygon E2. Likewise in the real oriented
projective plane RT 2 we will define the classes Point T2,
Line T2, and Polygon T2, and so on.

Even though in a geometric system we have no need
for creating a concrete instance of Euclidean, spherical,
or hyperbolic plane geometry, we define a datatype for
each geometry [4]. The datatypes remain abstract—
no instance is ever created. They serve in acting as a
parameter to a combinatorial algorithm. During com-
pilation the generic geometry is replaced by a concrete
one, and the resulting implementation is as efficient as
one hand-tailored for a particular geometry.

If ’double’ is chosen as the number type, the class for
2D Euclidean geometry becomes Geometry E2<double>,
that for 2D hyperbolic geometry Geometry H2<double>,
and so on.

Computational geometry often uses mapping in gen-
eral and projection in particular to reduce one problem
to another. It is clear that a Euclidean geometry can-
not replace a different geometry everywhere, but even
if the topology is identical, the mapping may be unde-
sirable. It is possible, for instance, to use stereographic
projection to define a bijection between points on the
extended complex plane and the Riemann sphere [9]. It
then becomes possible to claim that a problem on the
sphere can be solved by invoking an algorithm on the
complex plane, along with appropriate handling for the
ideal point. This may be satisfying in synthetic geome-
try, but it is not a useful solution from an algebraic or
a computing perspective. No numerical precision would
be adequate to capture points in proximity of the north
pole.

2 Kernel Support for Polygon Splitting

As with any instance of introducing modularity into a
software system, one must define the interface between
two or more components. In the case of raising the
abstraction of polygon splitting, we need to define the
classes and the functions provided by the kernel and
used by the implementation of polygon splitting.

The following C++ code illustrates the implementa-
tion of a 2D Euclidean geometry class. Itself parame-
terized by a number type NT, the class also acts as a
parameter for geometry-free algorithms.

template<typename NT>
struct Geometry E2
{

typedef NT NumberType;

typedef Point E2<NT> Point;
typedef Line E2<NT> Hyperplane;
typedef Polygon E2<NT> Polytope;

};

The code for other geometries is similar. The follow-
ing code shows a class Geometry H2 for 2D hyperbolic
geometry.

template<typename NT>
struct Geometry H2
{

typedef NT NumberType;

typedef Point H2<NT> Point;
typedef Line H2<NT> Hyperplane;
typedef Polygon H2<NT> Polytope;

};

The hyperbolic geometry kernel represents points by
those in the interior of the Poincaré disk, where lines are
oriented circles orthogonal to the unit circle [8]. Line
intersection results in either no (real) points or in two
points. In the first case the lines have no intersection in
the hyperbolic plane and in the second they have one
intersection. One point will be inside the unit disk and
its inversion will be outside. A line joining two points
will pass by the two points as well as their inversions.
Adopting the Poincaré disk rather than Weierstrass co-
ordinates [3] means that we sacrifice homogeneity, which
we leave as a second step.
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Figure 2: Separability of hyperbolic geometry

The only property of hyperbolic geometry on which
polygon splitting depends is separability, illustrated in
Figure 2. We say that a geometry is separable if the
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removal of one hyperplane results in two disjoint sets.
Separability is also the property of oriented projective
geometry that is not satisfied by classical projective geo-
metry and that makes it necessary to base geometric al-
gorithms on the former. We have yet to identify a class
of algorithms that can be naturally defined in classical
projective geometry.

Each geometry in turn defines the concrete types for
a point, a hyperplane, and a polytope in that geome-
try using traits [12]. A geometry-free algorithm is then
written to use a point, a hyperplane, and a polytope
without referring to a concrete type [4].

Traits are simply type mappings. A classical proce-
dure performs mapping between objects. The procedure
takes a set of parameters. When called, it evaluates a
function and returns an object. Traits extend this no-
tion to types. The ’typedef’ statement in the C lan-
guage already performs this mapping, although in the
opposite order of what assignment statements in that
language would suggest: the “l-type-value” appears on
the right. The combination of type genericity and type
mapping meant that traits have found wide applications
in generic programming.

The polygon splitting implementation is a function
split that is parameterized by the geometry.

template<typename Geometry>
void
split(const typename Geometry::Polytope & polytope,

const typename Geometry::Hyperplane & hyperplane,
typename Geometry::Polytope & positive part,
typename Geometry::Polytope & negative part);

To split in a concrete geometry, it suffices to instan-
tiate the generic function with a concrete geometry.

split<Geometry E2<double> >(...);
split<Geometry S2<double> >(...);
split<Geometry H2<double> >(...);

Type safety is guaranteed. The function for splitting
in one geometry will only accept polytope objects and
a hyperplane in that geometry. In this abstraction we
refer to polygons using the more general term polytope
to facilitate dimension freedom.

Only one predicate function is needed by split: line-
point sidedness. Visualization requires a second func-
tion: line-line intersection. Neither function is generic
with respect to the geometry. To compile split in a given
geometry, It is necessary to ensure that a concrete in-
tersection function and sidedness predicate are available
for that geometry. The declarations in the case of Eu-
clidean geometry, for instance, are:

template<typename NT>
Oriented side
oriented side(const Line E2<NT>& L1,

const Line E2<NT>& L2,
const Line E2<NT>& L3);

template<typename NT>
Point E2<NT>
intersection(const Line E2<NT> & L1,

const Line E2<NT> & L2);

3 Geometry-Free Polygon Splitting

3.1 A Dual Representation for Polygons

Our main application for polygon splitting is the compu-
tation of Boolean operations. A polygon is recursively
split by the partitioning hyperplanes in a binary tree.
When a fragment of the polygon reaches a leaf node,
the Boolean operation is evaluated and the fragment
is either discarded or used to construct a subtree at a
leaf [18].

Suppose that the operation we wish to compute is
Boolean union, and that we have inserted into an ini-
tially empty tree the three dark-shaded polygons shown
in Figure 3 (a). Our BSP tree will at this time include
some leaf node N representing the light-shaded trian-
gle in the center. Suppose that we then insert a fourth
polygon defined by the three circular markers and the
dashed lines. That polygon will be split by the inte-
rior nodes, and all fragments but one will be eliminated
as redundant (because they will be already flagged as
belonging to the point set). Only the fragment at the
center will remain.
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Figure 3: (a) Computing the union of four polygons;
(b) the boundary of the fragment remaining of the
fourth polygon; (c) the corresponding subtree

The traditional approach is to then construct a binary
tree (Figure 3 (c)) to represent the remaining fragment
of the fourth polygon (Figure 3 (b)—we use the reverse
of the convention of a polygon’s orientation to facilitate
dimension freedom [5]). That binary tree is attached
as a subtree at the leaf node N . Yet this seven-node
subtree introduces six nodes that represent empty sets.
This is the case in a binary tree whenever the key at an
interior node matches the key at one of its ancestors. In
this case all three interior nodes of the subtree would
be present along the path to the root. Storing nodes
that represent the empty set does not breach the BSP
tree—the empty sets are convex—but it is not optimal.

The conclusion we make is that the recursive splitting
of a polygon must maintain for each edge of the polygon
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whether the edge is the result of a cut. Only those edges
that are not the result of a cut are used to construct the
leaf subtree.

As is now well-understood, it is necessary to use
ternary logic for the sidedness predicate. Figure 4 illus-
trates the issue in the present context. If two polygons
have sides that coincide with a splitting line (perhaps
because they have already been cut by precisely that
line), then the act of folding the coincidence of sided-
ness with either the positive or the negative sides will
result in a zero-area quadrangle.

0
+

− (a)
(b)

Figure 4: Necessity of handling point-hyperplane in-
cidence: Folding 0 into − means that polygon (a) is
unnecessarily split, and likewise for polygon (b) if 0 is
folded into +.

But how can we determine reliably whether a given
vertex or edge is incident to a splitting line? One ap-
proach is to off-load the problem on the number type
and assume that we have at our disposal an exotic num-
ber type capable of determining without failure the sign
of a determinant. Yet a solution is possible that depends
on no stronger than the built-in finite precision number
types.

The solution we use is to define polygons by their
bounding lines rather than their bounding vertices [16].
Sugihara and Iri have also shown how the sidedness
predicates can be resolved directly from the coefficients
of the (hyper-) planes and without appealing to duality.

In addition, we also store with each bounding line a
flag describing whether the line is the result of a split.
Storing these flags ensures that the BSP trees we con-
struct contain no nodes representing empty sets.

3.2 Algorithm

Figure 5 shows a new polygon splitter with the following
new features. It is generic with respect to the geome-
try. It avoids slivers by using the input lines to define
all new fragments. It is suitable for concave polygons,
and it maintains a flag for each polygon boundary to
identify whether it is the result of a cut, which makes
the resulting fragments suitable for processing in BSP
trees.

The main operation in the graphics pipeline is to clip
a polygon six times with the boundary of a cube in
oriented projective space. In that setting the hyperplane
is three-dimensional, but the object clipped is a two-
dimensional polygon lying in 3D.

The present algorithm is not identical to the one that
appeared in the monograph [5, Page 263]. That work

also represented polygons using their bounding hyper-
planes, but vertex coordinates were computed to deter-
mine sidedness—an operation that is at present resolved
by using hyperplane-based predicates [16].

Both preceding works on polygon clipping [5, 1] avert
the construction of new vertices at the clip/split lo-
cations. They both do so by outputting hyperplanes
instead of the classical method of outputting vertices
during each iteration. The atomic test in Bernstein and
Fussell’s algorithm is based on four boundary edges and
three vertices, for a total of 27 cases (each vertex may lie
on either side or coincide with the splitting plane). In
addition to being purely combinatorial or geometry free,
the present algorithm (as well as the previous mono-
graph presentation [5]) iterates instead over three hy-
perplanes and two vertices while handling 9 cases (three
outcomes for each vertex). For completeness, we show
the algorithm handling both positive and negative frag-
ments. We also handle the coincidence of the polygon
with the splitting plane—a case that can arise in 3D.

The implementation was invoked in spherical, Eu-
clidean, and hyperbolic geometries. Examples of split-
ting a polygon on the sphere, in the Euclidean plane,
and in the hyperbolic plane are shown in Figure 6.

4 Future Work

The trajectory we take is to define algorithms and a
usable library for vector computer graphics that com-
plements what can be done in raster computer graphics.
Rather than represent an image of a 3D object as a uni-
formly sampled shading value (a raster image), we wish
to capture an image as a planar graph on either a sphere
or on a subset of the Euclidean plane. The extension of
this work to 3D must proceed while satisfying the follow-
ing two simultaneous objectives. The present splitting
routine must be usable when splitting a 3D polygon em-
bedded in a plane in space. But the splitting function
must also robustly handle the case of a 3D polytope,
which is necessary for dimension freedom in a BSP tree.
A splitting routine has also been implemented for 1D in
both spherical geometry and in Euclidean geometry [5].
Even though simple, the need arises in practice for the
computation of Boolean operations on regular sets in
1D.

Line clipping and splitting is an equally important
problem. In the context of BSP trees we often need to
determine sub-hyperplanes [5, 1], the subset of a split-
ting line lying inside a convex region—an instance of line
clipping. Figure 7 suggests that it may be possible to
use classical duality to combine an implementation for
line and polygon splitting [14]. But note that, as illus-
trated in the figure, the vertices to be addressed under
line and polygon splitting are distinct. The vertices ad-
dressed under line splitting are the line’s intersections
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Split(Polygon P, Line L)
returns positive polygon, negative polygon: Polygon
classify (implicit) vertices of P with respect to L
if no vertex lies in L−

or no vertex lies in L+

for each bounding line of P // Case (a)
if line coincides with L

set the corresponding edge flag
if no vertex lies in L− // Case (b)

copy P with new edge flags into positive polygon
if no vertex lies in L+ // Case (c)

copy P with new edge flags into negative polygon
return

if all vertices of P lie on L // Case (d)
return

vector of lines positive lines, negative lines
vector of flags flags of positive lines, flags of negative lines
for each bounding edge e of P

// e.source is implicitly defined by predecessor(e) and e
// e.target is implicitly defined by e and successor(e)
if e.source is not in L− and e.target is not in L−

insert e to positive lines // Case (e)
insert flag of e to flags of positive lines
if e.target lies on L // Case (f)

insert L to positive lines
insert true to flags of positive lines

else if e.source is not in L+ and e.target is not in L+

insert e to negative lines // Case (g)
insert flag of e to flags of negative lines
if e.target lies on L

insert -L to negative lines // Case (h)
insert true to flags of negative lines

else // segment straddles the splitting line; split
if e.source lies in L+ and e.target lies in L−

insert e to positive lines // Case (i)
insert flag of e to flags of positive lines
insert L to positive lines
insert true to flags of positive lines
insert e to negative lines
insert flag of e to flags of negative lines

// The symmetric next case is included for completeness
if e.source lies in L− and e.target lies in L+

insert e to negative lines // Case (j)
insert flag of e.source to flags of negative lines
insert -L to negative lines
insert true to flags of negative lines
insert e to positive lines
insert flag of e to flags of positive lines

construct positive polygon from positive lines and flags of positive lines
construct negative polygon from negative lines and flags of negative lines
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Figure 5: Geometry-free polygon splitting—Cases (f) and (h) in the algorithm handle the incidence of a vertex with
the splitting line, case (a) handles the incidence of an edge with the splitting line, and cases (b) and (c) handle the
cases when the polygon lies strictly on one side of the splitting line. Cases (f) and (h) are themselves special cases
of (e) and (g). Cases (i) and (j) handle a proper (interior) intersection between the polygon’s boundary and the
splitting line. If, as iterative runs of the algorithm guarantee, the input polygon represents a regular set, case (d)
cannot arise in 2D geometry. We include it to be able to handle 3D polygon splitting.
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Figure 6: Polygon splitting in Euclidean, spherical, and hyperbolic geometries

with the polygon’s bounding lines.

Figure 7: Combining polygon and line clipping

Genericity can also be used in the context of at-
tributes [7]. A polygon’s vertex will frequently carry
along data such as texture coordinates, which will also
need to be clipped along with the geometry. Yet clip-
ping texture coordinates is not as straight-forward as it
may seem because of the distinct metrics in each geo-
metry. The appropriate solution is to devise an inter-
polation module that caters for distances, angles, and
areas. Geometry and dimension freedom suggest that
the solution should handle interpolants of an arbitrary
function, not just linear interpolation, in an arbitrary
geometry.
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[14] V. Skala. A new approach to line and line segment
clipping in homogeneous coordinates. The Visual Com-
puter, 21:905–914, 2005.

[15] J. Stolfi. Oriented Projective Geometry: A Framework
for Geometric Computations. Academic Press, 1991.

[16] K. Sugihara and M. Iri. A solid modelling system
free from topological inconsistency. J. Inform. Proc.,
12(4):380–393, 1989.

[17] I. Sutherland and G. Hodgman. Reentrant polygon clip-
ping. CACM, 17:32–42, 1974.

[18] W. Thibault and B. Naylor. Set operations on poly-
hedra using binary space partitioning trees. Comput.
Graph., 21(4):153–162, 1987.


