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An Output-Sensitive Algorithm for Computing the s-Kernel*

Leonidas Palios®

Abstract

Two points p, g of an orthogonal polygon P are s-visible
from one another if there exists a staircase path (i.e., an
2- and y-monotone chain of horizontal and vertical line
segments) from p to ¢ that lies in P. The s-kernel of P
is the (possibly empty) set of points of P from which all
points of P are s-visible.

We are interested in the problem of computing the
s-kernel of a given orthogonal polygon (on n vertices)
possibly with holes. The problem has been considered
by Gewali [1] who described an O(n)-time algorithm
for orthogonal polygons without holes and an O(n?)-
time algorithm for orthogonal polygons with holes. The
problem is a special case of the problem considered by
Schuierer and Wood [5], whose work implies an O(n)-
time algorithm for orthogonal polygons without holes
and an O(nlogn + h?)-time algorithm for orthogonal
polygons with h > 1 holes.

In this paper, we give a simple output-sensitive al-
gorithm for the problem. For an n-vertex orthogo-
nal polygon P that has h holes, our algorithm runs in
O(n+hlog h+k) time where k = O(1+ h?) is the num-
ber of connected components of the s-kernel of P. Ad-
ditionally, a modified version of our algorithm enables
us to compute the number & of connected components
of the s-kernel in O(n + hlogh) time.

Keywords: s-kernel, visibility, orthogonal polygon,
output-sensitive algorithm.

1 Introduction

A polygon is orthogonal if its edges are either horizon-
tal or vertical; an edge e of such a polygon is a N-edge
(S-edge, E-edge, and W-edge, resp.) if the outward-
pointing normal vector to e is directed towards the
North (South, East, and West, resp.); see Figure 1(a).
Of particular importance are the dents, i.e., edges whose
endpoints are reflex vertices of the polygon, character-
ized as N-dents, S-dents, E-dents, and W-dents (see Fig-
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Figure 1: (a) Ilustration of the main definitions (the
portions of the polygon not s-visible from p are shown
dark); (b) the s-visibility polygon of p, which is an s-
star, with its s-kernel shown darker.

ure 1(a)); the dents are a measure of non-convexity of
an orthogonal polygon.

A set of points is z-monotone (y-monotone, resp.) if
its intersection with any line perpendicular to the x-axis
(y-axis, resp.) is a connected set. A staircase path is a
chain of horizontal and vertical segments that is both
z- and y-monotone.

Then, two points p, g of an orthogonal polygon P are
s-visible from one another if there exists a staircase path
from p to ¢ that lies in P (Figure 1(a) shows two such
points p and ¢). The set of points that are s-visible
from a point p form the s-visibility polygon of p. The
s-kernel of P is the (possibly empty) set of points of P
whose s-visibility polygon is equal to P, i.e., the set of
points from which all points of P are s-visible (the s-
kernel of the orthogonal polygon in Figure 1(b) is shown
darker); note that the s-kernel may be disconnected. An
orthogonal polygon is an s-star if it has non-empty s-
kernel. The orthogonal polygon in Figure 1(b) is an
s-star; as can be seen in the figure, an s-star may have
holes.

Visibility problems are closely related to reachability
and to covering problems. The s-kernel of a polygon
is the set of points from which all other points of the
polygon can be reached by means of - and y-monotone
paths. So, if a robot restricted to move parallel to the
coordinate axes is considered to “guard” a point p in
an orthogonal polygon provided that it can get to p a-
long a monotone path, then the polygons that can be
“ouarded” are those with non-empty s-kernel. Addi-
tionally, because the s-stars may be highly non-convex
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Figure 2: An orthogonal polygon with ©(n) holes whose
s-kernel (shown darker) has ©(n?) size.

(see Figure 1(b)), a minimum cover of an orthogonal
polygon using s-stars (see [3] for an algorithm) is ex-
pected to involve a smaller number of pieces compared
to other minimum covers. (Note also that in the usual
sense of visibility, the kernel of a polygon with holes is
empty and that the kernel of an n-vertex polygon can
be computed in O(n) time [2].)

Gewali [1] has considered the problem of computing
the s-kernel of an orthogonal polygon; he described an
O(n)-time algorithm for an orthogonal polygon without
holes and an O(n?)-time algorithm for orthogonal poly-
gons with holes where n is the number of vertices of
the polygon. He also showed that the latter algorithm
is worst-case optimal since the s-kernel of an orthogo-
nal polygon with holes may be of ©(n?) size; Figure 2
shows an orthogonal polygon with ©(n) holes whose s-
kernel has ©(n?) size [1]. Gewali used this result to give
an O(nlogn)-time algorithm for recognizing whether an
orthogonal polygon with holes is an s-star.

Schuierer and Wood [5] studied the notion of O-vi-
sibility, that is, visibility along a set O of orientations
and gave an O(nlog |O|)-time algorithm for the compu-
tation of the O-kernel of an orthogonal polygon without
holes and an O(n(log|O| +logn) + h(]O] + h))-time al-
gorithm for polygons with A holes, respectively. Their
algorithms imply O(n)-time and O(nlogn + h?)-time
algorithms for the s-kernel of orthogonal polygons with-
out holes and of orthogonal polygons with A > 1 holes,
respectively.

In this paper, we present a simple output-sensitive
O(n + hlogh + k)-time and O(n)-space algorithm for
computing the s-kernel of an orthogonal polygon having
n vertices, h > 0 holes, and an s-kernel consisting of k
connected components; as we will see k = O(1 + h?).
The algorithm also enables us to count the number k of
connected components of the s-kernel of such a polygon
in O(n + hlogh) time using O(n) space (i.e., without
computing the s-kernel), and thus we can determine if
an orthogonal polygon is an s-star in the same time and
space complexity.

(a)

Figure 3: (a) An orthogonal polygon A that is orthogo-
nally convex; (b) some of the quadrants whose union is
equal to the complement of A.

2 Theoretical Framework

For an edge e of an orthogonal polygon P, let D, be
a small enough disk centered at the midpoint of e; we
define the in-halfplane of e as the closed halfplane that is
defined by the line supporting e and contains the portion
of D, that lies in P.

An orthogonal polygon is orthogonally convez if it is
both xz-monotone and y-monotone. For simplicity and
since we deal with orthogonal polygons, in the follow-
ing, an orthogonally convex orthogonal polygon will be
referred to as “orthogonally convex polygon.” Clearly,
an orthogonally convex polygon cannot have dents. The
reverse also works, and we have:

Observation 1 An orthogonal polygon is orthogonally
convez if and only if it has no dents.

Therefore, the boundary of an orthogonally convex
polygon consists of z- and y- monotone chains connect-
ing the leftmost edge of the polygon, to the uppermost
edge, to the rightmost edge, to the bottommost edge,
and back to the leftmost edge (see Figure 3(a)); any
one of these chains may degenerate to a single point.
Moreover, it is important to observe that the following
lemma holds.

Lemma 1 Let A be an orthogonally convex polygon
having n vertices. Then, the complement of A can be
expressed as the union of ©(n) open quadrants.

The lemma, follows from the fact that the complement
of an orthogonally convex polygon is equal to the union
of as many open quadrants as the polygon’s reflex ver-
tices (for a reflex vertex, the corresponding quadrant is
the complement of the union of the in-halfplanes of the
edges incident on the reflex vertex) plus 4 more (one for
each of the leftmost, topmost, rightmost, bottommost
edge); Figure 3(b) shows the quadrants belonging to the
complement of an orthogonally convex polygon that are
associated with the boundary chain from the leftmost
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Figure 4: Illustration of BBox(H), S—(H), S)(H),

Qnw(H), Qne(H), Qsp(H), and Qsw(H) for a
hole H.

to the topmost edge (the remaining three chains con-
tribute additional quadrants in a similar fashion). As a
result, the total number of quadrants is nearly half the
number of vertices of the polygon.

2.1 The s-kernel of orthogonal polygons without
holes

The algorithm of Gewali [1] computes the s-kernel of
an orthogonal polygon P without holes by intersecting
P with the in-halfplanes of the lowermost N-dent, the
rightmost W-dent, the topmost S-dent, and the leftmost
E-dent. This implies the following result.

Lemma 2 Let P be an orthogonal polygon without
holes that has n vertices. The s-kernel of P is an or-
thogonally convez polygon of O(n) size.

2.2 Notation for orthogonal polygons with holes

Let D be an orthogonal polygon or a hole in an orthog-
onal polygon. Then, we define:

9D : the boundary of D;

BBox(D):
ing D.

the smallest axes-aligned rectangle contain-

Additionally, for a hole H, we have:

S_(H): the smallest open horizontal strip contain-
ing the interior of H;

S||(H): the smallest open vertical strip containing
the interior of H;

Qnw(H): the closed axes-aligned quadrant that is the
complement of the union of the interiors of the in-
halfplanes of the top and left edges of the rectan-
gle BBox(H) (see Figure 4) — similarly, we define
Qne(H), Qsw(H), and Qsp(H);

Figure 5: Illustration of the boundary subchain nota-
tion for a hole H (the subchain 9Hyg is point ¢; no
YHww,YHsg exist).

YHyw : the part of the boundary of H in counter-
clockwise direction from the leftmost among the
points of H with maximum y-coordinate to the
topmost among the points of H with minimum -
coordinate (see Figure 5) — similarly, we define
T9HNE, 19st, and 19HSE§

YHNN : let p, g be the leftmost and rightmost, re-
sp., vertices of H with maximum y-coordinate; if
p,q are adjacent in H then no YHyy exists; oth-
erwise, if p’ (¢, resp.) is the other endpoint of the
horizontal edge incident on p (g, resp.), 9Hyy is
the part of the boundary of H connecting p’ and ¢’
after the edges pp’ and gq’ have been removed (see
Figure 5) — similarly, we define YHww, 9Hgg,
and 19HEE

The following lemma provides important properties
of the s-kernel of orthogonal polygons with holes.

Lemma 3 Let H be a hole of an orthogonal polygon P.
Then:

(i) No point of the strips S—(H) and S)|(H) belongs to
the s-kernel of P.

(i) If YHnw is not a single point, then no point of
the quadrant Qsg(H) belongs to the s-kernel of P.
Moreover:
if 0 Hnyw contains a S-dent or an W-dent, then no
point of the quadrant Qgw (H) belongs to the s-
kernel of P (see Figures 6 and 7);
if 0 Hyw contains a N-dent or an E-dent, then no
point of the quadrant Qng(H) belongs to the s-
kernel of P;
if YHyw contains a N-dent or an W-dent, then
no point of the quadrant Qnw (H) belongs to the
s-kernel of P.

Similar results hold for the boundary subchains
ﬂHNE, ﬂst, and ﬂHSE.

(111) If the boundary of H contains a subchain YHNN,
then no point of the quadrants Qsw (H)UQsg(H)
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Figure 6: If YHyw contains a S-dent, then no point of
the quadrant Qgsw (H) belongs to the s-kernel.

belongs to the s-kernel of P. Moreover:

if W Hyn contains a N-dent or an E-dent, then no
point of the quadrant Qng(H) belongs to the s-
kernel of P;

if V0 Hy N contains a N-dent or an W-dent, then no
point of the quadrant Qnw (H) belongs to the s-
kernel of P.

Similar results hold for the boundary subchains
ﬂwa, ﬂHss, and 19HEE-

The fact that if Y Hyw contains a S-dent, then no point
of the quadrant Qsw (H) belongs to the s-kernel of P
(statement (ii) of Lemma 3) follows from the fact that
there cannot exist z- and y-monotone paths from any
point p of Qsw (H) to both points ¢,¢" on either side
of the S-dent; see Figure 6. Figure 7 shows examples of
subchains 9H vy containing a S-dent but no W-dents
(at left) and an W-dent but no S-dents (at right).
Lemma 3 implies that for a hole H of the given or-
thogonal polygon P, points of the s-kernel of P belong
to all, some, or none of the four quadrants Qyw (H),

Qne(H), Qsw(H), and Qsp(H).

3 Computing the s-Kernel

Let P be an orthogonal polygon. In [5], the s-kernel
of an orthogonal polygon P with h holes is computed
as the intersection of the s-kernel A of P after having
ignored the holes in P with the external s-kernels of
all of P’s holes. However, as the external s-kernel of
each hole contains a horizontal and a vertical strip, the
intersection of the external s-kernels may result to com-
puting a partial s-kernel of quadratic (in h) size, most
of which may be clipped in the end. So, in order to get a
faster algorithm, we need to avoid this. Hence, we pro-
cess the horizontal strips S—( ) of the holes separately,
computing the horizontal “in”-strips, i.e., the horizon-
tal strips that form the complement of the strips S—( );
these strips thus contain the entire s-kernel of P (see
Lemma 3(i)). We work similarly for the vertical strips
S)(). Next, we clip the complement of the union Ug of
all the quadrants not containing points of the s-kernel

S-dent W-dent

Qsw(H) Qsw(H)

Figure 7: No point of the quadrant Qgsw (H) belongs to
the s-kernel if Y Hnw contains: (left) a S-dent or (right)
an W-dent.

(resulting from the holes as described in Lemma 3(ii)
and (iii)) about the polygon A. Finally, we intersec-
t the clipped complement of Ug with the vertical and
horizontal “in”-strips. A detailed description of the al-
gorithm is given in Algorithm s-KERNEL below.

Algorithm s-KERNEL(P)
Input : an orthogonal polygon P possibly with holes
Output: the s-kernel of P

1. compute the s-kernel A of the orthogonal polygon
bounded only by P’s outer boundary component;
if P has no holes
then return A as the s-kernel of P;

exit;
let Timin, Tmaz, Ymin, Ymaz b€ the extreme values
of z- and y-coordinates of the bounding rectangle
BBox(A) of A;

2. process the holes of P to determine the (open)
strips and (closed) quadrants that do not contain
points of the s-kernel of P (see Lemma 3);
if all 4 quadrants QNW(H), QNE(H), st(H),

Qse(H) of a hole H do not contain points of
the s-kernel of P
then print(“The s-kernel of P is empty.”);
exit;
let C= (C}|, Cq, resp.) be the set of horizontal strip-
s (vertical strips, quadrants, resp.) not containing
points of the s-kernel of P;

3. {process the strips in C— and C)}

compute the union of the horizontal strips in C—,
clip it about the range [Ymin, Ymaz], and store it in
a y-ordered array M_ of alternating closed “in”-
strips (containing points of the s-kernel) and open
“out”-strips (not containing points of the s-kernel);
work similarly for the vertical strips in C); using
the range [Zmin, Tmaz ), producing an z-ordered ar-
ray M;

4. {process the quadrants in Cq}
compute the union Ug of all the quadrants in Cgp,
and clip its complement about the boundary of the
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polygon A computed in Step 1;
if the clipped complement of the union Ug of
the quadrants in Cg is empty
then print(“The s-kernel of P is empty.”);
exit;

5. for each polygon B; in the clipped complement of
Ug in y-order do

for each horizontal “in”-strip I intersecting

B; in y-order do
compute the boundary 9B;(I) = 9B; N I;
locate a leftmost point of ¥B;(I) in the
vertical strips array M);
walk on ¥B;(I) and in M| until a right-
most point of ¥B;(I) is found, printing
each polygon (if any) contributed by
B; NI and each “in”-strip of M;

(Note that the clipped complement of the union Ug
at the completion of Step 4 does not contain its en-
tire boundary; it contains the edges that resulted from
the clipping about A but it does not contain the edges
that resulted from the quadrants in Cg.)

The correctness of Algorithm s-KERNEL follows from
Lemma 3 and the fact that the s-kernel of P indeed is
the intersection of polygon A (see Step 1) with the com-
plement of the union of the collected strips and quad-
rants from the holes of P.

Time and Space Complexity. Let n and h be
the number of vertices and holes of the input orthogo-
nal polygon P. In the following lemma, we show that
the complement of the union of axes-aligned quadrants
has some very interesting properties; two polygons are
horizontally (vertically, resp.) separated if no horizontal
(vertical, resp.) line intersects both them.

Lemma 4 (i) Each halfline bounding a quadrant in
Cq contributes at most one edge to the polygons
forming the complement of the union Ug of all the
quadrants in Cq.

(i) The complement of Ug consists of O(h) orthogonal-
ly convex polygons that are horizontally and verti-
cally separated and have O(h) total size.

(iii) The clipped complement of Ug computed upon com-
pletion of Step 4 of Algorithm s-KERNEL consists of
O(h) horizontally and vertically separated orthogo-
nally convex polygons of O(n) total size.

Lemma 4(iii) and the fact that the intersection of
O(h) horizontal strips with O(h) vertical strips consist-
s of O(h?) connected components of O(h?) total size
imply the following corollary.

Corollary 5 The s-kernel of an n-vertex orthogonal
polygon that has h holes consists of O(1 + h?) orthogo-
nally convex polygons of O(n + h?) total size.

The number of orthogonally convex polygons and the
size of a s-kernel given in Corollary 5 are tight; a lower
bound can be obtained by a generalization of the poly-
gon in Figure 2.

The computation of the s-kernel in Step 1 takes O(n)
time [1] and so does the entire Step 1. Step 2 takes O(n)
time as well by traversing the boundary of each hole H
of P, computing the subchains YHyw, VHyw, VHNE,
19st, 19H5E, 79HNN, 19wa, 19Hss, and 79HEE, de-
termining whether they contain dents, and applying
Lemma 3. The processing of the h horizontal strips
in C— in Step 3 can be completed in O(hlog h) time by
sorting them by non-decreasing bottom side and then
processing them from bottom to top; similarly, the pro-
cessing of the vertical strips in C|| takes O(hlogh) time.
In Step 4, we sort the quadrants in y-order in O(hlog h)
time and compute the right-bounding line of the union
of quadrants Qyw (H;) and Qsw (H;) in Cg and the
left-bounding line of the union of quadrants Qng(H;)
and Qsp(H;) in O(h) time. The complement of these
unions is clipped about polygon A and by traversing
their boundaries from top to bottom we compute the
clipped complement of Ug in O(n) time. In total, Step 4
takes O(n+hlogh) time. For Step 5, let ¢; be the num-
ber of horizontal “in”-strips intersecting polygon B;.
Because the polygons in the clipped complement of Ug
are horizontally separated (Lemma 4(iii)), then any oth-
er polygon may be intersected only by the topmost or
bottommost of these ¢; “in”-strips. Then, the num-
ber of pairs of polygons and “in”-strips considered is
>ty =222+ >2;(t; —2) = O(h) since the total num-
ber of polygons B; (see Lemma 4(iii)) and the total
number of “in”-strips are both O(h). Thus, if the s-
kernel of P has k connected components, Step 5 takes
O(n + hlogh + k) time by using binary search in the
z-sorted array M| for locating leftmost points. There-
fore:

Theorem 6 Let P be an orthogonal polygon having n
vertices and h = O(n) holes. Algorithm s-KERNEL com-
putes the s-kernel of P in O(n+ hlogh+ k) time using
O(n) space where k is the number of connected compo-
nents of the s-kernel of P.

4 Computing the Number of Components of the s-
Kernel

Algorithm s-KERNEL can be modified to help us com-
pute the number k of connected components of the s-
kernel of a given orthogonal polygon P; it suffices to
modify Step 1 so that if P has no holes it returns 0 if
A is empty and 1 otherwise, Steps 2 and 4 to return
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0 if the s-kernel is found empty, and Step 5 as follows:
for each polygon B; and each horizontal “in”-strip [/
intersecting B;, we compute a leftmost point a and a
rightmost point z of the boundary of B; in I, and lo-
cate them in the vertical strips array M) using binary
search; then, depending on the indices of the strips to
which a, z belong and whether they are “in”- or “out”-
strips, we compute the number x(B;,I) of “in”-strips
(if any) between (and including) the strips of a and of
z. The total number of components of the s-kernel of P
is the sum of all the computed x(Bj, I).

The correctness of the modified algorithm follows
immediately from the fact that for each polygon B;
and each horizontal “in”-strip I, each “in”-strip between
(and including) the strips containing a and z contributes
a separate component to the s-kernel of P. The com-
plexity analysis of Step 5 of Algorithm s-KERNEL and
the fact that x(Bj,I) can be computed in constant time
after the strips containing a and z have been determined
imply that the modified Step 5 takes O(n+hlogh) time.
Recall that the number k£ of connected components of
the s-kernel may be as large as O(1 + h?); see Corol-
lary 5.

Therefore, we have:

Theorem 7 Let P be an orthogonal polygon having n
vertices and h = O(n) holes. The described modified al-
gorithm computes the number of connected components
of the s-kernel of P in O(n + hlogh) time using O(n)
space.

5 Recognizing s-Stars

The modified algorithm of Section 4 to recognize
whether a polygon P is an s-star (i.e., its s-kernel con-
sists of at least 1 component) or not. A simpler version
that does not compute the number k of components sim-
ply checks in Step 5 whether ¢ and z fall in the same
vertical “out”-strip of M; if they don’t, then there ex-
ists a point in B; NI belonging to the s-kernel of P and
hence P is an s-star (the algorithm can be augmented
to return such a point as a certificate of its decision). If
the above condition for a, z does not hold for all poly-
gons B; and “in”-strips I, then clearly the s-kernel of
P is empty, and hence P is not an s-star.

Theorem 8 Let P be an orthogonal polygon having n
vertices and h = O(n) holes. It can be decided whether
P is an s-star in O(n + hlogh) time using O(n) space.

6 Concluding Remarks

In this paper, we presented a simple output-sensitive
algorithm for computing the s-kernel of an orthogonal
polygon possibly with holes. The algorithm runs in
O(n + hlogh + k)-time using O(n) space, where n and

h are the numbers of vertices and holes, respectively,
of the input polygon, and k is the number of connect-
ed components of the computed s-kernel. Modifications
of our algorithm enable us to compute the number k of
connected components and to recognize if an orthogonal
polygon is an s-star in O(n + hlogh) time using O(n)
space.

Schuierer and Wood [5] mention that Rawlins in his
PhD thesis [4] showed that the computation of the ker-
nel of a multiply connected polygon under restricted
orientation visibility has a lower bound of Q(nlogn).
This may imply that our s-kernel algorithm is optimal.

It is interesting to investigate the complexity status
of the s-star recognition problem, i.e., can there be an
algorithm running in o(n + hlogh) time or is there an
Q(n + hlogh) lower bound? Additionally, it would be
interesting to study extensions of the problem to 3-
dimensional space.
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