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On the Computational Complexity of Partitioning Weighted Points
into a Grid of Quadrilaterals
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Abstract

In the paper the computational complexity of the follow-
ing partitioning problem is studied: Given a rectangle
R in the plane, a set Q of positive-weighted points in
R, and two positive integers n1, n2, find a partitioning
of R into quadrilaterals whose dual graph is an n1 × n2
grid such that each quadrilateral contains points of equal
total weight. If such a partitioning does not exist, find
a solution that minimizes some objective function. This
problem is motivated by applications in image process-
ing including, among others, image enhancement and
similarity retrieval, and it is closely related to the table
cartogram problem introduced recently by Evans et al.
[ESA 2013]. While there exist fast algorithms that find
optimal partitions in 1-dimension, the 2-dimensional case
seems to be much harder to solve. Pichon et al. [ICIP
2003] proposed a heuristic yielding admissible solutions,
but the computational complexity of the problem has
so far remained open. In this paper we prove that a
decision version of the problem is NP-hard.

1 Introduction

We study the following geometric problem to which
we refer as q-grid partitioning: For a given rectangle
R = [0, a] × [0, b] in the plane, a finite set of positive-
weighted points Q = {q1, . . . , qm} in R, and two positive
integers n1 and n2, find a partitioning of the rectangle R
into n1 × n2 quadrilateral faces whose dual graph is an
n1×n2 grid such that each face contains points of equal
total weight. Particularly, if to each point in Q we assign
a unit weight, every quadrilateral face should contain the
same number of points. If such a partitioning does not
exist, the task is to find a solution, among possibly many,
that minimizes some objective function. Figure 1 shows
an example instance of the problem and an optimal
solution.

In a more general setting of the problem, which we call
q-grid partitioning with a reference table, we are given,
besides weighted points Q in [0, a]×[0, b], a 2-dimensional
n1 × n2 table of non-negative desired reference weights.
Then the task is to partition the rectangle into n1 × n2
quadrilateral faces each containing points of total weight
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equal to the corresponding desired value. If such a
partitioning does not exist, a solution minimizing some
objective function is required. To express the initial
partitioning problem in this setting, one needs to define
each reference value equal to 1

n1·n2

∑
q∈Q ω(q), where ω

denotes the weight function.
The above problem is a natural generalization of the

well-studied 1-dimensional case: given a set of m positive-
weighted points Q in an interval [0, a] ⊂ R, an integer n,
and a reference vector of size n, find a partitioning of the
interval into n subintervals [0, x1), [x1, x2), . . . , [xn−1, a]
which minimizes some objective function.

(a) Input: a set of points
in square [0, 1]×[0, 1] and
integers n1 = n2 = 3.

(b) Output: an optimal
partitioning into 3 × 3
quadrilateral faces.

Figure 1: A points set with a unit weight assigned to any
point. The task is to partition the square (a) into 3× 3
quadrilateral faces each containing the same number of
points. Figure (b) shows an optimal solution.

1.1 Motivation

Our study is motivated by applications in image process-
ing, including image enhancement – one of the central
problems in image processing (see e.g. [7]). Basic, well-
known image enhancement techniques are histogram
equalization and histogram specification.

A histogram of an image in a d dimensional color space
can be represented by a weighted point set Q ⊂ [0, a]d,
with ω(q) describing the number of pixels of a color q.
E.g. in the RGB color space each color is represented by
a vector with three components Red, Green, and Blue
and it is a point in the unit cube [0, 1]3.

The grey-scale histogram equalization problem is for-
mulated as the 1-dimensional partitioning problem with
the sample variance 1

n

∑
i(si−µ)2 or the average absolute

deviation 1
n

∑
i |si − µ| as objective functions. Here, si
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denotes the total weight of points in the i-th interval and
µ = 1

n

∑
q∈Q ω(q). The grey-scale histogram specifica-

tion can be expressed as 1-dimensional partitioning with
reference vector r1, r2, . . . , rn that represents a desired
histogram.

Histogram equalization for color images becomes a
much more difficult challenge because of the multidi-
mensional nature of color. The difficulty of the problem
arises due to the correlation between the color compo-
nents as well as the complexity of the human perception.
The research in image processing led to the develop-
ment of two main classes of algorithms: the first one
operating in the RGB space and the second one oper-
ating in nonlinear color spaces (for more details see e.g.
[1, 5, 9, 14, 16, 18]). The complexity questions studied
in this paper concern algorithmic problems representing
colors in linear spaces.

The most straightforward extension of grey-scale his-
togram equalization to color images is to apply it for
each color band separately, obtaining an orthogonal grid.
However, since this approach ignores the correlation be-
tween the color components, it is not suitable for color
enhancement and related tasks. Using an orthogonal
grid and taking the correlation into account results in
the modeling (discussed in more detail below) analyzed
by Grigni and Manne [8]. The more appropriate exten-
sion, proposed by Pichon et al. [16], initially partitions
the color space of the image histogram Q into cells of
a scaled regular mesh. Then the mesh is iteratively de-
formed minimizing the absolute deviation. Mapping the
cells of the deformed mesh to the corresponding cells of
a regular mesh yields the color transformation. Thus,
the method generates an almost uniform color histogram
making an efficient use of the color space. The main
challenge in this approach is to find an optimal deformed
mesh.

1.2 Known Results

Chang and Wong [3] and independently Chow and
Kou [4] were the first to provide efficient algorithms
for the 1-dimensional partitioning. The proposed algo-
rithms solve the problem minimizing

∑
i |si− ri| in time

O(m · n). Next, Chang and Wong [2] generalized their
tree-search technique for arbitrary p-norms, in particu-
larly for

∑
i(si − ri)2 with a O(m2 · n) time bounded

algorithm. Kundu [11], independently to [2], provided
a shortest paths algorithm for the 1-dimensional parti-
tioning minimizing

∑
i(si − µ)2, yielding the same time

complexity O(m2 · n).
The computational complexity of the partitioning of

Q ⊂ [0, a]× [0, b] into a grid of quadrilaterals has so far
remained open. In [16] Pichon et al. give a heuristic
for this problem but the proposed algorithm does not
provide optimal solutions. Moreover the authors do not
analyze the approximation factor of the algorithm. In

the conclusions of [11], Kundu claims that the problem
can be formulated as shortest path problem and solved
efficiently. Later [12], he observes that the problem is
much more difficult than the 1-dimensional case and that
the suggested approach does not work.

1.3 Our Contribution

In this paper we prove that a decision version of the
partitioning problem is NP-hard: given a set of weighted
points Q = {q1, . . . , qm} in a rectangle R = [0, a]× [0, b]
and two positive integers n1, n2, find an n1 × n2 q-
grid partitioning of R minimizing the deviation in the
maximum-norm. Moreover, we show that the prob-
lem is NP-hard also for some other important objective
functions. We show that the problem remains NP-hard
even if Q contains points of integer coordinates, i.e. if
Q ⊂ [0, a]× [0, b]∩N2. To prove these results we show a
polynomial time reduction from the planar version of the
1-In-3-SAT problem, which is known to be NP-hard [13].

We leave as an open question if the partitioning prob-
lems are in NP. We conjecture an affirmative answer.
The main difficulty in proving this is to show that there
must exist an optimal q-grid partitioning the coordinates
of which have bounded precision, i.e. such that their
representations have polynomial size with respect to the
total size of the input.

1.4 Related Results

Recently, Evans et al. introduced in [6] the concept of
table cartogram – a new model of 2-dimensional car-
togram. The input of the table cartogram is an n1 × n2
table of non-negative weights and the output is a rect-
angle R with area equal to the sum of the input weights
partitioned into n1 × n2 quadrilateral faces each with
area equal to the corresponding weight. Evans et al.
proved that for any instance of the problem there ex-
ists a feasible solution even if the definition of the area
of a region is generalized to the weight of a region de-
fined as an integral over some positive density function
ω : R→ R+. Moreover, the construction requires only
polynomial time under some computability assumptions
on ω. Our q-grid partitioning with a reference table
problem can be formulated as the table cartogram with
the discrete density function defined for any region A of
R as Area(A) =

∑
q∈A ω(q). Our results show that the

table cartogram becomes intractable for such discrete
density functions.

In the literature, many similar partitioning prob-
lems have been studied. E.g. in [8] Grigni and Manne
proved that the following problem is NP-complete: given
weighted points Q = [0, a] × [0, b] ∩ N2, find partitions
of intervals: x0 = 0 ≤ x1 ≤ . . . ≤ xn1

= a and
y0 = 0 ≤ y1 ≤ . . . ≤ yn2

= b such that the maximum
over all si,j is less than a given constant c. Here si,j de-
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Figure 2: A 3× 3 q-grid partitioning of a square area.

notes the sum of weights of points in the (i, j)-th face of
the orthogonal grid {x0, x1, . . . , xn1

} × {y0, y1, . . . , yn2
}.

Note that this problem has purely combinatorial charac-
ter while the problem studied in our paper is of geomet-
rical nature.

2 A Formal Definition of the Partitioning Problem

A geometric graph G = (V,E) consists of vertices V
considered as points in the plane, and edges as distinct,
straight-line segments with endpoints in V . Two geomet-
ric graphs G = (V,E) and G′ = (V ′, E′) are topologically
isomorphic if there is a homeomorphism h : R2 → R2

such that V ′ = h(V ) and E′ = {h(e) | e ∈ E} . A regular
mesh of the size n1×n2, denoted as Mn1,n2 , is a geomet-
ric graph with nodes Vn1,n2 = {0, . . . , n1} × {0, . . . , n2}
and edges vw iff ‖v − w‖1 = 1.

Let R = [0, a]× [0, b] be a given axis-parallel rectangle.
Graph G = (V,E) is called an n1×n2 q-grid partitioning
of R if G is topologically isomorphic with a regular
mesh Mn1,n2

via a homeomorphism h such that h maps
the sides of the rectangle [0, n1] × [0, n2] to the sides
of R in the following way: [0, n1] × 0 7→ [0, a] × 0;
[0, n1] × n2 7→ [0, a] × b; 0 × [0, n2] 7→ 0 × [0, b]; n1 ×
[0, n2] 7→ a × [0, b]. For any (i, j) ∈ Vn1,n2 we will
denote the point h((i, j)) in V as v(i, j). Moreover,
the interior of the quadrilateral (called the face or cell)(
v(i, j), v(i−1, j), v(i−1, j−1), v(i, j−1)

)
will be denoted

as F (i, j). For an example of a q-grid partitioning and
its faces see Fig. 2.

Note that because a regular mesh Mn1,n2
is a planar

graph embedded, also any topologically isomorphic graph
to Mn1,n2

is a planar embedding.

An instance of the q-grid partitioning problem consists
of numbers a, b ∈ R+ representing a rectangle R =
[0, a]× [0, b], a finite set of weighted points inside R, and
positive integers n1, n2 describing the size of a grid. The
weighted points are specified as a tuple (Q,ω), where
Q ⊂ R and ω is a positive function ω : Q→ R+. We call
the tuple P = (Q,ω) a points instance. An admissible
solution of the problem is an n1 × n2 graph G which is
a q-grid partitioning of R and the aim is to minimize
some specific objective function.

In this paper we consider the following three types of
objective functions for the partitioning1.

Definition 1 Assume R = [0, a] × [0, b], P = (Q,ω),
with Q ⊂ R, and let G = (V,E) be an n1 × n2 q-grid
partitioning of R. Define weight si,j of face F (i, j), as
si,j =

∑
q∈Q∩F (i,j) ω(q) for any i, j, with 0 < i ≤ n1,

0 < j ≤ n2 and let µ =
∑

q∈Q ω(q)/(n1 · n2). Then, we
define the following objective functions:

1. The maximum over all weights of faces:
dmax(P,G) = maxi,j si,j .

2. The deviation from the mean in the p-norm:
dp(P,G) =

∑
i,j |si,j − µ|

p
.

3. The deviation from the mean in the maximum-norm:
d∞(P,G) = maxi,j |si,j − µ| .

Next, we generalize (2) and (3) to objective functions
for the q-grid partitioning with a given reference table
{ri,j} as

∑
i,j |si,j − ri,j |

p
, resp. maxi,j |si,j − ri,j |.

Definition 2 (Q-grid Partitioning (QGP)) As-
sume d is an objective function. Then the problem, de-
noted as d-QGP, is defined as follows: For given real
numbers a, b > 0 representing R = [0, a]× [0, b], points
instance P = (Q,ω), with Q ⊂ R, integers n1, n2, and a
real number c ≥ 0 decide if there exists an n1×n2 q-grid
partitioning G of R with d(P,G) ≤ c.

3 The Complexity of the Q-grid Partitioning

In this section we give a proof of the NP-hardness for
the d∞ function. Subsequently, we show how to extend
this to other norms and special variants of the problem.
For further details we refer to [10].

Theorem 1 The d∞-QGP problem is NP-hard.

Proof. We show the result by a reduction of the
Planar-1-In-3-SAT problem, which is known to be
NP-complete [13]. Recall that yes-instances of the prob-
lem are planar 3-CNF formulae, which are one-in-three
satisfiable, i.e., each clause has exactly one true literal.
A CNF formula ϕ is planar if the graph Gϕ = (V,E)
defined as

V = {xi | variable xi in ϕ} ∪ {cj | clause cj in ϕ} ,
E = {{xi, cj} | xi is a variable in the clause cj}

can be embedded in the plane. To illustrate the reduc-
tion, we consider the formula

ϕ = (x1 ∨ x2 ∨ ¬x3)︸ ︷︷ ︸
c1

∧ (¬x1 ∨ x2 ∨ x4)︸ ︷︷ ︸
c2

(1)

with two clauses c1, c2. A planar embedding of the
corresponding graph Gϕ is shown in Fig. 3.

1Without loss of generality we only consider such q-grid par-
titionings G that for all q ∈ Q the point q does not belong to an
edge of G.
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Figure 3: Planar embedding of Gϕ with nodes x1, x2,
x3, x4, c1, c2 for the formula ϕ defined in eq. (1).

For a given planar 3-CNF formula ϕ to construct an
instance of d∞-QGP, we start with a specification of
a, b, n1, and n2, and then in the course of the proof,
we gradually build the points instance P = (Q,ω) and
define the threshold c. The proof is divided into two
parts. The first part deals with restricting the flexibility
of n1 × n2 q-grids G which partition [0, a] × [0, b]. We
obtain that whenever the objective value d∞(P,G) is less
than or equal to a threshold t, every vertex v(i, j) of G
must lie within a certain region. The second part consists
of a description of gadgets to embed ϕ into P = (Q,ω).
The construction guarantees that the objective value
d∞(P,G) will be less than or equal to c < t if and only
if the formula is one-in-three satisfiable.

3.1 Enforcing the Regions for Grid Vertices

Firstly, we define n1 = n2 = n and choose n such that
the gadgets encoding an instance ϕ of the Planar-1-
In-3-SAT problem can be embedded into a grid of size
n×n. By [17] we know that, to get the appropriate size,
the value can be chosen such that n ∈ O(|Gϕ|) = O(|ϕ|).
For our example ϕ, it is sufficient to choose n = 8.
Next, we define a = b = 8 · n and denote, for short,
R = [0, 8 · n]× [0, 8 · n].

In this part of the proof we choose some particular
points in R of integer coordinates. To get the appropriate
weights, we use a scaling factor

α = 16 · n2

depending on n and an auxiliary function

g : {1, . . . , n}2 × {1, 2, 3, 4} → R+

defined as follows:

g(i, j, l) =



α · 24(i−1)+4n(j−1) if l = 1

α · 24(i−1)+4n(j−1)+1 if l = 2

α · 24(i−1)+4n(j−1)+2 if l = 3

α · 24n
2

− g(i, j, 1)

− g(i, j, 2)− g(i, j, 3)
if l = 4

(2)

Note that g(i, j, 4) = α · 24n2 −α · 7 · 24(i−1)+4n(j−1), for
any i and j.

Observation 2 Mapping g is an injective function.

Proof. We use the bijection (i, j) 7→ (i− 1) + n(j − 1)
between {1, . . . , n}×{1, . . . , n} and {0, . . . , n2−1}. Then
g can be represented equivalently as

g′(k, l) =

{
α · 2l−1 · 24k if 1 ≤ l ≤ 3

α · 24n2 − α · 7 · 24k if l = 4

for all k ∈ {0, . . . , n2 − 1} and l ∈ {1, 2, 3, 4}. For any
k we have: g′(k, 1) < g′(k, 2) < g′(k, 3) < g′(k + 1, 1)
and g′(k + 1, 4) < g′(k, 4). Moreover, it is true that
g′(n2−1, 3) < g′(n2−1, 4). This completes the proof. �

Thus, the range of g:

range(g) = {g(i, j, l) | (i, j, l) ∈ dom(g)}

contains 4n2 elements of the total sum n2 · α · 24n2

.
Below we show that there exists a unique partitioning
of range(g) such that each subset of the partitioning
contains numbers of total sum

γ = α · 24n
2

.

Lemma 3 Let X be a subset of range(g). Then X sat-
isfies

∑
x∈X x = γ iff there exist i, j ∈ {1, . . . , n} such

that X = {g(i, j, l) | l ∈ {1, 2, 3, 4}}.

Proof. For any i, j ∈ {1, . . . , n}, the sum
∑4

l=1 g(i, j, l)
obviously evaluates to γ. Thus, if X contains g(i, j, l)
with l = 1, 2, 3, 4 and a certain pair i, j, the sum of the
elements equals γ.

To prove the opposite direction, let X be any set with∑
x∈X x = γ. According to the inequalities:∑

i,j

∑
l∈{1,2,3}

g(i, j, l) < γ < 2 · g(n, n, 4)

the set must contain exactly one element with l = 4,
namely g(i0, j0, 4) for some i0, j0.

Suppose X contains any element g(i, j, l) with i+nj >
i0 + nj0 and arbitrary l, it follows

g(i0, j0, 4) + g(i, j, l) > γ

and thus there is no such element in X.
On the other hand, the sum of all elements with

i + nj < i0 + nj0 and l = 1, 2, 3 is less than any el-
ement g(i0, j0, l) with l = 1, 2, 3. Thus X must contain
g(i0, j0, l) for l = 1, 2, 3, 4. �

This property will be utilized to define the weights
of the points instance. We construct Q starting with
points (8i − 1, 8j − 1), (8i − 7, 8j − 1), (8i − 1, 8j − 7),
and (8i − 7, 8j − 7), for all i, j ∈ {1, . . . , n} and define
the corresponding weights as g(i, j, 1), g(i, j, 2), g(i, j, 3),
and g(i, j, 4). Till the end of this part of the proof, let
P denote the above points instance (for an example see
Fig. 4).
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Figure 4: The points instance P defined in the first part
of the reduction, for n = 3. The forced region D(2, 2),
in which the vertex v(2, 2) shall be placed, is highlighted
in blue. On the right, the red dotted part is shown in
detail.

From Lemma 3 and by observing that all values of g
are multiples of α, it follows that, if a face F (i′, j′) of
an n× n q-grid G which partitions R does not contain
points of values exactly g(i, j, {1, 2, 3, 4}), its value si′,j′

will differ from γ by at least α. Throughout the proof,
further points will be added to Q, but it is ensured that
the total sum of their weights will be at most α/4.

So far, the sum of all weights is n2 · γ. Regardless
of further added points, for the mean µ will satisfy the
inequalities:

γ ≤ µ ≤ γ + α/(4n2) ≤ γ + α/4. (3)

It follows that a face of G which does not contain
points of weights exactly g(i, j, {1, 2, 3, 4}) results in
d∞(P,G) > α/2. Hence, t will be defined as

t = α/2.

We define for all i, j, with 1 ≤ i, j ≤ n square Si,j as:

Si,j =
(
(8i− 1, 8j − 1), (8i− 7, 8j − 1),

(8i− 7, 8j − 7), (8i− 1, 8j − 7)
)
.

(4)

Lemma 4 Let G be an n × n q-grid partitioning of R
such that d∞(P,G) ≤ t. Then, no edge of G intersects
any square Si,j. Particularly, no vertex of G lies inside
any square Si,j.

Proof. Firstly, we observe that all vertices of any of the
squares must lie in one face of G, as they each represent
points with weights g(i, j, {1, 2, 3, 4}). Thereby we get
that there is no edge in G which splits the vertices of a
square into two faces.

Suppose that there is an edge of G which intersects
one of the squares. Let Si,j be such a square and let F
denote a face which contains all vertices of Si,j . Face F
must be of a concave shape since the convex hull of the
contained points is the square itself.

Let us denote by u1 the vertex of F which lies inside
the convex hull of the remaining vertices u2, u3, u4 of F

and let u2 and u3 be adjacent to u1. Since F includes
all vertices of Si,j , the vertices u2, u3, and u4, that form
a triangle, must lie in the exterior of Si,j and sides u1u2
and u1u3 must intersect the square Si,j . Two cases can
occur: each of u1u2 and u1u3 intersects either once or
twice sides of Si,j . In the first case u1u2 and u1u3 must
cross the same side of Si,j . In the second case, the last
crossings (going from u1 to uk) must belong also to the
same side of Si,j . Let AB be the respective side of Si,j .
Figure 5 illustrates the first case.

Now, depending on whether AB is the upper, lower,
left, or right side, four cases should be considered. Since
they are symmetric to each other, we analyze only one
of them.

So, assume AB is the left side of Si,j . Moreover, if
multiple squares Si,j exist which are similarly intersected
by two sides of their respective faces, then assume addi-
tionally that we have chosen a square Si,j of maximal
index i. We show that, if i ≤ n−1, then both sides u2u4
and u3u4 must cross the left side of Si+1,j and if i = n,
then u2u4 and u3u4 must cross the right boundary of R.
In the first case we get a contradiction to our assumption
that index i is maximal: indeed since G is planar any
face containing the vertices of Si+1,j must cross the left
side of Si+1,j . Case i = n contradicts the construction
of G: the graph should be completely contained in R.

Let (x2, y2) and (x3, y3) be coordinates of u2 and u3,
respectively. From our analysis above it follows that
x2, x3 ≤ 8i− 7 and that all vertices of Si,j lay above the
side u2u4 resp. below u3u4. Moreover, recall that F does
not contain any vertex of the remaining squares Si′,j′ .
To evaluate the minimum value for the x-coordinate of
u4, we first consider the straight line passing through
the points (8i− 7, 8j− 9) and (8i− 1, 8j− 7). We obtain
the equation for the line

y = x/3− 8i/3 + 8j − 20/3.

For x = 8i+ 1, i.e. for the x-coordinate of the left side
of Si+1,j if i ≤ n− 1 or x = 8n+ 1 = a+ 1 if i = n, we
get y = 8j − 19/3 < 8j − 4. Similarly, for the straight
line passing through (8i− 7, 8j + 1) and (8i− 1, 8j − 1)
we get for x = 8i+ 1 that y > 8j − 4. This implies that
the x-coordinate of u4 must be bigger that 8i + 1. As
the y-coordinate of u4 must satisfy 8j − 7 ≤ y ≤ 8j − 1,
this completes the proof. �

Next, we define regions inside R, which we denote
as D(i, j) and call forced regions. The definition is as
follows: For all i, j ∈ {0, . . . , n} we consider a rectangular
polygon with the centroid in (8i, 8j) such that it is
obtained from a square of side length 4 by cutting off in
each corner a unit square. Then D(i, j) is defined as the
intersection of the interior of the polygon for i, j and R.
For an example D(i, j), see Fig. 4.
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Figure 5: Possible shape of a face which on the one
hand touches the interior of Si,j but on the other hand
also includes all green highlighted vertices of Si,j and
excludes all other red points of the points instance.

Lemma 5 Let G be an n × n q-grid partitioning of R
such that d∞(P,G) ≤ t. Then: (1) each vertex v(i, j) ∈
V (G) lies in the region D(i, j) and (2) each point q ∈ Q
with ω(q) = g(i, j, l) is included in the face F (i, j) of G.

Proof. To prove property (1) suppose that there exists
a vertex of V (G), denoted by u1, which is not contained
by any region D(̂ı, ̂). Due to Lemma 4, u1 cannot be
situated inside any square. Thus, it must be located in
R \ (

⋃
ı̂,̂D(̂ı, ̂) ∪

⋃
i,j Si,j).

Assume u1 is vertex of a face F which encloses a
square Si,j , for some i, j. Let us first consider that u1
is placed in a strip adjacent to Si,j . Depending on the
location: to the left, right, below or above of Si,j , there
are four cases to be considered. As they are symmetric,
we consider only the case that u1 is placed to the left
of Si,j . If (x, y) denote coordinates of u1, this leads to
constraints: 8i− 9 < x < 8i− 7 and 8j− 6 < y < 8j− 2.

The next and previous vertices of u1 in face F are
again denoted by u2 and u3, while u2 shall be the vertex
below Si,j and u3 the one above. To enclose Si,j , u2
and u3 must be as far as possible to the right. We can
determine the best position of u2 along a line through
the bottom-leftmost position of u1, i. e. (8i− 9, 8j − 2),
and the bottom left corner of Si,j , (8i− 7, 8j − 1). The
legal position furthest to the right is the intersection of
the line and the square Si,j−1, i. e. u2 = (8i− 3, 8j − 9).
Analogously, the best possible placement of u3 would be
(8i−3, 8j+1). Even though u2 and u3 cannot both have
these coordinates (we use different positions of u1), there
is no legal position of the forth vertex u4 of F . Passing
a first line through u2 and the bottom right corner of
Si,j as well as the second line through u3 and the top
right corner, the intersection of both lines, representing
the leftmost position of u4, is (8i+2, 8j−4) and thereby
in the interior of Si+1,j . An example of such a situation
with u1 = (8i − 9, 8j − 4) is shown in Fig. 6. This
contradiction to Lemma 4 establishes that any vertex of

8(i-1) 8i

8(j-1)

8j D(i − 1, j)

D(i − 1, j − 1)

Si,j Si+1,ju1

u3

u2

Figure 6: Positioning of a vertex u1 which is neither
placed inside any square Si′,j′ nor inside any region
D(̂ı, ̂). The resulting face violates Lemma 4.

G is contained in one region D(̂ı, ̂).
If vertex u1 of F is placed in a strip which is not

adjacent to Si,j then by essentially much easier case
analysis, we can prove that there is no legal position of
the vertex u4 of F . There are four cases to consider:
u1 is located in a vertical non-adjacent strip of the x-
coordinates ≤ 8i − 7 or ≥ 8i − 1 or it is located in
a horizontal non-adjacent strip of the y-coordinates ≤
8j − 7 or ≥ 8j − 1. For each case one can easily show
that if both sides u1u2 and u1u3 do not intersect any
square Si′,j′ between u1 and Si,j , then the sides u2u4 and
u3u4 must intersect any square Si′′,j′′ . This contradicts
Lemma 4.

To complete the proof of property (1), we still need
to show that v(i, j) is in the particular region D(i, j).
We show this together with property (2). We prove
first that two adjacent vertices u1 and u2 cannot be
placed in the same region D(̂ı, ̂). Let F be the face
of vertices u1, u2, u3, and u4, which encloses some Si,j .
Firstly, we can rule out the case that Si,j is not adjacent
to D(̂ı, ̂) as there is obviously no way to construct F in
such case. Among different analog cases, we analyze the
situation where i = ı̂+ 1 and j = ̂+ 1. Placing u1 and
u2 in optimal way results in u1 = (8i − 6, 8j − 9) and
u2 = (8i− 9, 8j − 6). To determine the best position of
u3 and u4, we pass a straight line through the corners
(8i−1, 8j−7) and (8i−7, 8j−1) of Si,j . The intersection
of these lines and the next respective square describes the
optimal position of u3 and u4, i. e. u3 = (8i− 6.2, 8j+ 1)
and u4 = (8i+ 1, 8j − 6.2). Analyzing the edge between
u3 and u4 reveals that the top right corner of Si,j cannot
be included into F , and thus u1 and u2 cannot be in the
same region.

Now we can establish the position of all vertices
on the boundary of R. The vertices at the corner
points of R have a fixed position in (0, 0), (0, 8n)(8n, 0),
or (8n, 8n) respectively and thereby they belong to
D(0, 0), D(0, n), D(n, 0), and D(n, n) respectively. For
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each edge of R, there are n− 1 vertices to be placed on
the boundary between the first and the last vertex of
their boundary. Furthermore, there are exactly n − 1
regions along the boundary in which they can be placed.
Due to the planarity of the mesh, all vertices of the
boundary must be placed according to v(i, j) ∈ D(i, j).

The proof for the remaining vertices and the faces is
done by induction. A face F (i, j) must enclose a square
Si′,j′ and the positions of v(i− 1, j − 1), v(i− 1, j), and
v(i, j − 1) are restricted to D(i − 1, j − 1), D(i − 1, j),
and D(i, j− 1), respectively. According to the induction
hypothesis, we know either i′ > i or i′ = i ∧ j′ ≥ j. If
F (i, j) would not enclose Si,j , the vertex v(i, j) would
be placed close to v(i− 1, j− 1) to exclude the weight at
(8i− 7, 8j − 7). Hence, no other square can be enclosed
in F (i, j). By including Si,j , the position of v(i, j) must
be in D(i, j). �

By combining Lemma 4 and 5 we get the crucial
property of point instance P : if d∞(P,G) ≤ t then any
face F (i, j) of G has to enclose the square Si,j .

To see that it is actually possible to provide an n×
n q-grid G with d∞(P,G) ≤ t, the vertex v(i, j) can
be placed at (8i, 8j). Beyond that, any positioning of
v(i, j) such that the Manhattan distance to (8i, 8j) is less
than 1, currently results in a q-grid G with d∞(P,G) = 0.

3.2 Embedding of the Boolean Formula

As the shape of the q-grid partitioning is sufficiently lim-
ited, we can now describe the embedding of the formula
ϕ into the points instance. To this aim, to the set Q
of weighted points constructed in the first part of the
proof, we add further points and define their weights in
an appropriate way.

We will ensure that the final points instance P =
(Q,ω) has mean µ = γ + 4. Thus, the additional
points will make up 4n2. To keep the shape of q-
grid partitionings G as before, we still require that
d∞(P,G) ≤ t = α/2. Thus, the foundation of the choice
of α = 16n2 is to ensure that new points do not invali-
date the inequality. Finally, the threshold to determine
whether ϕ is satisfiable or not will be c = 1. According
to the objective function used, all faces must contain
points of weight µ± 1 to conform to c.

In the following, we describe the new weighted point
set as a two dimensional array of fields. A field i, j
corresponds to a square Si,j . Thereby we get an array of
n×n fields. By Lemma 4 a field i, j is always completely
included in the face F (i, j).

Some of the fields, called active, will be directly used
to embed the formula ϕ. The remaining fields will play
a passive role in the reduction and we will call them
inactive. To encode an inactive field, it gets an additional
weight equals 4 − ε, where 0 < ε < 1, which will be
achieved by adding a weighted point in the interior of

4

4

4

4

4 4

4 4

4− ε

Figure 7: Clip of a possible gadget of a variable xi,
containing a cycle of eight fields and an inactive field in
the center. The q-grid shows a negative configuration of
the gadget, i. e. β(xi) = 0.

the square. Thus, such inactive fields will not differ
from µ by more than 1. The adjustment ε will provide
the desired value of µ and thereby a certain among of
inactive fields must be present. One can determine ε,
or equivalently the necessary number of inactive fields,
through

ε =
2 · number of clauses

number of inactive fields
.

Any field which is a component of one of the gadgets
described below is active. Typically, for active fields no
additional weighted points will be placed in the interior
of their respective squares. However, in some cases points
of weight 1 will be added.

Two adjacent (active) fields can be connected. There-
fore, an additional weighted point is placed right in the
middle between the two adjacent fields, such that this
point can be included in either of the two respective
faces. We will call these points connection points.

Connected fields can form a path. A path is a sequence
of connected fields where the fields have no additional
weight but all connection points are of weight 4. Paths
must not intersect or overlap each other.

A variable xi of ϕ will be embedded as such a path by
forming a closed cycle. Considering a q-grid which gives
a partition of objective value at most 1, the cycle has ex-
actly two possible configurations. Either the connection
points are all included into the next face of the cycle
in clockwise order or they belong to the next face in
counter-clockwise order. We interpret a clockwise orien-
tation as assignment β(xi) = 1 while a counter-clockwise
orientation as β(xi) = 0. An example of a variable and
its configuration is shown in Fig. 7.

Next, we describe the gadget of a literal. A literal
is implemented as a path branching of the cycle repre-
senting the respective variable. A branch consists of two
consecutive fields on a path. Their connection point has
only weight 2, but the second field has an additional
weight 1. Furthermore, the first field is adjacent to the
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branching path. They are also connected by a connec-
tion point of weight 2 and the first field of the path has
an additional weight 1. A positive literal branches off
in clockwise direction while a negative literal branches
off in counter-clockwise direction. The path of a literal
leads to the gadget of the clause it is part of. Consid-
ering a q-grid G of objective value ≤ c, the branched
path has two possible configurations: the first, we call
positive, means that the connection point always belongs
to the next field on the path. The negative configuration
indicates that the connection point always belongs to
the previous field on the path. The configuration of a
path is determined by the configuration of the cycle it is
connected to. A clockwise branch is positive if and only
if the cycle is clockwise orientated. The opposite is true
for counter-clockwise branches.

The gadget of a clause is a field where exactly three
paths representing three literals end. All three are con-
nected to the field by a connection point of weight 4.
Considering a q-grid which has objective value ≤ c, the
clause has exactly three possible configurations, each
with exactly one incoming path positive. These config-
urations exactly represent the three valid assignments
of one-in-three satisfiability. Thus, there exists a q-grid
G of objective value ≤ c if and only if ϕ is one-in-three
satisfiable. Figure 8 illustrates the example formula ϕ.
Fields are displayed as squares with their respective
additional weights in the inside. Connections between
fields are symbolized by edges between the squares. The
weights of the connection points are placed on the edge.

Due to the planarity of ϕ, there is always such a
planar embedding of ϕ in the described way. The time
complexity of the reduction is dominated by the size
of the resulting points instance. The representation of
the points instance and its weights is polynomial in n
and thereby polynomial in |ϕ|. As the reduction has a
polynomial time complexity, the NP-hardness follows.

This completes the proof of Theorem 1. �

3.3 Other Objective Functions

The proofs of NP-hardness for other objective functions
can be obtained similarly. Primarily, the values of α, t,
and c in the proof must be chosen appropriately.

Corollary 6 d-QGP is NP-hard for any dp function
and for dmax.

From the proof it follows that the problems are NP-
hard even if (1) the weights of the points are integers,
(2) the points of the weighted point set have integer
coordinates, or (3) the q-grid is restricted to convex
faces.
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Figure 8: Possible reduction of ϕ
defined in eq. (1), for n = 8. Gad-
gets are additionally highlighted as
follows: blue is the cycle of a vari-
able, yellow is the literal including
the branching, and red is a clause
gadget. The mapping of the gadgets
is shown to the right.
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x3

x4
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4 Conclusions and Open Problems

For ease of notation, the definition of the q-grid partition-
ing problem was limited to two dimensions. Nevertheless,
the partitioning can be extended to higher dimensions
in which case the problem remains NP-hard.

We have proven that the decision versions of the prob-
lems are hard for NP but we leave as an open question if
they are in NP. The main difficulty here is to show that
for any instance there exists an optimal q-grid partition-
ing G of vertices with coordinates of polynomial-size. A
natural approach to solve this issue is to express d-QGP
as a quadratic program in a form for which the quadratic
programming problem is known to belong to NP (like e.g.
[15, 19]). Unfortunately, a straightforward formulation
leads to programs having quadratic constraints for which
we do not know if the program has a basic optimum of
polynomial size.
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