
CCCG 2015, Kingston, Ontario, August 10–12, 2015

Dynamic data structures for approximate Hausdorff distance in the word
RAM

Timothy M. Chan∗ Dimitrios Skrepetos†

Abstract

We give a fully dynamic data structure for maintaining
an approximation of the Hausdorff distance between two
point sets in a constant dimension d, a standard prob-
lem in computational geometry. Our solution has an
approximation factor of 1 + ε for any constant ε > 0
and expected update time O(logU

log logn), where U is the
universe size, and n is the number of the points. The re-
sult of the paper greatly improves over the previous ex-
act method, which required O(n5/6polylogn) time and
worked only in a semi-online setting. The model of com-
putation is the word RAM model.

1 Introduction

The problem of computing the Hausdorff distance be-
tween a red point set R and a blue point set B is to find
maxb∈B minr∈R d(b, r) where d(·, ·) is a distance func-
tion. The dynamic version of the Hausdorff distance
problem is to solve the problem under a series of inser-
tions and deletions of points both from the red point set
and from the blue point set. The approximate dynamic
version of the Hausdorff distance is to solve the dynamic
version of the problem allowing a factor of approxima-
tion.

Chan [4] provided a solution for the semi-online main-
tenance of Hausdorff distance in 2-d that had an up-
date time of O(n5/6polylogn) in the worst case. Here
semi-online means that when we insert an element we
are given its deletion time in advance. Chan also gave
a fully dynamic solution for a decision version of the
problem in 2-d that had an amortized update time of
O(n1/2polylogn).

In this paper we show that the update time can be
greatly improved if we allow approximation. We give
a dynamic data structure that maintains the Haus-
dorff distance within an approximation factor of 1 +
ε in sublogarithmic update time—or more concretely,
O(logU

log logn) time.

Note that our update time of O(logU
log logn) greatly im-

proves over the previous bound of O(n5/6polylogn) for

∗Cheriton School of Computer Science, University of Waterloo,
tmchan@uwaterloo.ca
†Cheriton School of Computer Science, University of Waterloo,

dskrepet@uwaterloo.ca

the semi-online maintenance of the exact Hausdorff dis-
tance, as it is purely polylogarithmic and fully dynamic.
Furthermore, our solution works for any constant di-
mension d, while the previous method works only in
2-d.

We originally started this research for a closely re-
lated problem, the dynamic bichromatic closest pair
problem, studied by Eppstein [3], which involves find-
ing minb∈B minr∈R d(b, r). However, this seems easier
to approximate than the Hausdorff distance, as one
could obtain a constant-factor approximation with up-
date time of O(log logU) by extending the technique of
Chan [1].

1.1 Model of computation

We assume the word RAM model of computation; that
is, the point coordinates are drawn from the set [U] =
{0, 1, . . . , U − 1}, the words are composed of Θ(logU)
bits, and each standard word operation (such as shifting,
arithmetic and logical operations) takes constant time.
The distance function is assumed to be the Euclidean
distance function. The approximation factor ε and the
dimension d are considered to be constant in both the
running time and space of our algorithms.

2 Approximate dynamic Hausdorff distance

In section 2.1 we give a dynamic data structure that
solves the approximate decision Hausdorff distance
problem. That is, given a distance r and an approx-
imation factor ε fixed at preprocessing time, we want to
answer decision queries of the form: “Is the Hausdorff
distance greater than r?”. The data structure should
return “yes” if the Hausdorff distance is greater than
r(1 + ε) and “no” if it is less than r. In section 2.2 a
stronger version of the decision problem is considered:
instead of a fixed r, the data structure can answer deci-
sion queries for all r ∈ {2i | 0 ≤ i ≤ logU} at the same
time. Finally, in section 2.3 we solve the original version
of the approximate Hausdorff distance problem; that is,
we compute a (1 + ε)-approximation of the Hausdorff
distance.

27th Canadian Conference on Computational Geometry, 2015

2.1 Decision queries for a fixed distance r

The first step is to compute a grid Gs of the d-
dimensional space composed of cells that are hypercubes
with s = rε side length. For a cell c, another cell c′ is a
neighbor of c if the minimum distance between the cen-
ters of c and c′ is less than or equal to r. We imagine
that all the points that fall inside a cell are rounded to
the center of the cell. Let neighborsc denote the set of
the neighbors of the cell c that is produced by this defi-
nition. It is clear that the number of neighbors of a cell
is dependent only on ε and d, so it will be treated as a
constant in the rest of the paper. Because of rounding
the approximation factor is 1 +O(ε).

Each cell c of the grid has a unique ID; thus, for
each point p = (x1, x2, . . . , xd) ∈ c the ID of the cell
is id(c) = (bx1

s c, b
x2

s c, . . . , b
xd

s c). Each cell c also has
three counters, one for the number of blue points inside
the cell, blueCountc, one for the number of red points
inside the cell, redCountc, and one for the number of red
points in any cell c′ that belongs to the set neighborsc,
redNeighborsCountc. Furthermore, each cell c maintains
a boolean flag, flagc, with the following semantic: flagc
is set if and only if blueCountc > 0 and there is no
neighbor cell c′ such that redCountc′ > 0, which is the
same with checking whether redNeighborsCountc > 0.
If there is at least one such flag set, then the Hausdorff
distance is greater than r (after rounding). Otherwise,
it is at most r. We keep a global variable globalCount
that stores the number of cells with flags that have been
set. With this variable, we can answer decision queries
in constant time.

In order to keep the total space linear in the number of
points in the red and blue point sets, we use a hash table
to store only the O(n) cells that are nonempty (where n
is the number of points of both the point sets), since in
the worst case each point occupies a different cell. We
use the ID of the cell as key. The hash table supports
insertions, deletions, and searching in expected constant
time.

To insert a point p, we compute the ID of the
cell c that contains the point (that is, id(c) =
(bx1

s c, b
x2

s c, . . . , b
xd

s c)). If the cell does not exist in the
hash table, a new entry for the cell is created and in-
serted to the hash table with redCountc and blueCountc
equal to zero, redNeighborsCountc equal to the accumu-
lation of all the redCountc′ values for every cell c′ in
the set neighborsc, and flagc equal to zero. Assume that
the inserted point is red. Then, the redCountc value
is incremented. Afterwards, for each cell c′ in the set
neighborsc we increment the value redNeighborsCountc′ ,
and if blueCountc′ > 0 and redNeighborsCountc′ was
zero prior to the insertion, then the flagc′ is reset, and
the globalCount is decremented. Now, assume that the
inserted point is blue. Then the blueCountc value is in-
cremented. Afterwards, if the blueCountc value was zero

prior to the insertion and redNeighborsCountc > 0, the
flagc is set, and globalCount is incremented. The pseu-
docode of the algorithm for inserting points is given in
Algorithm 1.

1 Find the cell c that contains the point p
2 if c does not exist in the hash table then
3 create it and insert to the hash table
4 set blueCountc, redCountc,

redNeighborsCountc, flagc to 0
5 for all c′ ∈ neighborsc do
6 redNeighborsCountc += redCountc′

7 if p is red then
8 increment redCountc
9 for all c′ ∈ neighborsc do

10 increment redNeighborsCountc′
11 if blueCountc′ == 1 then
12 set flagc′
13 increment globalCount

14 else
15 increment blueCountc
16 if blueCountc == 1 then
17 if redNeighborsCountc > 0 then
18 set flagc increment globalCount

Algorithm 1: Insert-Point

To delete a point p, the ID of the cell c that contains
the point is computed (id(c) = (bx1

s c, b
x2

s c, . . . , b
xd

s c)),
and redCountc or blueCountc is accordingly decre-
mented. If the point is red, for every c′ in the set
neighborsc we decrement the redNeighborsCountc′ value,
and if this value becomes zero, the flagc′ is reset and
the globalCount is decremented. If the point is blue
and the cell c does not have any other blue points af-
ter the deletion, the flagc is reset and the globalCount is
decremented. Finally, if the cell does contain any points
(either red or blue), it is deleted from the hash table.
The pseudocode of the algorithm for deleting points is
given in Algorithm 2.

In order to answer a distance query, we check the
value globalCount, and we return “yes” if it is zero and
“no” otherwise.

The aforementioned data structure can handle inser-
tions and deletions of points in constant time. The
queries can be answered in constant time as well. Con-
sequently, this data structure with a linear space and
preprocessing time can handle point insertions and dele-
tions and can answer queries for a fixed distance r and
a fixed ε in constant time.

2.2 Decision queries for all distances r ∈ {2i | 0 ≤
i ≤ logU}

The naive way to perform the query for all distances
r ∈ 1, 2, 4, ..., U would be to create O(logU) instances

CCCG 2015, Kingston, Ontario, August 10–12, 2015

1 Find the cell c that contains the point p
2 if p is red then
3 decrement redCountc
4 for all c′ ∈ neighborsc do
5 decrement redNeighborsCountc′
6 if redNeighborsCountc′ == 0 then
7 reset flagc′
8 decrement globalCount

9 else
10 decrement blueCountc
11 if blueCountc == 0 then
12 reset flagc
13 decrement globalCount

14 if (redCountc == blueCountc == 0) then
15 delete cell c from the hash table

Algorithm 2: Delete-Point

of the above data structure, but this would increase the
required space to O(n logU) words and the required up-
date time to O(logU). In order to reduce these bounds,
we use standard word RAM techniques, more specifi-
cally word packing tricks.

2.2.1 Interpreting the grids as a quadtree

In order to handle multiple distance values of r at the
same time, we imagine the space decomposition that
is implicitly imposed by the grids of the multiple side
lengths as a d-dimensional complete quadtree with all
the leaves at the same depth (although such a tree is not
explicitly maintained) for the hypercube of side length
U and with height O(logU). Such a quadtree creates
hypercubes of side length r with r ∈ {2i | 0 ≤ i ≤
logU}, but we need hypercubes of side length rε as
explained in section 2.1. Therefore, in order to adjust
the standard quadtree decomposition of the space, we
have to create 1

εd
children to each of the leaves of the

tree. Notice that all the nodes of the tree at depth i
correspond to the grid Gs for s = U

2i ε, and each node of
the tree at depth i corresponds to a cell of that grid.

The flagc value of a cell c of a grid Gs has the same
meaning as in section 2.1, but it is not explicitly main-
tained. The single register globalCount is replaced by
the array globalCountArray that has O(logU) size, and
each value at index i corresponds to the number of the
cells c with nonzero flagc for the grid Gs with s = U

2i ε.
The goal of the update process is to find the array
changeArray that stores the changes that need to be
done to globalCountArray.

Two flags are related to each node of the tree,
emptyRedc and emptyBluec. The first flag is set to 1
if there are no red points in the cell c of the grid Gs

with s = U
2i ε that corresponds to that node, and 0 oth-

erwise. The second flag is similarly defined for the blue

points.

2.2.2 Applying word RAM techniques

The key idea in achieving sublogarithmic time is to
perform the operations for multiple grids in constant
time by taking advantage of the tools that word RAM
provides us with; that is, we have O(logU) grids, but
we need to compress them. Starting at the root of
the quadtree, we store all the emptyRedc flags of the
nodes of the quadtree that are in the subtree s of the
root of depth b, where b is a value to be determined
later, in a RAM word (emptyReds), and we store all
the emptyBluec flags of that subtree in another word
(emptyBlues). The same is done for each subtree of
depth b of every node at depth ib+1 for 0 ≤ i ≤ logU

b −1.
We note that only the words of the subtrees that are not
entirely composed of zeros need to be stored, and we
store them in a hash table using the ID of the cell that
corresponds to the root of the subtree and the depth of
the subtree as key. The redCountc and the blueCountc
of the nonempty cells c of the most detailed grid Gs

with s = ε are stored in a separate word in another
hash table using their ids as keys.

2.2.3 Maintaining the flags

When a point is inserted (deleted), we find the leaf cell
c that corresponds to the grid Gs with s = ε, and we
increment (decrement) redCountc or blueCountc accord-
ingly. We create or delete subtrees from the hash table
when needed. If the number of the points of the same
color with the inserted point is nonzero (zero for deleted
point), there is nothing that needs to be done. Other-
wise, we start processing the subtrees that lie in the
path from c to the root of the quadtree in a bottom-up
manner as follows.

If the inserted (deleted) point is red, for each subtree
s on the path we update the emptyReds word. To find
the part of the changeArray that corresponds to s, we
need to count the changes of the flagc′ values of the
cells c′ ∈ neighborsc for each cell c in the path from
the leaf of s in which the insertion (deletion) took place
to the root of s, as only these cells are affected from
the insertion (deletion). First we fetch the emptyBlues′
words of the subtrees s′ that contain neighbors c′root ∈
neighborscroot of the root cell croot of s (it is easy to see
that these words also contain the neighbors for all cells
c described above), and then we fetch the emptyReds′′

words of subtrees s′′ that contain the neighbors c′′root ∈
neighborsc′root for all the root cells c′root of the subtrees
s′ (similarly, these words also contain the neighbors for
all cells in the subtree s′). With these words we can find
the cells c′ of each subtree s′ whose flagc′ needs to be set
(reset) since we have access to all the neighbors of these
cells. That can be done by checking for each cell c′ if

27th Canadian Conference on Computational Geometry, 2015

there is at least one neighbor cell other than the cells c
of p with nonzero number of red points. If there is at
least one such cell, and we have an insertion of a red
point, then the flagc′ does not change. Otherwise, it is
reset. On the contrary, if there is at least one such cell,
and we have a deletion of a red point, then the flagc′
does not change. Otherwise, it is set.

If the inserted (deleted) point is blue, for each subtree
s on the path we update the emptyBlue word. To find
the part of the changeArray that corresponds to s, we
need to count the changes of the flagc values for each
cell c in the path from the leaf of s in which the in-
sertion (deletion) took place to the root of s, as only
these cells are affected from the insertion (deletion).
We fetch the constant number of emptyRed words of
the subtrees of the same depth that contain neighbors
c′root ∈ neighborscroot of the root cell croot of s (these
words contain also the neighbors for all cells c in the
subtree s). With these words, if we have an insertion,
we can determine if flagc for each cell c needs to be set
by checking if there is at least one neighbor cell c′ with
nonzero number of red points. On the contrary, if we
have a deletion, we only need to reset flagc.

2.2.4 Choosing the value of b

We notice that the number of subtrees that need to be
fetched while processing a subtree s is constant because
a cell in a grid has only a constant number of neighbors.
Supposing that the word operations take constant time,
the update requires O(logU

b) RAM words to be accessed
and processed because there are that many subtrees on
the path from the root to the leaf in which the update
was done. The value of b needs to be maximized in
order to minimize the update time, but there is an upper
bound on b that is imposed by the need to fit all the
empty flags of a subtree of depth b in a single word.
More concretely, there are O(2db) nodes in a tree of
branching factor b and depth d, and each node needs
only a bit for its flag. Therefore, we choose b to be
δ log log n for a sufficiently small constant δ > 0, so that
O(2db) = o(log n). Since the space usage is O(n) words
of nonempty subtrees with the same root depth and
there are O(logU

log logn) different depths of subtrees’ roots,

our data structure requires O(n logU
log logn) words.

The word operations described in the previous section
require only constant time, as it is easy to create a look-
up table of o(n) words with preprocessing time of o(n).
This is because the number of bits in a word in the above
word operations is O(2db) = o(log n), so the number of
possible words is sublinear.

2.2.5 Maintaining the globalCountArray in
O(logU

log logn) worst-case time

Since each update adds or subtracts at each index of
globalCountArray a is bounded by O(1), which is de-
pendent on the number of set flagc′ for c′ ∈ neighborsc,
the changes at every position of that array are of con-
stant size per update, so we can encode O(log log n)
consecutive indexes of changeArray in a single word;
thus we maintain an array called tempCountArray
of size O(logU/ log log n) words. In a period of
O(logU/ log log n) updates, we store the changes in the
tempCountArray array in O(logU

log logn) time per update.

After a period of O(logU/ log log n) updates, we update
the globalCountArray in O(logU) steps. Therefore, the
overall update of the globalCountArray can be done in
O(logU

log logn + log log n) = O(logU
log logn) amortized time. A

decision query to an index of globalCountArray is ac-
complished by adding the value at that position with
the corresponding value from the tempCountArray in
constant worst-case time.

The aforementioned data structure can be de-
amortized by following ideas by Dietz [2] for the partial
sums problem. In a sequence of O(logU

log logn) updates,
we do all the steps that were described in the previ-
ous paragraph, but we also update globalCountArray[i
mod logU

log logn] in the ith update, by adding to it the value

in tempCountArray[i] in O(log logU) time per update.
It is easy to see that the words in the tempCountArray
do not exceed the word size. Therefore, we obtain
O(logU

log logn) update time of globalCountArray in worst
case.

We conclude that, with the above data structure
we can answer the decision query for r ∈ {2i | 0 ≤
i ≤ logU} using O(n logU

log logn) words, O(n logU
log logn +

n) = O(n logU
log logn) preprocessing time, O(logU

log logn) up-
date time, and constant query time.

2.3 Original version of the problem

With the current scheme we can maintain fully dynami-
cally the Hausdorff distance with an approximation fac-
tor of 2. We now show how to make the data structure
work with approximation factor of 1 + ε. Let k be a
constant parameter to be determined later. First create
k instances of the data structure described in section
2.2 for distances ri = 2

ki+j
k with each data structure

having a subscript j = 0, . . . , k− 1. The only twist that
needs to be done to the jth data structure is to rescale
the coordinates of points by a factor of 1

2j/k
.

To handle an update, we update the information to
each one of the k data structures, and since k is constant
(because it is dependent only on ε), and an update to
one data structure requires O(logU

log logn) time, one update

takes O(logU
log logn) time.

CCCG 2015, Kingston, Ontario, August 10–12, 2015

To perform a distance query to compute an approxi-
mation of the Hausdorff distance, we collect from each
one of the k data structure the biggest distance that
has an answer “yes” to a decision query. Afterwards,
we return the the biggest of these distances. Both the
decision and the distance query can take place in con-
stant time.

It is clear that with the aforementioned scheme and
with k = b 1εc we can obtain an approximation factor of

2
1
k (1+O(ε)) = 2O(ε)(1+O(ε)) = (1+O(ε))(1+O(ε)) =

1 + O(ε), which can be made 1 + ε if we readjust ε.
Therefore, the original version of the problem can be
solved in O(logU

log logn) expected update time.

3 Conclusion

Finding solutions with still better update time (e.g.
O(log logU)) or with linear space remains interesting
open problems.

References

[1] T. M. Chan. Closest-point problems simplified on the
RAM. Proceedings of the Thirteenth Annual ACM-
SIAM Symposium on Discrete algorithms, 472–473,
2002.

[2] P. F. Dietz. Optimal algorithms for List Indexing and
Subset Rank. Proceedings of the First Annual Workshop
on Algorithms and Data Structures, 39–46, 1989.

[3] David Eppstein. Dynamic Euclidean minimum span-
ning trees and extrema of binary functions. Discrete
& Computational Geometry, 13(1):111–122, 1995.

[4] T. M. Chan. Semi-Online Maintenance of Geometric
Optima and Measures. SIAM Journal on Computing,
32(3):700–716, 2003.

