
CCCG 2011, Toronto ON, August 10–12, 2011

Where and How Chew’s Second Delaunay Refinement Algorithm Works

Alexander Rand∗

Abstract

Chew’s second Delaunay refinement algorithm with off-
center Steiner vertices leads to practical improvement
over Ruppert’s algorithm for quality mesh generation,
but the most thorough theoretical analysis is known
only for Ruppert’s algorithm. A detailed analysis of
Chew’s second Delaunay refinement algorithm with off-
centers is given, improving the guarantee of well-graded
output for any minimum angle threshold α∗ ≤ 28.60◦.

1 Introduction

Ruppert’s algorithm for quality triangular mesh gen-
eration [10] has a number of theoretical and practical
advantages making it the prototypical Delaunay refine-
ment setting: it is relatively simple to state, implement,
and analyze. For non-acute input and a minimum angle
threshold of about 20.70◦, the algorithm is guaranteed
to terminate and produce a mesh of optimal size up to
a constant factor. Over the past 15 years, this elegant
theory has been adjusted and refined to produce bet-
ter and better meshes. From a theoretical standpoint,
Miller, Pav, and Walkington gave an improved analy-
sis of Ruppert’s algorithm demonstrating that, under
mild assumptions on the input, termination is guaran-
teed for a minimum angle threshold as high as 26.45◦ [7].
Off-center Steiner vertices provide an alternative to cir-
cumcenter insertion, reducing the mesh sizes produced
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Figure 1: Using the boundary of Lake Michigan as in-
put (left, 1537 vertices) and a minimum angle threshold
of 25◦, the results of Ruppert’s algorithm (center, 3707
vertices) and Chew’s second Delaunay refinement algo-
rithm with off-centers (right, 2960 vertices) are shown.

in practice. Üngör introduced this concept and demon-
strated its success with Ruppert’s algorithm [13].

Chew’s second Delaunay refinement algorithm [3] was
originally studied for meshing surfaces embedded in 3D,
but the restriction of this algorithm to the standard 2D
mesh generation problem yields two specific advantages
over Ruppert’s algorithm: the algorithm is theoretically
guaranteed to terminate for a larger minimum angle
threshold (26.57◦) and in practice the resulting meshes
have fewer vertices [12]. Most of the improvements to
Ruppert’s algorithm have been applied to Chew’s sec-
ond Delaunay refinement algorithm and are similarly
successful in practice; in fact, the default quality mesh
generation algorithm in Triangle [11] is Chew’s second
Delaunay refinement algorithm with off-centers.

We improve the analysis of Chew’s second Delaunay
refinement algorithm with off-center vertices. By ex-
tending the Miller-Pav-Walkington analysis, we prove
the termination of Chew’s second Delaunay refinement
algorithm for any minimum angle threshold less than
28.60◦, and this guarantee holds not only for circumcen-
ters but also for off-center Steiner vertices. Moreover,
we generalize the Üngör off-center to a larger class of
Steiner vertices characterized by a target angle and note
that in some cases these vertices are outside existing se-
lection discs. Finally, a simple example demonstrates
the impact of the target angle parameter.

2 Preliminaries

The input to a 2D mesh generator is a consistent collec-
tion of straight segments and vertices. The goal of the
mesh generator is to add vertices so that a triangulation
(in this paper, the constrained Delaunay triangulation)
of the final vertex set both conforms to the input seg-
ments and contains only high quality triangles.

Formally we follow [7]: a planar straight-line
graph (PSLG), G = (P ,S), is a pair of sets of vertices
P and segments S, such that the endpoints of each seg-
ment of S are contained in P and the intersection of
any two segments of S is also contained in P . A PSLG
G′ = (P ′,S ′) is a refinement of the PSLG G if P ⊂ P ′

and each segment in S is the union of segments in S ′.

Problem Statement. Given an input PSLG G and a
minimum angle threshold α∗ compute a refinement G′

such that all angles of all triangles of the constrained
Delaunay triangulation of G′ are larger than α∗.
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Figure 2: A PSLG (left) with local feature size indicated
at several points (gray) and a refinement (right) of the
PSLG that gives a quality, conforming triangulation.

The local feature size at point x with respect to
PSLG G, lfs(x), is the radius of the smallest closed
disk centered at x which intersects two disjoint features
of G. Most Delaunay refinement algorithm analysis is
based on relating the mesh size to the local feature size
of the input PSLG. Throughout this paper, local fea-
ture size is always considered with respect to the in-
put PSLG. Moreover, local feature size is 1-Lipschitz:
lfs(x) ≤ lfs(y) + |x− y|.
Before stating and analyzing Chew’s second Delau-

nay refinement algorithm, we state one fact about
constrained Delaunay triangulations which satisfy an
empty circumdisk property with respect to visible ver-
tices; for a complete definition see [2].

Proposition 1 Let T be a constrained Delaunay trian-
gulation of PLSG (P ,S). Suppose that triangle T ∈ T
has circumcenter c and that c is not visible to T . Then
T lies inside the diametral disk of the constrained seg-
ment S ∈ S nearest to T that prevents visibility.

3 Chew’s Second Delaunay Refinement Algorithm

Stated carefully as Algorithm 1, Chew’s second Delau-
nay refinement algorithm has a few key differences from
Ruppert’s algorithm. The final constrained Delaunay
triangulation is generated from three types of vertices,
classified by why they were inserted into the mesh: in-
put vertices, midpoints, and circumcenters.

Algorithm 1 Chew’s second Delaunay refinement

Require: PSLG G and angle threshold α∗.
Compute constrained Delaunay triangulation T of G.
while T contains a poor quality triangle T do
if T encroaches a segments S then
Remove circumcenters from diametral disk of S.
Split S by adding its midpoint to T .

else
Insert the circumcenter of T into T .

end if
end while

Two particular steps above must be made precise.
Encroachment. A segment S is encroached if there

is a poor quality triangle T in the current triangulation

such that T and the circumcenter of T lie on opposite
sides of S, and T is visible to S. Note the “converse”:
if T and its circumcenter lie on the opposite sides of S,
then some segment (but possibly not S) is encroached.
Vertex Removal. When adding the midpointm of a

segment S, Chew’s algorithm removes circumcenter ver-
tices which lie in the diametral disk of S. In this treat-
ment, we slightly relax this operation and fully specify
a procedure for removing vertices. After inserting m,
the nearest visible neighbor to m is removed if it is a
circumcenter, and this is repeated until the nearest visi-
ble neighbor is not a circumcenter. Some circumcenters
may remain in the diametral disk of S.

The termination of Chew’s second Delaunay refine-
ment algorithm and good grading of the resulting mesh
follow from a proof that no two vertices are placed too
close together. The insertion radius rq of vertex q
is the distance from q to the nearest visible vertex in
the mesh immediately following the insertion of q. We
call a mesh well-graded if there exists C depending
only upon α∗ such that for all vertices q inserted by the
algorithm, lfs(q) ≤ Crq. This is a natural measure of
success of a mesh generation algorithm: it guarantees
termination and that the size of the triangles in the
mesh are proportional to the underlying size of the in-
put geometry. Proof that a mesh generation algorithm
produces a well-graded mesh is usually performed via in-
duction using an appropriate previously inserted vertex
(called the parent vertex) on which to base the estimate.

The parent of a vertex q, denoted p(q), is defined to
be a specific vertex near q following insertion:

(1) If q is a circumcenter, then p(q) is the newest vertex
on the shortest edge of triangle T of which q is the
circumcenter.

(2) If q is a midpoint and the nearest visible neighbor
to q is not contained in the input segment containing
q, then p(q) is this nearest visible neighbor.

(3) If q is a midpoint and after deletion of some vertices
no vertices remain in the diametral disk of S, let Pr

be the set containing all removed circumcenters. If
either endpoint of S is newer than than any vertex
in Pr, the most recently inserted endpoint of S is
the p(q). Otherwise, p(q) is the vertex in Pr with
the smallest insertion radius.

Define p2(q) := p(p(q)), p3(q) := p(p(p(q))), etc.
Next we prove Chew’s second Delaunay refinement al-
gorithm succeeds for non-acute input.

Theorem 2 ([12]) For α∗ < tan−1(1/2) ≈ 26.6◦ and
non-acute input, Chew’s second Delaunay refinement
algorithm terminates producing a well-graded, quality
mesh.

This proof follows the argument in [12] using the
slightly relaxed vertex removal procedure mentioned
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Figure 3: Subcases 3b (left) and 3c (right) in Theorem 2.

previously. The cases are carefully enumerated so the
proof can be augmented in later sections to provide an
improved analysis and accept variants of the algorithm.

Proof. To prove that the resulting mesh is well-graded,
we inductively find two constants 0 < Cc < Cm < ∞
such that lfs(q) < Ccrq for any circumcenter and
lfs(q) < Ccrq for any midpoint. We consider three cases
corresponding to the definition of the parent vertex.
Case 1. q is a circumcenter. Then,

lfs(q) ≤ |q− p(q)|+ lfs(p(q)) ≤ rq + Cmrp(q)

≤ (1 + 2Cm sinα) rq. (1)

Case 2. q is a midpoint and a vertex other than q re-
mains in the diametral disk of the segment which was
split. Then p(q) must be an input vertex or midpoint.
Then since the input is non-acute, this vertex belongs
to an input feature which is disjoint from the input seg-
ment containing q and thus

lfs(q) ≤ |q− p(q)| = rq. (2)

Case 3. q is a midpoint and the diametral disk of the
newly split segment is empty (other than q). Recalling
Proposition 1, all the vertices of the encroaching trian-
gle must lie inside the diametral disk of the segment
containing q.
Subcase 3a. p(q) is a midpoint. The assumption of
non-acute input and the parent vertex definition imply
that p(q) is an endpoint of the segment S. Recalling
Proposition 1, let c be a circumcenter that is older than
p(q) and was removed from the diametral disk of S.
Since c was not removed when p(q) was inserted, the
diametral disk of p(q) was not completely emptied and
thus Case 2 applies to p(q). So lfs(p(q)) ≤ rp(q) ≤
|p(q) − c|, and thus

lfs(q) ≤ |q− p(q)| + lfs(p(q)) ≤ rq + rp(q) ≤ 3rq.
(3)

Subcase 3b. p(q) is a circumcenter and at least two cir-
cumcenters were removed from the half of the diametral
disk of S which is visible to p(q). Since all of these cir-
cumcenters were inserted after the endpoints of S (by
the definition of the parent vertex), one of these ver-
tices must have an insertion radius no larger than rq;
see Figure 3(left). Then,

lfs(q) ≤ |q− p(q)| + lfs(p(q)) ≤ (1 + Cc)rq. (4)

Subcase 3c. p(q) is a circumcenter and p(q) was the
only circumcenter removed from the half of the diame-
tral disk of S visible to p(q). Then to form a skinny
triangle with circumcenter on the opposite side of S,
p(q) must belong to the shaded area in Figure 3(right).
Then rp(q) ≤ rq/ cosα

∗ and thus,

lfs(q) ≤ |q− p(q)|+ lfs(p(q)) ≤ rq + Ccrp(q)

≤
(

1 +
Cc

cosα

)

rq. (5)

The requirements from the various cases (1)-(5) can
be summarized by three conditions: Cc ≥ 1+2Cm sinα,
Cm ≥ 3, and Cm ≥ 1 + Cc

cosα . Suitable constants exist
only if tanα∗ < 1/2. �

4 Off-Centers

Off-center Steiner vertices were developed as an alter-
native to circumcenter insertion to reduce the num-
ber of vertices inserted by Delaunay refinement algo-
rithms [13]. We use the term off-center (or Υ-off-center
to identify the parameter described below) to refer to
the special class of Steiner points described by Üngör
as opposed to the more general selection disks [1, 5] or
selection regions [4, 6] in the literature.
If triangle T has a smallest angle less than α∗/2, then

inserting its circumcenter is guaranteed to create an-
other poor-quality triangle since the newly inserted cir-
cumcenter and the shortest edge of T form a poor qual-
ity triangle. Üngör recognized that by selecting an al-
ternative Steiner point, the mesh generator can control
the quality of this particular newly formed triangle and,
in practice, produce a smaller mesh.
First, we define the class of Υ-off-centers and remark

how they generalize Üngör’s definition. Let T be a poor
quality constrained Delaunay triangle (i.e., the smallest
angle of T , denoted αT , is less than α∗), let q1q2 be the
shortest edge of T , and let c denote the circumcenter
of T . The Υ-off-center c′ is an attempt to create a
new triangle with smallest angle Υ. If q1 and q2 are
the endpoints of the shortest edge of triangle T , the
Υ-off-center c′ is defined as the unique point such that
(i) |q1 − c′| = |q2 − c′|, (ii) ∠q1cq2 = Υ, and (iii)
(c− q1) · (c′ − q1) > 0. See Figure 4 for a depiction of
the Υ-off-center region.
Üngör’s original work suggested using ΥT :=

max(2αT , α
∗) which separates the points as much as

possible without creating a poor quality triangle be-
tween the new off-center and the shortest edge of the
split triangle. In this setting, the algorithm the was
shown to terminate and produce a well-graded mesh.

Theorem 3 (Ungor [13]) Let minimum angle pa-
rameter α∗ < arcsin(1/(2

√
2)) be given. Then Ruppert’s

algorithm with Υ-off-centers and ΥT = max(2αT , α
∗)

terminates producing a well-graded, quality mesh.
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Figure 4: For a poor quality triangle T , the set of ad-
missible Υ-off-centers is shown with the triangle circum-
center c and a typical Υ-off-center q.

In Triangle [11], slightly larger values of ΥT (about
5%) are used. In practice this makes “bunches” of
nearly minimal quality triangles likely to appear near
input edges and yields a mesh with fewer vertices. The
proof of Theorem 3 can be extended to admit any
ΥT ∈ [2αT , α

∗] and (recalling Proposition 1) Chew’s
second Delaunay refinement algorithm. We provide a
more detailed analysis which admits larger values of ΥT .

Theorem 4 If α∗ < tan−1(1/2) and ΥT ∈
[2αT , 2 sin

−1(cos(α∗/2))), Chew’s second Delaunay re-
finement algorithm with Υ-off-centers terminates pro-
ducing a well-graded, quality mesh.

Proof. We will verify that the general structure of the
proof of Chew’s algorithm still applies, albeit with a
few additional cases. Estimates on the insertion radii of
Υ-off-centers must be revisited.
Case 1. Let q denote an Υ-off-center associated with
poor quality triangle T with shortest edge v1v2 and v1

is more recently inserted than v2. Since the nearest
vertex to q may not be a vertex of T , we must deal
with two subcases. In one of these subcases, the parent
vertex of q will be redefined.
Subcase 1a. v1 is the nearest vertex to q. Then,

lfs(q) ≤ |q− v1|+ lfs(v1) ≤ rq + Cmrv1

≤
(

1 + 2Cm sin
ΥT

2

)

rq. (6)

Subcase 1b. u1 6= v1 is the nearest vertex to q. The
edge qu1 is shared by two new Delaunay triangles and
let u2 denote the additional vertex of one of these tri-
angles that is nearest to u1. Since q must be a De-
launay neighbor to v1 and v2, u1 and u2 must both
live in the (closed) diametral disk of v1v2, and thus
|u1 − u2| ≤ |v1 − v2|/

√
2. Define the parent of c′ to be

the newest vertex in {u1,u2}. Then

lfs(q) ≤ |q− p(q)|+ lfs(p(q)) ≤ rq + Cmrp(q)

≤
(

1 +
√
2Cm sin

ΥT

2

)

rq. (7)

Cases 2 and 3 of Theorem 2 are identical in the Υ-off-
center algorithm. Now the worst case involves simulta-
neously satisfying Subcases 1a and 3c:

Cc ≥ 1 + 2Cm sin
ΥT

2
; Cm ≥ 1 +

Cc

cosα∗
.

If ΥT < 2 sin−1(cos(α∗/2)), Cc and Cm exist. �

Observation 1 The region of admissible Υ-off-centers
is not a subset of the selection disks in [1, 5]: the larger
values of ΥT lie outside the standard disk.

5 The Three Circumcenter Lemma

The critical cases in the proofs of Theorems 2 and 4
occur when a segment midpoint is inserted following
encroachment due to a circumcenter. Circumcenters al-
ways have larger insertion radii than their parent ver-
tices, while midpoints can have slightly smaller radii.
The improved analysis of Ruppert’s algorithm by Miller,
Pav, and Walkington [7] demonstrated that several cir-
cumcenters must lie between certain midpoints in a se-
quence of parent vertices and thus insertion radii gains
from the extra circumcenters can be used to offset the
insertion radii reduction of the final midpoint. The re-
sult improved the admissible minimum angle threshold
of Ruppert’s algorithm from 20.70◦ to 26.45◦.
Let q be a midpoint inserted by a Delaunay refine-

ment algorithm. The circumcenter (or Υ-off-center)
sequence associated with q is the sequence of points
{pi(q)}ni=0, where n is the smallest positive index such
that pn(q) lies on a feature of the input PSLG. q =
p0(q) is called the final vertex in the sequence and pn(q)
is called the initial vertex in the sequence. The crux of
the Miller-Pav-Walkington analysis relies on studying
circumcenter sequences that begin and end on the same
input segment.

Lemma 5 (Miller-Pav-Walkington [7]) If a cir-
cumcenter sequence both (i) begins and ends on the same
input segment and (ii) the insertion radius of the final
vertex is no larger than that of the initial vertex, then
the sequence contains at least three circumcenters.

The only property of circumcenters that is used in the
proof of Lemma 5 is that circumcenters lie on the bound-
ary of the Voronoi cell of their parent vertex. Thus the
lemma can be extended to Υ-off-centers as stated below.
For technical reasons to be made clear in the upcoming
proof define A(α) := 2 sin−1((cos(α∗/2))1/3).

Corollary 6 Let ΥT ∈ [2αT , A(αT )). If a Υ-off-center
sequence (i) begins and ends on the same input segment,
(ii) the insertion radius of the final vertex is no larger
than that of the initial vertex, and (iii) contains only
vertices handled by Theorem 4 Subcase 1a, then the se-
quence contains at least three Υ-off-centers.

This section closes with a related technical lemma.

Lemma 7 Let ΥT ∈ [2αT , A(αT )) and let {pi(q)}ni=0

be an Υ-off-center sequence. Then there exists Cd such
that |q− pn(q)| ≤ Cdrq.
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6 Restricted Input Class

The core of the argument is given by restricting atten-
tion to PSLGs with no adjacent input segments.

Theorem 8 Suppose no segments in the input PSLG
are adjacent. Let α ≤ 28.60◦ and select Υ-off-centers
such that ΥT ∈ [2αT , A(αT )). Chew’s second Delau-
nay refinement algorithm terminates producing a well-
graded, quality mesh.

Proof. The proof involves considering the interac-
tion between cases in Theorem 4. The estimates for
(sub)cases 1a, 1b, 2, 3a, and 3b are used without
any changes. Let q be a “subcase 3c”-vertex and let
P = {pi(q)}ni=0 be the associated Υ-off-center sequence.

Case A: There is at least one vertex pj(q) ∈ P that is a
“subcase 1b”-vertex. Since α∗ < 30◦, rp1(q) > rp2(q) >
. . . > rpn(q). Then (applying Lemma 7),

lfs(q) ≤ |q− pj(q)|+ lfs(pj(q))

≤ Cdrq +

(

1 + Cm

√
2 sin

ΥT

2

)

rpj+1(q)

≤
(

Cd +

(

1 + Cm

√
2 sin

ΥT

2

)

1

cosα∗

)

rq. (8)

Case B: P contains no “subcase 1b” vertices and rq >
rpn(q). Since all subsegments are derived by midpoint
splits from an original segment, rq ≥ 2rpn(q) and

lfs(q) ≤ |q− pn(q)|+ lfs(pn(q)) ≤ (Cd + Cm/2)rq.
(9)

Case C: P contains no “subcase 1b” vertices and rq ≤
rpn(q). By Corollary 6, n ≥ 4. Υ-off-centers are
constructed such that 2 sin(ΥT /2)rpi(q) > rpi+1(q) for
i ∈ {1, 2, 3}. Then

lfs(q) ≤ |q− p4(q)| + lfs(p4(q))

≤ Cdrq + Cm8 sin3 (ΥT /2) rp1(q)

≤
(

Cd + Cm
8 sin3 (ΥT/2)

cosα∗

)

rq. (10)

Requirement (10) is stronger than (8) and (9) so we
focus our attention there. A(α) has been defined so that
8 sin3 (ΥT /2) / cosα

∗ < 1 and thus a suitable constant
Cm exists. The interval [2αT , A(αT )) is nonempty ex-
actly when 8 sin3 α∗/ cosα∗ < 1 which is equivalent to
our assumption α ≤ 28.60◦. �

7 General Input

Acute angles between input segments pose a fundamen-
tal problem in Delaunay refinement and any application
of the three circumcenter lemma requires some restric-
tions on the allowable adjacent input segments [7]. Per-
haps the simplest protection strategy is to split adja-
cent segments at equal lengths proportional to the local

Figure 5: Meshes produced using Υ-off-centers, α∗ =
28◦. (top left)Υ = 0 (i.e., circumcenter insertion) gives
4975 vertices. (top center) Υ = 27⇒ 6475 vertices. (top
right) Υ = 29 ⇒ 3432 vertices. (bottom left) Υ = 40 ⇒
3955 vertices. (bottom center) Υ = 50 ⇒ 5346 vertices.
(bottom right) Υ = 55 ⇒ 8617 vertices.

feature size and disallow the resulting adjacent subseg-
ments to be split by the algorithm; a description of this
“collar” protection strategy can be found in [9]. The ad-
vantage of this approach is that following initial groom-
ing there are no adjacent input segments that can be
refined which ensures the analysis of Theorem 8 holds.

Corollary 9 Let α ≤ 28.60◦ and select Υ-off-centers
such that ΥT ∈ [2αT , A(αT )). Chew’s second Delau-
nay refinement algorithm with “collar” vertex protection
terminates producing a well-graded, quality mesh away
from small input angles.

Another strategy for protecting small input angles
(which we call the “wedge” method) disallows the re-
finement of poor quality triangles which lie between ad-
jacent input segments [7]. This approach is especially
important because no large angles are created even in
the presence of very small input angles. The complete
analysis of this scheme is rather involved and only ap-
pears in [8], but the crux of the analysis is the three-
circumcenter lemma. Thus we claim that this algorithm
also succeeds in creating a well-graded mesh.

Claim Let α ≤ 28.60◦ and select Υ-off-centers such that
ΥT ∈ [2αT , A(αT )). Chew’s second Delaunay refine-
ment algorithm with “wedge” vertex protection termi-
nates producing a well-graded, quality mesh away from
small input angles.



23rd Canadian Conference on Computational Geometry, 2011

Figure 6: Meshes produced using α∗ = 5◦ with Υ = 6◦

(left, 1660 vertices) and Υ = 59.5◦ (right, 6072 vertices).

8 Example

Using a 1537 vertex boundary of Lake Michigan as in-
put, we give examples demonstrating the impact that
Υ-off-centers have on the meshes generated. To denote
a fixed target angle Υ = γ is used as a shorthand for
the strategy ΥT = max(2αT , γ). Figures 5 and 6 con-
tain meshes generated for the Lake Michigan example
using various values of Υ and α∗. Figure 7 contains
histograms of the smallest angles of all the triangles in
meshes resulting from different Υ values and Figure 8
plots the number of mesh vertices as a function of Υ.
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