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Isoperimetric Triangular Enclosure with a Fixed Angle

Prosenjit Bose∗ Jean-Lou De Carufel∗

Abstract

Given a set S of n > 2 points in the plane (in general
position), we show how to compute in O(n2) time, a
triangle T with maximum (or minimum) area enclosing
S among all enclosing triangles with fixed perimeter P
and one fixed angle ω. We show that a similar approach
can be used to compute a triangle T with maximum (or
minimum) perimeter enclosing S among all enclosing
triangles with fixed area A and one fixed angle ω.

1 Introduction

The classical isoperimetric problems are

1. Of all plane figures of equal area, what is the one
with minimum perimeter?

2. Of all plane figures of equal perimeter, what is the
one with maximum area?

Several related problems and a complete discussion on
the foundations and applications of these problems to-
gether with the proof of the following result can be
found in Polya [7].

Theorem 1 (Isoperimetric Theorem)

1. Of all plane figures of equal area, the circle has min-
imum perimeter.

2. Of all plane figures of equal perimeter, the circle
has maximum area.

3. 1 and 2 are equivalent.

4. Let n > 2 be a fixed integer. Of all n-gons of equal
area, the regular n-gon has minimum perimeter.

5. Let n > 2 be a fixed integer. Of all n-gons of equal
perimeter, the regular n-gon has maximum area.

Given a fixed area (respectively perimeter), there is no
upper bound (respectively lower bound) on the perime-
ter (respectively area) a plane figure can have. In this
paper, we are interested in figures that enclose a set of
at least 3 non-collinear points. Then it is relevant to
maximize the perimeter given a fixed area (respectively
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minimize the area given a fixed perimeter). We refer to
these four isoperimetric problems as FIP.

Let ω be a fixed angle with 0 < ω < π. A triangle that
has an angle ω is called an ω-triangle. In this paper, we
study the FIP with two additional constraints: (1) the
plane figures we consider are ω-triangles, and (2) they
must enclose a given set S of n points.

These problems are a variant of the problems studied
in [1, 2, 3, 4, 5, 6, 8, 9]. Most of these problems can
be solved in linear time when the input is a convex n-
gon or in O(n log n) time when the input is a set of
n points because of an interspersing lemma proper to
each of these problems. Essentially, an interspersing
lemma states that given a local extremum, if we turn
clockwise around the convex hull of the set of points,
then we will find all the other local extrema also in
clockwise order (there is no need to backtrack). So it
takesO(n log n) time to compute the convex hull, then it
takes O(n) time to compute one local extremum, then it
takes O(n) time to compute all the other local extrema
and finally, it takes O(n) time to compute the global
extrema. Unfortunately, such a lemma does not hold in
the isoperimetric case. Our solution to the FIP takes
O(n2) time. We explain in Section 5 why the canonical
interspersing lemma does not apply, though we do not
have a proof of a quadratic lower bound. The FIP
can also be compared to the following problem (see [7],
p.180): “Given an angle (the infinite part of a plane
between two rays drawn from the same initial point).
Find the maximum area cut off from it by a line of
given length.”. Note that if the fixed perimeter or the
fixed area is too small, no solution exists.

2 Preliminary Results

Let T = 4bqc be an ω-triangle with ∠bqc = ω. Denote
the area and the perimeter of T by A and P respectively.
Let x = |bq|, y = |qc| and z = |bc|. Therefore,

P = x+ y + z ,

A =
1
2
xy sin(ω) ,

z2 = x2 + y2 − 2xy cos(ω) ,

from which

x =
P 2 sin(ω) + 4A(1 + cos(ω))

4P sin(ω)
(1)
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−
√

(P 2 sin(ω) + 4A(1 + cos(ω)))2 − 32AP 2 sin(ω)
4P sin(ω)

,

y =
P 2 sin(ω) + 4A(1 + cos(ω))

4P sin(ω)

+

√
(P 2 sin(ω) + 4A(1 + cos(ω)))2 − 32AP 2 sin(ω)

4P sin(ω)
,

z =
P 2 sin(ω)− 4A(1 + cos(ω))

2P sin(ω)
.

Then, from (1), we have

A(x) =
Px sin(ω)(P − 2x)

4(P − x(1 + cos(ω)))
,

P (x) =
2A+ x2 sin(ω)

x sin(ω)

+

√
4A2 + x4 sin2(ω)− 4x2A sin(ω) cos(ω)

x sin(ω)
.

With standard calculus techniques, we can prove the
following properties (refer to Subsection 2.1). If P is
fixed, then A(x) is defined for all 0 < x < 1

2P . It is

increasing for x ∈
]
0, 2−√2

√
1−cos(ω)

2(1+cos(ω)) P

]
and decreas-

ing for x ∈
[

2−√2
√

1−cos(ω)

2(1+cos(ω)) P, 1
2P

[
. Thus the area is

a unimodal function of x. When x = 2−√2
√

1−cos(ω)

2(1+cos(ω)) P ,
T is isosceles with x = y. As for P (x), if A is fixed,
then it is defined for all x > 0. It is decreasing for

x ∈
]
0,
√

2
√

A√
sin(ω)

]
and increasing for x ∈

[ √
2
√

A√
sin(ω)

,∞
[
.

Thus the perimeter is a unimodal function of x. When
x =

√
2
√

A√
sin(ω)

, T is isosceles with x = y.

From the previous discussion, we see that the FIP
can be solved by focusing on the length of one of the
sides of the ω-triangle. The angle ω of the desired ω-
triangle is part of an ω-wedge.

Definition 1 (ω-Wedge) Let q be a point in the
plane. Let ∆1 and ∆2 be two rays emanating from
q such that the smallest angle between ∆1 and ∆2

is ω. The closed set formed by q, ∆1, ∆2 and the
points between ∆1 and ∆2 is an ω-wedge, denoted
W(ω, q,∆1,∆2). The point q is the apex of the ω-
wedge. An ω-wedge W is said to enclose a convex n-
gon Q when Q ⊆ W and both ∆1 and ∆2 are tangent
to Q.

Therefore the vertex q of the desired ω-wedge is on an
ω-cloud.

Definition 2 (ω-Cloud) By rotating an enclosing ω-
wedge around a convex n-gon Q, the apex traces a se-
quence of circular arcs. This sequence is called an
ω-cloud, denoted Ω (refer to Figure 1). The circu-

u0

u1 u2
u3

u4

u5

Γ0

Γ1

Γ2

Γ3

Γ4

Γ5

Q

Ω

Figure 1: Ω is the 1
2π-cloud of Q.

lar arcs of Ω are labelled in clockwise order by Γj for
0 ≤ j ≤ n′ − 1. We note that n′ = O(n) [3].

The proof of the following Lemma is similar to the
proof of Lemma 1 in [1].

Lemma 2 Let A and P be two positive real numbers.
Take W =W(ω, q,∆1,∆2).

1. Consider the set of ω-triangles 4bqc with perimeter
P such that b ∈ ∆1 and c ∈ ∆2. The side bc of
these ω-triangles are tangent to a common circle
with radius rP = 1

2P tan
(

1
2ω
)

(refer to Figure 2).
We call this circle the perimeter circle of W and we

q

∆1 ∆2

t1 t2

Figure 2: A 1
2π-wedge together with 1

2π-triangles 4bqc
with perimeter P such that b ∈ ∆1 and c ∈ ∆2.

denote it by CP . The center of CP is on the angle
bisector of W and ∆1 (respectively ∆2) is tangent
to CP at t1 (respectively at t2) where |qt1| = 1

2P
(respectively |qt2| = 1

2P ).

2. Consider the set of ω-triangles 4bqc with area A
such that b ∈ ∆1 and c ∈ ∆2. The sides bc of all
these ω-triangles are tangent to a common hyper-
bola with asymptotes ∆1 and ∆2 (refer to Figure 3).
We call this hyperbola the area hyperbola of W and
we denote it by HA. The center of HA is on q.

In this paper, we explain in detail how to find an ω-
triangle of minimum and maximum area with fixed
perimeter. The solution when the area is fixed is al-
most identical since both A(x) and P (x) are unimodal
functions. We use a technique similar to the one of Bose
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q

∆1 ∆2

Figure 3: A 1
2π-wedge together with 1

2π-triangles 4bqc
with area A such that b ∈ ∆1 and c ∈ ∆2.

and De Carufel in [2]. The main difference is in the lack
of interspersing lemma (refer to Section 5). If the input
is a set S of n ≥ 3 non-collinear points, we first com-
pute the convex hull of S. In what follows, we show how
to solve the FIP when the input is a convex n-gon Q.
Moreover, Q = int(Q) ∪ δQ, where int(Q) is the interior
of Q and δQ is the boundary of Q.

2.1 Analysis of A(x) and P (x)

Given

A(x) =
Px sin(ω)(P − 2x)

4(P − x(1 + cos(ω)))

for 0 < x < 1
2P , we have

A′(x) =
P sin(ω)(P 2 − 4Px+ 2x2 + 2x2 cos(ω))

4(P − x− x cos(ω))2
.

Hence, A′(x) = 0 if and only if x = 2±
√

2−2 cos(ω)

2(1+cos(ω)) P . We

reject x = 2+
√

2−2 cos(ω)

2(1+cos(ω)) P because

2 +
√

2− 2 cos(ω)
2(1 + cos(ω))

P =
1 +

√
1−cos(ω)

2

1 + cos(ω)
P

=
1 + sin

(
1
2ω
)

1 + cos(ω)
P

>
1
2
P (0 < ω < π).

As for x = 2−
√

2−2 cos(ω)

2(1+cos(ω)) P , it is a maximum because

A′′(x) = −P
3 sin(ω)(1− cos(ω))

(P − x− x cos(ω))3

< − P 3 sin(ω)(1− cos(ω))(
P − 1

2P − 1
2P cos(ω)

)3
= − 8 sin(ω)

(1− cos(ω))2

< 0 (0 < ω < π).

Therefore, if P is fixed, A(x) is increasing for

x ∈
]
0, 2−√2

√
1−cos(ω)

2(1+cos(ω)) P

]
and decreasing for x ∈

q

∆1 ∆2

CP

Q

b−
b+ c−

c+v v′

x−
x+

(a) An enclosing ω-trian-
gle exists because int(Q) ∩
int(CP ) = Ø. b− is such that
x− = |qb−| is the smallest.
b+ is such that x+ = |qb+| is
the longest.

q

CP

Q

∆1 ∆2

(b) No enclosing ω-trian-
gle exists because int(Q) ∩
int(CP ) 6= Ø.

Figure 4: In Figure 4(a), an enclosing ω-triangle exists.
In Figure 4(b), no enclosing ω-triangle exists.

[
2−√2

√
1−cos(ω)

2(1+cos(ω)) P, 1
2P

[
. The analysis of P (x) is simi-

lar.

3 The Solution for a Fixed ω-Wedge

Take a convex polygon Q and an ω-wedge W =
W(ω, q,∆1,∆2) enclosing Q (refer to Figure 4(a)). The
solution for W is based on the following observations.

Observation 1

1. An enclosing ω-triangle T with perimeter P can be
constructed on W if and only if int(Q)∩ int(CP ) =
Ø (refer to Figure 4).

2. There exists exactly one T if and only if Q and CP
are tangent.

3. Suppose that more than one T exists.

(a) We have to compare the ω-triangle 4b−qc−
with the smallest side x− = |qb−| and the ω-
triangle 4b+qc+ with the longest side x+ =
|qb+| to find the one with minimum area.
These two candidates are such that b−c− and
b+c+ are tangent to both Q and CP (refer to
Figure 4(a)). Let v− (respectively v+) be the
vertex of Q such that b−c− (respectively b+c+)
is tangent to Q at v− (respectively at v+). We
say that v− and v+ are witness vertices. If
b−c− (respectively b+c+) is flush with an edge
e− (respectively e+) of Q, we define v− (re-
spectively v+) as the vertex on e− = Q∩ b−c−
(respectively on e+ = Q ∩ b+c+) that is the
closest to b− (respectively to b+).
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(b) Any enclosing ω-triangle 4bqc with perime-
ter P strictly between 4b−qc− and 4b+qc+ is
such that bc is tangent to CP and bc does not
touch Q.

(c) If one of these T ’s is isosceles, then it has
maximum area. One of the T ’s is isosceles

if and only if x− ≤ 2−√2
√

1−cos(ω)

2(1+cos(ω)) P ≤ x+.
Otherwise, one of 4b−qc− and 4b+qc+ has
minimum area and the other one has maxi-
mum area by unimodality of A(x).

Hence, if there is no witness vertex, then no ω-triangle
T can be constucted on W . If v− = v+, then there
exists exactly one such T . If v− 6= v+, then there exists
infinitely many such T ’s.

For a given ω-wedge W and a given vertex v of Q, it
takes O(1) time to decide whether or not v = v− and
whether or not v = v+ (refer to Subsection 3.1). Thus,
for a given ω-wedge W , it takes O(n) time to compute
v−, v+, x−, x+, 4b−qc− and 4b+qc+.

3.1 Decide Whether a Vertex is a Witness Vertex

Let W = W(ω, q,∆1,∆2) be a fixed ω-wedge enclosing
a convex n-gon Q and v be a vertex of Q. Denote by Γ
the circular arc of Ω such that q ∈ Γ. In this subsection,
we explain how to decide whether v is a witness vertex
of W .

Without loss of generality, Γ is the locus of points q
such that ∠viqvj = ω, where vi and vj are two vertices
of Q (refer to Figure 5). Hence we can take vi = (0, 0),

Γ

q

vi vj

θ

ω

∆1
∆2

r

CP

v

(h, k)

Figure 5: A formula for the center (h, k) of CP .

and vj = (2r sin(ω), 0), where r is the radius of Γ. Let
θ = ∠vjviq. In this setting, the radius of CP is rP =
1
2P tan

(
1
2ω
)

= P sin(ω)
2(1+cos(ω)) by Lemma 2-1 and the center

(h, k) of CP is such that

h =
1

2(1 + cos(ω))
×(

6r cos2(ω) sin(θ) cos(θ) + 4r cos(ω) sin(θ) cos(θ)

+6r sin(ω) cos(ω) cos2(θ)− P cos(ω) cos(θ)

−2r sin(ω) cos(ω) + P sin(ω) sin(θ)
+2r sin(ω) cos2(θ)− 2r sin(θ) cos(θ)
−P cos(θ) + 2r sin(ω)

)
,

k = −cot(θ)h

−P − 4r cos(ω) sin(θ)− 4r sin(ω) cos(θ)
2 sin(θ)

.

These formulas can be obtained by analytic geome-
try and Lemma 1 in the following way. By geome-
try and trigonometry, we have q = (2r cos(θ) sin(θ +
ω), 2r sin(θ) sin(θ + ω)). Since (h, k) is on the angle bi-
sector of W and rP = P sin(ω)

2(1+cos(ω)) , then the distance
between (h, k) and ∆1 and the distance between (h, k)
and ∆2 are equal to P sin(ω)

2(1+cos(ω)) . Hence, we can find the
equation of ∆1, ∆2 and the angle bisector of W . From
these equations, we deduce the formulas for h and k.

Let e and e′ be the two edges adjacent to v. Denote
by ∆e and ∆e′ the lines through e and e′ respectively.
If e ∩ int(CP ) 6= Ø or e′ ∩ int(CP ) 6= Ø, then v is not a
witness vertex. Moreover, no enclosing ω-triangle can
be constructed on W . It follows from Observation 1-1.
Suppose that e ∩ int(CP ) = Ø and e′ ∩ int(CP ) = Ø.

• If CP ∩∆e = Ø and CP ∩∆e′ = Ø, then v is not a
witness vertex.

• If CP ∩∆e 6= Ø or CP ∩∆e′ 6= Ø, then v is a witness
vertex.

It all follows from Lemma 2-1 and Observation 1-3a.
Since we supposed that W is fixed, then r, ω and θ are
fixed. So all these tests can be done in O(1) time.

4 Turning Around the ω-Cloud

Let v− and v+ be the two witness vertices (possibly
v− = v+) of an ω-wedge W = W(ω, q,∆1,∆2) en-
closing Q. Let Γj be the circular arc of Ω such that
q ∈ Γj . As q moves on Γj , 4b−qc− and 4b+qc+ move
continuously around Q. Moreover, there is a circular
arc Γ′j ⊆ Γj (that can be reduced to a single point) for
which the witness vertices remain v− and v+. We say
that v− and v+ are persistent witness vertices of Γ′j .
Among all the enclosing ω-triangles that can be con-
structed on the enclosing ω-wedges having their apex
on Γ′j , we find the one with the smallest x− = |b−c−|
(respectively with the longest x+ = |b+c+|). We de-
note this triangle by Tmin = 4qbmincmin (respectively by
Tmax = 4qbmaxcmax) and we let xmin = |bmincmin| (re-
spectively xmax = |bmaxcmax|). By continuity, for all x
such that xmin ≤ x ≤ xmax, there exists an enclosing ω-
wedge with apex on Γ′j such that an enclosing ω-triangle
4bqc can be constructed with x = |bc|. Therefore, on
Γ′j ,

• the minimum enclosing area ω-triangle that can be
constructed is either 4qbmincmin or 4qbmaxcmax.
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• – If xmin ≤ 2−√2
√

1−cos(ω)

2(1+cos(ω)) P ≤ xmax, then an
isosceles ω-triangle with perimeter P has max-
imum area.

– Otherwise, one of 4qbmincmin and
4qbmaxcmax has minimum area and the
other one has maximum area.

Given an enclosing ω-wedge W = W(ω, q,∆1,∆2)
with q ∈ Γj , it takes O(n) time to compute v−, v+, x−,
x+, 4b−qc− and 4b+qc+ (refer to Section 3). Then it
takes O(1) time to compute Γ′j ⊆ Γj such that Γ′j has
persistent witness vertices v− and v+ (refer to Subsec-
tion 4.1). Then it takes O(1) time to compute xmin,
xmax, Tmin and Tmax (refer to Subsection 4.2).

Once we solved the FIP for Γ′j , we need to compute
the next circular arc together with its persistent witness
vertices. Denote the next circular arc by Γ′′j Note that
since Γ′j ⊆ Γj , then either Γ′′j ⊂ Γj or Γ′′j ⊆ Γj+1. Two
different events can happen:

Event 1 Γ′′j has no persistent witness vertex

Event 2 or Γ′′j has persistent witness vertices and at
least one of v− and v+ is different from the persis-
tent witness vertices of Γ′j .

If Γ′′j has persistent witness vertices, then by continuity,
these persistent witness vertices are adjacent to or equal
to the persistent witness vertices of Γ′j . So there are 8
pairs of vertices to test for persistence (recall that at
least one of v− and v+ is not the same compared to Γ′j).
If none of these 8 pairs is a pair of persistent witness
vertices for Γ′′j , then Γ′′j has no persistent witness vertex.
Therefore, both Event 1 and Event 2 can be detected
in O(1) time (refer to Subsection 4.1).

With this technique, we subdivide the circular arcs
Γj of Ω into subarcs that either have persistent witness
vertices or not. Given a subarc Γ′j , we explained how
to solve the FIP on Γ′j in O(n). Given the witness
vertices of Γ′j , we also explained how to solve the FIP on
every next subarc in O(1). How many of these subarcs
are there? In Section 5, we present an example that
shows that Γj can be subdivided into a linear number of
subarcs. However, we do not know whether a constant
number or a linear number of circular arcs of Ω can be
subdivided into a linear number of subarcs. So the lower
bound on the time of computation of the solution to the
FIP remains an open question.

4.1 Computing Γ′j

Given two vertices v− and v+ and a circular arc Γj of Ω,
we explain how to find Γ′j ⊆ Γj such that Γ′j has v− and
v+ as persistent witness vertices. From the discussion
of Subsection 3.1, Lemma 2-1 and Observation 1, we
need to find the values of θ such that ∆e is tangent
to CP and the values of θ such that ∆e′ is tangent to

CP . We explain how to find the values of θ such that
∆e is tangent to CP (the values of θ such that ∆e′ is
tangent to CP can be found in a similar way). Take
CP : (x−h)2 +(y−k)2 = r2P and ∆e : y = µx+λ. From
analytic geometry, ∆e is tangent to CP if and only if

k ± rP√
µ2 + 1

= µ

(
h− µrP√

µ2 + 1

)
+ λ . (2)

Since µ, λ, P , ω and r are constant, (2) is an equation
of degree 2 in sin(θ) and cos(θ). Therefore, it can be
transformed into an equation of degree 4 in sin(θ). If
(2) has no solution in θ or if the solutions are not sound
with respect to Γj , then there is no Γ′j ⊆ Γj that has
v− and v+ as persistent witness vertices. Thus it can
be solved exactly in O(1) time.

4.2 Compute bmin and bmax

As we did in Section 3.1, let W =W(ω, q,∆1,∆2) be a
fixed ω-wedge enclosing a convex n-gon Q. Let Γ be a
circular arc such that v is a persistent witness vertex of
Γ. Without loss of generality, Γ is the locus of points q
such that ∠viqvj = ω, where vi and vj are two vertices
of Q (refer to Figure 5). Hence we can take vi = (0, 0),
and vj = (2r sin(ω), 0), where r is the radius of Γ. Let
θ = ∠vjviq.

Let b = (α, α tan(θ)) ∈ ∆1 be a point such that 4bqc
has the prescribed perimeter, where c is the intersection
point of the line through bv and the line through qvj .
Therefore, the line ∆ : y = µx + λ through bv satisfies
(2) from the discussion of Subsection 4.1. For a fixed θ,
it is an equation in α. Hence, in order to find bmin or
bmax, we need to optimize |qb| subject to (2). It leads
to a polynomial equation in sin(θ) of high degree. This
can be done with numerical methods. For a given fixed
error tolerance, it takes O(1) time to compute bmin or
bmax.

5 An Interspersing Lemma

If we translate the interspering lemmas of [1, 2, 3, 6] in
terms of the FIP, we get the following statement: “as
q turns clockwise around Ω, v− and v+ turn clockwise
around Q.” This statement implies that the time of
computation of the solution to the FIP is O(n) (when
the input is a convex n-gon) since we only need to go
around once. Unfortunately, this statement is false in
the current setting. In this section, we construct an ex-
ample where q turns clockwise around Ω and v+ turns
counter-clockwise around Q. Because of this example,
the time of computation of our algorithm is O(n2). In-
deed, this example suggests that all circular arcs Γj of
Ω could be subdivided into a linear number of subarcs
(refer to Section 4).
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Consider the example of Figure 6 where ω = 1
2π. Four

vertices of Q appear, namely vi, vk, vi′ and vi′+1. The
circular arc Γj of Ω is built over vi and vk, and we
consider an enclosing 1

2π-wedge W = W( 1
2π, q,∆1,∆2)

where q ∈ Γj . T+ = 4b+qc+ is such that b+c+ is flush

q
q′

b+

b′
+

c′
+

CP

C′
P

Γj

vi
vk

vi′

vi′+1

t

t′

c+

∆1
∆′

1

∆2

∆′
2

Figure 6: As q turns clockwise around Ω, v+ turns
counter-clockwise around Q.

with the edge ei′ = vi′vi′+1 of Q and b+c+ is tangent to
CP at t ∈ ei′ . Therefore, the witness vertex v+ of T+ is
v+ = vi′+1.

Let W ′ = W( 1
2π, q

′,∆′1,∆′2) be an enclosing 1
2π-

wedge obtained by a clockwise rotation of q around Γj

and such that vi′ 6∈ ∆′2. T ′+ = 4b′+q′c′+ is such that
b′+c′+ touches Q at vi′ and b′+c′+ is tangent to C′P at
t′ 6∈ Q. Therefore, v′+ = vi′ . Hence, this is an example
where q turns clockwise around Ω and v+ turns counter-
clockwise around Q.

Using the same strategy, we can make v+ turn
counter-clockwise around Q and visit m vertices for
any m ≥ 1. Let q0 = q, q1, ..., qm−1 = q′ ∈ Γj be
a sequence of m different points from q to q′. For
each ql (0 ≤ l ≤ m − 1), consider the wedge Wl =
W( 1

2π, ql,∆l,1,∆l,2) and Tl,+ = 4bl,+qicl,+. Put a ver-
tex vi′−l on bl,+cl,+ such that bl,+cl,+ is flush with the
edge ei′−l = vi′−lvi′−l+1 and vi′−l is strictly between
vi′−l+1 and cl,+. This way, vl,+ = vi′−l+1 so as q turns
clockwise around Ω, v+ turns counter-clockwise around
Q and visits m vertices for any m ≥ 1.

This proves that the canonical interspersing lemma
for the FIP does not stand. However, it does not prove
that the lower bound on the the time of computation
of the solution to the FIP is Ω(n2). The construction
we presented works for Γj , but we do not know if it is
possible to do such a construction on all the circular
arcs of Ω simultaneously. This question remains open.

6 Conclusion

We explained in detail how to find an ω-triangle of min-
imum and maximum area with fixed perimeter. Our
solution takes O(n2). If one fixes the area rather than

the perimeter, a similar solution exists by switching the
word “perimeter” with “area”, “minimum” with “max-
imum”, and “perimeter circle” with “area hyperbole”.

Two main questions remain open about the FIP. Is
Ω(n2) the lower bound on the time of computation of the
solution to the FIP? Is it possible to simplify the poly-
nomial equations involved in the computation of bmin

and bmax? As for more general open questions related
to the FIP,

1. What is the time of computation of the solution to
the FIP when there is no angle constraint?

2. What is the time of computation of the solution
to the FIP when we consider shapes with curved
boundary?

3. What is the solution in three dimensions?
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