
CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

The τ -Skyline for Uncertain Data

Haitao Wang∗ Wuzhou Zhang†

Abstract

In this paper, we introduce the notion of τ -skyline as an
alternative representation for uncertain skylines. Given
a parameter τ ∈ [0, 1] and a set P of n uncertain points
in the plane, where each uncertain point Pi is described
by a discrete probability distribution defined over k lo-
cations, the τ -skyline region of P is the set of points q in
the plane such that the probability of any Pi dominating
q is at most τ , and the τ -skyline of P is the boundary of
the τ -skyline region of P. We present an O(nk log(nk))
time algorithm for computing the τ -skyline of P. The
τ -skyline probability of each Pi of P is defined to be the
probability of Pi lying inside the τ -skyline region of P.
We show that the τ -skyline probabilities of all Pi’s can
be computed in O(nk log(nk)) time. Remarkably, our
method is very simple and can be easily implemented,
a huge potential interest for practice.

1 Introduction

It has long been observed that many real-world mea-
surements are inherently accompanied with uncertainty.
As a response, researchers have shown an increased in-
terest in dealing with uncertain data, especially in the
computational geometry community and the database
community nowadays. Among a large number of prob-
lems casted under uncertainty, the skyline problem is
one of the minions (see e.g., [1, 4, 8, 10]). In this pa-
per, we introduce the notion of τ -skyline as an alterna-
tive representation for uncertain skylines, and show that
τ -skyline can be computed very efficiently. Throughout
the paper, we focus on the plane. We begin with some
useful concepts and definitions.

xy-Monotone path. We call a path xy-monotone if
(i) when we move along the path from its one end to
the other, the x-coordinate is non-decreasing and the
y-coordinate is non-increasing; (ii) it consists of either
horizontal or vertical line segments. Note that if we
move from left to right along a xy-monotone path, we
move either rightwards or downwards.

Dominance relationship. For a point p, denote by

∗Department of Computer Science, Utah State University, Lo-
gan, UT 84322, USA. E-mail: haitao.wang@usu.edu. This work
was supported in part by NSF under Grant CCF-1317143.

†Department of Computer Science, Duke University, Durham,
NC 27708, USA. E-mail: wuzhou@cs.duke.edu.

Figure 1: Illustrating the skyline points (the circled points) and
the skyline (the dashed path) for a set of exact points. The skyline
region is strictly above and to the right of the dashed path.

x(p) and y(p) its x- and y-coordinates, respectively. For
two points p and q, we say that p dominates q, denoted
by p ≻ q, if x(p) ≥ x(q) and y(p) ≥ y(q). By this
definition, a point dominates itself, which differs from
some previous work, e.g., [1, 4] (we will explain later
why we make this minor change).

Skyline. Given a set P of n (exact) points, a point
p ∈ P is a skyline point of P if p is not dominated by
any other point of P . The skyline region of P consists
of all the points that are not dominated by any point
of P . The skyline of P is the boundary of the skyline
region of P . It is easy to see that the skyline of P is a
xy-monotone path connecting all the skyline points of
P (e.g., see Fig. 1). All the skyline points (hence the
skyline) of P can be computed in O(n log n) time [7].

1.1 Problem Statement

Next, we describe our model for uncertain points, fol-
lowed by the definition of τ -skyline.

Uncertain points. Let P = {P1, P2, . . . , Pn} be a set
of n uncertain points, where each uncertain point Pi is
described by a discrete probability distribution defined
over k locations pi1, pi2, . . . , pik, with k being an input
parameter, such that the probability of Pi being at lo-
cation pij is wij , where 0 < wij ≤ 1 for 1 ≤ j ≤ k, and∑k

j=1 wij = 1. We assume that the probability distri-
butions of Pi’s are independent. With a little abuse of
notation, we also use Pi to denote the set of locations
{pi1, . . . , pik}. For a location p ∈ Pi, we also use w(p)
to denote the probability of Pi being at p. Set m = nk.

τ-Skyline. Given a point q, the probability that Pi

dominates q, denoted by δi(q), is the sum of the proba-

26th Canadian Conference on Computational Geometry, 2014

Figure 2: Illustrating a τ -skyline for two uncertain points: one
appears in one of the five disk-style points with 0.2 probability
each and the other appears in one of the five box-style points
with 0.2 probability each. For τ = 0.3, the τ -skyline consists of
the dashed segments and the τ -skyline region is strictly above and
to the right of the dashed path.

bilities of the locations of Pi that dominate q, i.e.,

δi(q) =
∑

p∈Pi,p≻q

w(p).

For a fixed parameter τ ∈ [0, 1], the τ -skyline region
of P, denoted by R, is the set of points q such that
the probability of any Pi dominating q is at most τ , i.e.,
R = {q | δi(q) ≤ τ,∀i ≤ n}. The τ -skyline of P, denoted
by π, is the boundary of the τ -skyline region of P. The
τ -skyline probability of each Pi of P is defined to be the
probability of Pi lying inside the τ -skyline region of P.
We also define the τ -skyline region for each Pi ∈ P,

denote by Ri, as the set of points q such that the prob-
ability that Pi dominates q is at most τ , i.e., Ri = {q |
δi(q) ≤ τ}. The boundary of Ri is called the τ -skyline
of Pi, denoted by πi. We show later that πi is a xy-
monotone path of size O(k), and can be computed in
O(k log k) time.
Clearly, τ -skyline generalizes the notion of skyline: if

τ = 0, the τ -skyline of P is simply the skyline of
∪n

i=1 Pi,
and the τ -skyline of Pi is simply the skyline of Pi.
In this paper, we show that the τ -skyline π of P is a

xy-monotone path of size O(m) (e.g., see Fig. 2), and
can be computed in O(m logm) time, where m = nk.
Furthermore, the τ -skyline probabilities of all Pi’s can
be computed in O(m logm) time.

1.2 Related Work

Two models have been widely used for data uncertainty:
the existential model (see e.g., [5, 6, 11, 13]) and the lo-
cational model (see e.g., [2, 3, 12]). In the existential
model, each uncertain point has a fixed location but
it only exists with some probability. In the locational
model, each uncertain point always exists but its lo-
cation follows a probability density function. In this
paper, the model of our interest is the locational model.
The skyline problem has been investigated in the lo-

cational model, see e.g., [1, 4], where a point was not al-
lowed to dominate itself. Given a point q, the probabil-
ity that q lies on the skyline of P, called the skyline prob-

ability of q, is defined to be α(q,P) =
∏n

i=1(1 − δi(q)).
The probability of Pi of P being on the skyline of P,
called the skyline probability of Pi, is defined to be∑k

j=1 wijα(pij , P̸=i), where P̸=i = P − {Pi}. For a pa-
rameter ρ ∈ (0, 1], the goal is to compute the ρ-skyline of
P, which consists of all the uncertain points of P whose
skyline probabilities are at least ρ.

The ρ-skyline can be easily computed in O(m2) time,
where m = nk. Atallah and Qi [4] devised the first
sub-quadratic algorithm with time O(m5/3poly(logn)).
Later, Afshani et al. [1] improved the running time to
O(m3/2), and they also constructed a set of uncertain
points suggesting that this bound might be optimal. For
the case k ≪ n, the running time can be further im-
proved to O(mk logm). Moreover, Afshani et al. [1]
considered approximating the ρ-skyline. Pei et al. [10]
proposed several heuristic algorithms for computing the
ρ-skyline. Other variants of uncertain skylines have also
been proposed, see e.g., [8, 14].

The ρ-skyline does not offer us a structure or a region.
In view of this, we prefer calling it ρ-skyline (uncertain)
points. One may similarly define the ρ-skyline region,
though it is not obvious how to compute it efficiently.
When ρ is sufficiently large or the skyline probabilities
are small enough, the ρ-skyline may not exist. There
is a connection between the τ -skyline of P and the ρ-
skyline of P: if a point q lies in the τ -skyline region of
P, then the skyline probability of q is at least (1− τ)n.

Our definition of the τ -skyline of Pi is closely related
to the concept of K-skyband, proposed in [9]. Given
a set P of n (exact) points and a parameter K ≤ n,
the K-skyband of P asks for the set of points which are
dominated by at most K points of P . 0-skyband corre-
sponds to the conventional skyline. The τ -skyline of Pi

can be used for answering the weighted skyband of Pi,
where the weight of a point p ∈ Pi is the probability of
Pi being at p, for which we are not aware of any previous
work. As a byproduct, we obtain the first algorithm for
computing the weighted skyband of a set of weighted
(exact) points (note that our proposed algorithm can
be extended to arbitrary positive weights).

Unlike previous work [1, 4], we allow a point to dom-
inate itself. We make this minor change only to avoid
those tedious discussions later in describing our algo-
rithm and proving its correctness. As will be clear later,
if a point is not allowed to dominate itself, the τ -skyline
π of P and our algorithm for computing π remain the
same, while the τ -skyline region R of P may contain
some turning points of the τ -skyline π of P (if a point
can dominate itself, R and π are disjoint).

2 Our Algorithm

In this section, we describe our algorithm for computing
the τ -skyline of P in O(m logm) time, where m = nk,

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

for a fixed parameter τ ∈ [0, 1].

To compute the τ -skyline π of P, we first compute, for
each Pi of P, the τ -skyline πi of Pi, in O(k log k) time.
We then show that π is simply the upper envelope of
π1, . . . , πn, and can be computed in O(m logm) time,
where m = nk. In the sequel, fix any uncertain point
Pi of P. For simplicity of discussion, we assume no two
locations of Pi have the same x- or y-coordinate.

As a preprocessing step, we sort all the locations of Pi

into two sorted lists Lx and Ly, with Lx by increasing
x-coordinate and Ly by decreasing y-coordinate. We
define a grid G, by drawing a vertical line and a hor-
izontal line through each location of Pi. Note that G
is only used for describing our algorithm, but not com-
puted explicitly.

The following main step of our algorithm will find the
τ -skyline πi. Refer to Fig. 3 for an example. We scan the
sorted list Ly to find the location in Pi, denoted by p1
(e.g., see Fig. 3), such that the sum of the probabilities
of the locations of Pi that are strictly above p1 is at
most τ , but the above probability sum plus w(p1) (i.e.,
the probability of p1) is larger than τ .

From the position (−∞, y(p1)), we will move a point
q along the grid G. More specifically, q will move either
rightwards or downwards, depending on different sce-
narios. The movement of q will be discretized by scan-
ning the two sorted lists Lx and Ly. An event happens
if either x(q) = x(p) for some p ∈ Lx, or y(q) = y(p′)
for some p′ ∈ Ly. Whenever an event happens, we will
decide whether q should move rightwards or downwards.
If q moves rightwards, then we keep scanning Lx; oth-
erwise we keep scanning Ly. After the algorithm stops,
the path along which q moves is the τ -skyline πi. Be-
low, we first present the algorithm and then argue its
correctness (i.e., prove that the path of q is πi). As will
be seen later, the main step of the algorithm only takes
O(k) time since we can process each event in O(1) time
and there are O(k) events (since |Lx|+ |Ly| = 2k).

For two points q1 and q2, we say that q1 strictly dom-
inates q2 if x(q1) > x(q2) and y(q1) > y(q2). For
a point p, denote by Sp the set of locations of Pi

that dominate p and by S+
p the set of locations of Pi

that strictly dominate p. For any subset P ′
i of Pi, let

w(P ′
i) =

∑
p∈P ′

i
w(p). Clearly, w(Sp) = δi(p).

When q is moving, our algorithm will maintain the
following two invariants: w(Sq) > τ and w(S+

q) ≤ τ .
Besides, the two values w(Sq) and w(S+

q) will be main-
tained during the algorithm (they will be updated when
an event happens).

We claim that both invariants hold when q is at the
position (−∞, y(p1)). To see this, Sq consists of p1 and
all the locations of Pi that are strictly above p1, and S+

q

consists of all the locations of Pi that are strictly above
p1. It follows from our definition of p1 that w(Sq) > τ
and w(S+

q) ≤ τ . See Fig. 3 for an example.

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.05

0.05

0.05

0.05

p1

p2

Figure 3: Illustrating our algorithm for computing πi. One
uncertain point Pi consists of 12 locations with corresponding
probabilities labeled. For τ = 0.27, the τ -skyline πi of Pi is
shown with (red) dashed line segments.

Rightwards movements. We move q rightwards, by
scanning the sorted list Lx until an event happens, i.e.,
x(q) = x(p) for some p ∈ Lx. We refer to the position
(x(p), y(p1)) as the event point. Depending on different
scenarios, our algorithm takes different actions and up-
dates the two values w(Sq) and w(S+

q) accordingly. For
any action our algorithm takes, we will argue that the
two invariants hold. Based on the values of y(p) and
y(q), we classify three cases.

1. If y(p) < y(q), then p does not dominate q when q is
at the event point. Hence, both Sq and S+

q remain
the same as before, implying that both invariants
hold. No action is needed in this case.

We continue moving q rightwards. Note that before
the next event happens, both Sq and S+

q continue
remaining the same, and both invariants hold.

2. If y(p) > y(q), then p strictly dominates q before
the event. And when q arrives at the event point,
p does not strictly dominates q anymore but p still
dominates q. Hence, for processing the event, we
remove p from S+

q and decrease w(S+
q) by w(p),

but Sq does not change. Clearly, both invariants
hold when q is at the event point.

Note that since y(p1) = y(q) and y(p) > y(q), p1 is
not p. Based on whether w(S+

q) + w(p1) ≤ τ , we
further classify two cases.

(a) If w(S+
q) +w(p1) > τ , then we continue mov-

ing q rightwards (x(q) > x(p)). Consider any
point q after the current event point and be-
fore the next event point. Note that the point
p does not dominate q any more. Hence, we
remove p from Sq and decrease w(Sq) by w(p).

26th Canadian Conference on Computational Geometry, 2014

We claim that both invariants hold. Note that
S+
q does not change, hence w(S+

q) ≤ τ . On
the other hand, according to the definition of
q, no location of Pi has the same y-coordinate
as q. Hence, Sq = S+

q ∪{p1}. Due to w(S+
q)+

w(p1) > τ , we have w(Sq) > τ . Therefore,
both invariants hold.

(b) If w(S+
q) +w(p1) ≤ τ , then for later reference

we use p2 to refer to p (e.g., see Fig. 3).

Now we move q downwards, by scanning the
sorted list Ly (y(q) < y(p1)). Consider any
point q after the current event point and be-
fore the next event point. Since y(q) < y(p1),
p1 now strictly dominates q, we add p1 to
S+
q and increase w(S+

q) by w(p1). Since
w(S+

q) + w(p1) ≤ τ for the previous w(S+
q),

the second invariant w(S+
q) ≤ τ holds for the

new S+
q . On the other hand, the invariant

w(Sq) > τ still holds since Sq does not change.
Therefore, both invariants hold.

3. If y(p) = y(q), then y(p) = y(p1) since y(q) =
y(p1). Due to our general position assumption
that no two locations of Pi have the same x- or
y-coordinate, p1 must be p. In other words, p1 = p
is the event point. Clearly, the two sets Sq and
S+
q do not change when q arrives at p1. Therefore,

both invariants hold when q is at the event point.

Next we move q downwards, by scanning the sorted
list Ly. For later reference, we use p2 to refer to p.
Consider any point q after the current event point
and before the next event point. It is no hard to
see that the the two sets Sq and Sq do not change.
Therefore, both invariants still hold.

According to the above discussion, after an event
point during rightwards movements, q will either keep
moving rightwards or change the moving direction and
move downwards. In the former case, we process the
rightwards movement in the same way as described
above. In the latter case, we have used p2 to refer to p,
with x(q) = x(p2) and y(p2) > y(q), and q moves down-
wards by scanning the sorted list Ly until the next event
happens, i.e., y(q) = y(p′) for some p′ ∈ Ly. In the
sequel, we discuss our algorithm for processing down-
wards movements, which is slightly different from that
for rightwards movements.
Now the position (x(p2), y(p

′)) is the event point.

Downwards movements. Depending on different
scenarios, our algorithm takes different actions and up-
dates w(Sq) and w(S+

q) accordingly. For any action
our algorithm takes, we will argue that both invariants
hold. As discussed above, right before the event hap-
pens, both invariants hold and w(Sq) and w(S+

q) are
properly maintained.

1. If x(p′) < x(q), then p′ does not dominate q when
q is at the event point. Both Sq and S+

q remain the
same as before, and both invariants hold when q is
at the event point.

We continue moving q downwards. Before the next
event happens, both Sq and S+

q remain the same
and both invariants hold.

2. If x(p′) > x(q), then before q arrives at the event
point, p′ does not dominates q. When q is at the
event point, p′ dominates q but does not strictly
dominate q (since y(q) = y(p′)). We increase w(Sq)
by w(p′), and w(S+

q) does not change. Clearly, both
invariants hold. Based on whether w(S+

q)+w(p′) ≤
τ , we further classify two cases.

(a) If w(S+
q) + w(p′) ≤ τ , then we continue mov-

ing q downwards. Consider any q after the
current event point and before the next event
point. The point p′ now strictly dominates
q. Then, we increase w(S+

q) by w(p′). Since
w(S+

q) + w(p′) ≤ τ for the previous S+
q , we

have w(S+
q) ≤ τ for the new S+

q . On the other
hand, the invariant w(Sq) > τ still holds since
Sq does not change.

(b) If w(S+
q)+w(p′) > τ , then for later reference,

we use p3 to refer to p′.

Next we move q rightwards (x(p2) < x(q)).
Consider any point q after the current event
point and before the next event point. Notice
that p2 does not dominate q any more. There-
fore, we decrease w(Sq) by w(p2). However,
S+
q is the same as before and we do not need to

change w(S+
q). We claim that both invariants

hold. Indeed, according to our definition, it is
not difficult to see that Sq = S+

q ∪{p′}. Hence,
w(Sq) = w(S+

q) + w(p′) > τ . On the other
hand, since S+

q does not change, w(S+
q) ≤ τ

still holds. Therefore, both invariants hold.

3. If x(p′) = x(q), then x(p2) = x(p′) since x(q) =
x(p2). We argue that this case cannot happen. As
y(p′) > y(p2) and both p2 and p′ are in Pi, it im-
plies that p2 and p′ are two different locations in Pi

and have the same x-coordinate. This contradicts
with our general position assumption that no two
locations of Pi have the same x- or y-coordinate.

According to the above discussion, after an event
point during downwards movements, q will either keep
moving downwards or change the direction and move
rightwards. In the former case, we process the next
event in the same way as for downwards movements. In
the latter case, we process the next event in the same
way as for rightwards movements. The algorithm stops

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014

Algorithm 1: Compute the τ -skyline πi of Pi

1 scan Ly to find the point p1;
2 compute w(Sq) and w(S+

q);

3 move q rightwards and set j = 1;
4 while Lx ̸= ∅ and Ly ̸= ∅ do
5 if q is moving rightwards then
6 scan Lx for the next event, i.e., find a

location p ∈ Lx with x(q) = x(p);
7 if y(p) < y(q) then
8 move q rightwards;

9 if y(p) > y(q) then
10 w(S+

q) = w(S+
q)− w(p);

11 if w(S+
q) + w(pj) > τ then

12 move q rightwards;
13 w(Sq) = w(Sq)− w(p);

14 else
15 move q downwards;
16 w(S+

q) = w(S+
q) + w(pj);

17 j = j + 1 and set pj = p;

18 if y(p) = y(q) then
19 move q downwards;
20 j = j + 1 and set pj = p;

21 if q is moving downwards then
22 scan Ly for the next event, i.e., find a

location p′ ∈ Ly with y(q) = y(p′);
23 if x(p′) < x(q) then
24 move q downwards;

25 if x(p′) > x(q) then
26 w(Sq) = w(Sq) + w(p′);
27 if w(S+

q) + w(p′) ≤ τ then
28 move q downwards;
29 w(S+

q) = w(S+
q) + w(p′);

30 else
31 move q rightwards;
32 w(Sq) = w(Sq)− w(pj);
33 j = j + 1 and set pj = p′;

34 move q to infinity along the last moving direction;
35 return the path of q as πi;

when either Lx or Ly becomes empty (q will go to infin-
ity along the last moving direction). The pseudocode in
Algorithm 1 summarizes the main step of our algorithm.

Let π̃i denote the path of q above. Notice that dur-
ing the algorithm, q moves either rightwards or down-
wards, and its x- (resp. y-) coordinate is non-decreasing
(resp. non-increasing). Hence, π̃i is an xy-monotone
path. Since q makes turns only if an event happens and
there are O(k) events (|Lx|+ |Ly| = 2k), the number of
turns of π̃i is O(k). Hence π̃i has O(k) complexity. To
analyze the time complexity of our algorithm, after Lx

p

p
′

p
′′

Figure 4: Illustrating the second case of the proof for Lemma 1:
the solid path is π̃i.

and Ly are obtained in O(k log k) time in the prepro-
cessing step, the main step of our algorithm takes O(k)
time since each event is processed in O(1) time.

Correctness. Next we prove that π̃i is the τ -skyline
πi of Pi. To this end, we prove the following lemma,
which essentially shows that the τ -skyline region Ri of
Pi is strictly above and to the right of π̃i.

Lemma 1 For any point p, if p is strictly above and
to the right of the path π̃i, then δi(p) ≤ τ ; otherwise
δi(p) > τ .

Proof. Consider any point p. Below, we classify two
cases, depending on whether p is strictly above and to
the right of π̃i. Our proof relies heavily on the two
invariants: for any point q ∈ π̃i, w(Sq) > τ (i.e., δi(q) >
τ) and w(S+

q) ≤ τ .

1. p is not strictly above or to the right of π̃i, i.e.,
p ∈ π̃i or p is to the left of/below π̃i. We show that
δi(p) > τ .

If p ∈ π̃i, by the first invariant, δi(p) > τ .

If p is to the left of/below π̃i, we shoot a ray from p
to the right and let p′ be the first point on π̃i that
is hit by the ray. Clearly, p′ dominates p. By the
first invariant, δi(p

′) > τ . Since p′ dominates p, the
locations of Pi that dominate p′ must also dominate
p, i.e., Sp′ ⊆ Sp and w(Sp′) ≤ w(Sp). Note that
δi(p) = w(Sp) and δi(p

′) = w(Sp′). Consequently,
due to δi(p

′) > τ , we obtain δi(p) > τ .

2. p is strictly above and to the right of π̃i. We show
that δi(p) ≤ τ .

Suppose we shoot a ray from p to the left and let
p′′ be the first point on π̃i that is hit by the ray.
Since p is strictly to the right of π̃i, p ̸= p′′ and
x(p′′) < x(p). According to the definition of p′′,
after the point q passes p′′ in the algorithm, q must
move downwards. In other words, there must be a
point p′ strictly below p′′ and on the vertical line
through p′′ such that the vertical line segment p′p′′

is on π̃i (e.g., see Fig. 4).

Since p′ ∈ π̃i, by the second invariant, w(S+
p′) ≤ τ .

26th Canadian Conference on Computational Geometry, 2014

We claim that Sp ⊆ S+
p′ . Indeed, consider any

point p∗ ∈ Sp. It is sufficient to show that
p∗ strictly dominates p′, i.e., x(p∗) > x(p′) and
y(p∗) > y(p′). On one hand, since x(p) > x(p′′),
x(p∗) ≥ x(p) > x(p′′) = x(p′). On the other
hand, since p′ is strictly below p′′, y(p′′) > y(p′).
Therefore, y(p∗) ≥ y(p) = y(p′′) > y(p′). The
above proves that x(p∗) > x(p′) and y(p∗) > y(p′).
Hence, Sp ⊆ S+

p′ .

It follows from w(S+
p′) ≤ τ and Sp ⊆ S+

p′ that

w(Sp) ≤ w(S+
p′) ≤ τ and δi(p) = w(Sp) ≤ τ .

This concludes the proof of the lemma. �
We obtain the following theorem.

Theorem 2 For any uncertain point Pi defined over k
locations, the τ -skyline πi of Pi has O(k) complexity and
can be computed in O(k log k) time. Moreover, πi can be
computed in O(k) time if the locations of Pi are given as
two sorted lists by their x-coordinates and y-coordinates,
respectively.

Remarks. Note that no point of the τ -skyline πi of Pi

belongs to the τ -skyline region Ri of Pi. However, if a
point is not allowed to dominate itself, as in [1, 4], then
it is not difficult to see that if a turning point q of πi

co-locates with a location of Pi, then q belongs to Ri.
We are ready to compute the τ -skyline π of P. An ob-

servation is that the τ -skyline region R of P is the com-
mon intersection of the τ -skyline regions R1, . . . , Rn,
i.e., R =

∩n
i=1 Ri. Moreover, the τ -skyline π is the up-

per envelope of the τ -skylines π1, . . . , πn. Equivalently,
π is the (conventional) skyline of the turning points of
all the πi’s, implying that π is a xy-monotone path.
By Theorem 2, each πi has O(k) turning points and
can be computed in O(k log k) time. Hence all the πi’s
have O(m) turning points and can be computed in total
O(m log k) time, implying that π has O(m) complexity
and can be further computed in O(m logm) time [7],
where m = nk. We conclude the following.

Theorem 3 Given a set P of n uncertain points, each
of which is defined over k locations, the τ -skyline π of
P can be computed in O(m logm) time. Further, π is a
xy-monotone path of size O(m), where m = nk.

Finally, if one is interested in returning a subset of
good candidates as skyline (uncertain) points, as in [1,
4], we can compute all the τ -skyline probabilities and
use a threshold to select. After obtaining the τ -skyline
of P, one can easily compute, in total O(m logm) time,
that for each Pi of P, the probability of Pi lying inside
the τ -skyline of P. Therefore, we obtain the following.

Theorem 4 Given a set P of n uncertain points, each
of which is defined over k locations, all the τ -skyline
probabilities can be computed in total O(m logm) time,
where m = nk.

References

[1] P. Afshani, P.K. Agarwal, L. Arge, K.G. Larsen, and
J.M. Phillips. (Approximate) uncertain skylines. In
Proc. of the 14th International Conference on Database
Theory, pages 186–196, 2011.

[2] P.K. Agarwal, B. Aronov, S. Har-Peled, J.M. Phillips,
K. Yi, and W. Zhang. Nearest neighbor searching un-
der uncertainty II. In Proc. of the 32nd Symposium on
Principles of Database Systems, pages 115–126, 2013.

[3] P.K. Agarwal, S.-W. Cheng, Y. Tao, and K. Yi. Index-
ing uncertain data. In Proc. of the 28th Symposium on
Principles of Database Systems, pages 137–146, 2009.

[4] M.J. Atallah and Y. Qi. Computing all skyline proba-
bilities for uncertain data. In Proc. of the 28th Sympo-
sium on Principles of Database Systems, pages 279–287,
2011.

[5] P. Kamousi, T.M. Chan, and S. Suri. Closest pair and
the post office problem for stochastic points. In Proc. of
the 12nd Workshop on Algorithms and Data Structures,
pages 548–559, 2011.

[6] P. Kamousi, T.M. Chan, and S. Suri. Stochastic mini-
mum spanning trees in Euclidean spaces. In Proc. of the
27th Annual Symposium on Computational Geometry,
pages 65–74, 2011.

[7] H.T. Kung, F. Luccio, and F.P. Preparata. On finding
the maxima of a set of vectors. Journal of the ACM,
22:469–476, 1975.

[8] X. Lian and L. Chen. Monochromatic and bichromatic
reverse skyline search over uncertain databases. In Proc.
of the 2008 ACM SIGMOD International Conference
on Management of Data, pages 213–226, 2008.

[9] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive
skyline computation in database systems. ACM Trans.
Database Syst., 30(1):41–82, 2005.

[10] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic
skylines on uncertain data. In Proc. of the 33rd Inter-
national Conference on Very Large Data Dases, pages
15–26, 2007.

[11] S. Suri, K. Verbeek, and H. Yıldız. On the most likely
convex hull of uncertain points. In Proc. of the 21st An-
nual European Symposium on Algorithms, pages 791–
802, 2013.

[12] Y. Tao, X. Xiao, and R. Cheng. Range search on mul-
tidimensional uncertain data. ACM Transactions on
Database Systems, 32, 2007.

[13] M.L. Yiu, N. Mamoulis, X. Dai, Y. Tao, and M. Vaitis.
Efficient evaluation of probabilistic advanced spatial
queries on existentially uncertain data. IEEE Transac-
tions on Knowledge and Data Engineering, 21:108–122,
2009.

[14] W. Zhang, X. Lin, Y. Zhang, W. Wang, G. Zhu, and
J.X. Yu. Probabilistic skyline operator over sliding win-
dows. Information Systems, 38:1212–1233, 2013.

