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Abstract

Two points p, q of an orthogonal polygon P are s-visible

from one another if there exists a stair
ase path (i.e., an

x- and y-monotone 
hain of horizontal and verti
al line

segments) from p to q that lies in P . The s-kernel of P

is the (possibly empty) set of points of P from whi
h all

points of P are s-visible.

We are interested in the problem of 
omputing the

s-kernel of a given orthogonal polygon (on n verti
es)

possibly with holes. The problem has been 
onsidered

by Gewali [1℄ who des
ribed an O(n)-time algorithm

for orthogonal polygons without holes and an O(n2)-
time algorithm for orthogonal polygons with holes. The

problem is a spe
ial 
ase of the problem 
onsidered by

S
huierer and Wood [5℄, whose work implies an O(n)-
time algorithm for orthogonal polygons without holes

and an O(n log n + h2)-time algorithm for orthogonal

polygons with h ≥ 1 holes.

In this paper, we give a simple output-sensitive al-

gorithm for the problem. For an n-vertex orthogo-

nal polygon P that has h holes, our algorithm runs in

O(n+h log h+k) time where k = O(1+h2) is the num-

ber of 
onne
ted 
omponents of the s-kernel of P . Ad-

ditionally, a modi�ed version of our algorithm enables

us to 
ompute the number k of 
onne
ted 
omponents

of the s-kernel in O(n + h log h) time.

Keywords: s-kernel, visibility, orthogonal polygon,

output-sensitive algorithm.

1 Introduction

A polygon is orthogonal if its edges are either horizon-

tal or verti
al; an edge e of su
h a polygon is a N-edge

(S-edge, E-edge, and W-edge, resp.) if the outward-

pointing normal ve
tor to e is dire
ted towards the

North (South, East, and West, resp.); see Figure 1(a).

Of parti
ular importan
e are the dents, i.e., edges whose

endpoints are re
ex verti
es of the polygon, 
hara
ter-

ized as N-dents, S-dents, E-dents, and W-dents (see Fig-
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Figure 1: (a) Illustration of the main de�nitions (the

portions of the polygon not s-visible from p are shown

dark); (b) the s-visibility polygon of p, whi
h is an s-

star, with its s-kernel shown darker.

ure 1(a)); the dents are a measure of non-
onvexity of

an orthogonal polygon.

A set of points is x-monotone (y-monotone, resp.) if

its interse
tion with any line perpendi
ular to the x-axis

(y-axis, resp.) is a 
onne
ted set. A stair
ase path is a


hain of horizontal and verti
al segments that is both

x- and y-monotone.

Then, two points p, q of an orthogonal polygon P are

s-visible from one another if there exists a stair
ase path

from p to q that lies in P (Figure 1(a) shows two su
h

points p and q). The set of points that are s-visible

from a point p form the s-visibility polygon of p. The

s-kernel of P is the (possibly empty) set of points of P

whose s-visibility polygon is equal to P , i.e., the set of

points from whi
h all points of P are s-visible (the s-

kernel of the orthogonal polygon in Figure 1(b) is shown

darker); note that the s-kernel may be dis
onne
ted. An

orthogonal polygon is an s-star if it has non-empty s-

kernel. The orthogonal polygon in Figure 1(b) is an

s-star; as 
an be seen in the �gure, an s-star may have

holes.

Visibility problems are 
losely related to rea
hability

and to 
overing problems. The s-kernel of a polygon

is the set of points from whi
h all other points of the

polygon 
an be rea
hed by means of x- and y-monotone

paths. So, if a robot restri
ted to move parallel to the


oordinate axes is 
onsidered to \guard" a point p in

an orthogonal polygon provided that it 
an get to p a-

long a monotone path, then the polygons that 
an be

\guarded" are those with non-empty s-kernel. Addi-

tionally, be
ause the s-stars may be highly non-
onvex
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Figure 2: An orthogonal polygon with Θ(n) holes whose
s-kernel (shown darker) has Θ(n2) size.

(see Figure 1(b)), a minimum 
over of an orthogonal

polygon using s-stars (see [3℄ for an algorithm) is ex-

pe
ted to involve a smaller number of pie
es 
ompared

to other minimum 
overs. (Note also that in the usual

sense of visibility, the kernel of a polygon with holes is

empty and that the kernel of an n-vertex polygon 
an

be 
omputed in O(n) time [2℄.)

Gewali [1℄ has 
onsidered the problem of 
omputing

the s-kernel of an orthogonal polygon; he des
ribed an

O(n)-time algorithm for an orthogonal polygon without

holes and an O(n2)-time algorithm for orthogonal poly-

gons with holes where n is the number of verti
es of

the polygon. He also showed that the latter algorithm

is worst-
ase optimal sin
e the s-kernel of an orthogo-

nal polygon with holes may be of Θ(n2) size; Figure 2

shows an orthogonal polygon with Θ(n) holes whose s-

kernel has Θ(n2) size [1℄. Gewali used this result to give

an O(n log n)-time algorithm for re
ognizing whether an

orthogonal polygon with holes is an s-star.

S
huierer and Wood [5℄ studied the notion of O-vi-

sibility, that is, visibility along a set O of orientations

and gave an O(n log |O|)-time algorithm for the 
ompu-

tation of the O-kernel of an orthogonal polygon without

holes and an O(n(log |O|+ log n) + h(|O|+ h))-time al-

gorithm for polygons with h holes, respe
tively. Their

algorithms imply O(n)-time and O(n log n + h2)-time

algorithms for the s-kernel of orthogonal polygons with-

out holes and of orthogonal polygons with h ≥ 1 holes,

respe
tively.

In this paper, we present a simple output-sensitive

O(n + h log h + k)-time and O(n)-spa
e algorithm for


omputing the s-kernel of an orthogonal polygon having

n verti
es, h ≥ 0 holes, and an s-kernel 
onsisting of k


onne
ted 
omponents; as we will see k = O(1 + h2).
The algorithm also enables us to 
ount the number k of


onne
ted 
omponents of the s-kernel of su
h a polygon

in O(n + h logh) time using O(n) spa
e (i.e., without


omputing the s-kernel), and thus we 
an determine if

an orthogonal polygon is an s-star in the same time and

spa
e 
omplexity.
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Figure 3: (a) An orthogonal polygon A that is orthogo-

nally 
onvex; (b) some of the quadrants whose union is

equal to the 
omplement of A.

2 Theoretical Framework

For an edge e of an orthogonal polygon P , let De be

a small enough disk 
entered at the midpoint of e; we

de�ne the in-halfplane of e as the 
losed halfplane that is

de�ned by the line supporting e and 
ontains the portion

of De that lies in P .

An orthogonal polygon is orthogonally 
onvex if it is

both x-monotone and y-monotone. For simpli
ity and

sin
e we deal with orthogonal polygons, in the follow-

ing, an orthogonally 
onvex orthogonal polygon will be

referred to as \orthogonally 
onvex polygon." Clearly,

an orthogonally 
onvex polygon 
annot have dents. The

reverse also works, and we have:

Observation 1 An orthogonal polygon is orthogonally


onvex if and only if it has no dents.

Therefore, the boundary of an orthogonally 
onvex

polygon 
onsists of x- and y- monotone 
hains 
onne
t-

ing the leftmost edge of the polygon, to the uppermost

edge, to the rightmost edge, to the bottommost edge,

and ba
k to the leftmost edge (see Figure 3(a)); any

one of these 
hains may degenerate to a single point.

Moreover, it is important to observe that the following

lemma holds.

Lemma 1 Let A be an orthogonally 
onvex polygon

having n verti
es. Then, the 
omplement of A 
an be

expressed as the union of Θ(n) open quadrants.

The lemma follows from the fa
t that the 
omplement

of an orthogonally 
onvex polygon is equal to the union

of as many open quadrants as the polygon's re
ex ver-

ti
es (for a re
ex vertex, the 
orresponding quadrant is

the 
omplement of the union of the in-halfplanes of the

edges in
ident on the re
ex vertex) plus 4 more (one for

ea
h of the leftmost, topmost, rightmost, bottommost

edge); Figure 3(b) shows the quadrants belonging to the


omplement of an orthogonally 
onvex polygon that are

asso
iated with the boundary 
hain from the leftmost
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Figure 4: Illustration of BBox(H), S=(H), S||(H),
QNW (H), QNE(H), QSE(H), and QSW (H) for a

hole H .

to the topmost edge (the remaining three 
hains 
on-

tribute additional quadrants in a similar fashion). As a

result, the total number of quadrants is nearly half the

number of verti
es of the polygon.

2.1 The s-kernel of orthogonal polygons without

holes

The algorithm of Gewali [1℄ 
omputes the s-kernel of

an orthogonal polygon P without holes by interse
ting

P with the in-halfplanes of the lowermost N-dent, the

rightmost W-dent, the topmost S-dent, and the leftmost

E-dent. This implies the following result.

Lemma 2 Let P be an orthogonal polygon without

holes that has n verti
es. The s-kernel of P is an or-

thogonally 
onvex polygon of O(n) size.

2.2 Notation for orthogonal polygons with holes

Let D be an orthogonal polygon or a hole in an orthog-

onal polygon. Then, we de�ne:

ϑD : the boundary of D;

BBox(D) : the smallest axes-aligned re
tangle 
ontain-

ing D.

Additionally, for a hole H , we have:

S=(H) : the smallest open horizontal strip 
ontain-

ing the interior of H ;

S||(H) : the smallest open verti
al strip 
ontaining

the interior of H ;

QNW (H) : the 
losed axes-aligned quadrant that is the


omplement of the union of the interiors of the in-

halfplanes of the top and left edges of the re
tan-

gle BBox(H) (see Figure 4) | similarly, we de�ne

QNE(H), QSW (H), and QSE(H);
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Figure 5: Illustration of the boundary sub
hain nota-

tion for a hole H (the sub
hain ϑHNE is point q; no

ϑHWW , ϑHSS exist).

ϑHNW : the part of the boundary of H in 
ounter-


lo
kwise dire
tion from the leftmost among the

points of H with maximum y-
oordinate to the

topmost among the points of H with minimum x-


oordinate (see Figure 5) | similarly, we de�ne

ϑHNE , ϑHSW , and ϑHSE ;

ϑHNN : let p, q be the leftmost and rightmost, re-

sp., verti
es of H with maximum y-
oordinate; if

p, q are adja
ent in H then no ϑHNN exists; oth-

erwise, if p′ (q′, resp.) is the other endpoint of the

horizontal edge in
ident on p (q, resp.), ϑHNN is

the part of the boundary of H 
onne
ting p′ and q′

after the edges pp′ and qq′ have been removed (see

Figure 5) | similarly, we de�ne ϑHWW , ϑHSS ,

and ϑHEE .

The following lemma provides important properties

of the s-kernel of orthogonal polygons with holes.

Lemma 3 Let H be a hole of an orthogonal polygon P .

Then:

(i) No point of the strips S=(H) and S||(H) belongs to
the s-kernel of P .

(ii) If ϑHNW is not a single point, then no point of

the quadrant QSE(H) belongs to the s-kernel of P .

Moreover:

if ϑHNW 
ontains a S-dent or an W-dent, then no

point of the quadrant QSW (H) belongs to the s-

kernel of P (see Figures 6 and 7);

if ϑHNW 
ontains a N-dent or an E-dent, then no

point of the quadrant QNE(H) belongs to the s-

kernel of P ;

if ϑHNW 
ontains a N-dent or an W-dent, then

no point of the quadrant QNW (H) belongs to the

s-kernel of P .

Similar results hold for the boundary sub
hains

ϑHNE, ϑHSW , and ϑHSE.

(iii) If the boundary of H 
ontains a sub
hain ϑHNN ,

then no point of the quadrants QSW (H)∪QSE(H)
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Figure 6: If ϑHNW 
ontains a S-dent, then no point of

the quadrant QSW (H) belongs to the s-kernel.

belongs to the s-kernel of P . Moreover:

if ϑHNN 
ontains a N-dent or an E-dent, then no

point of the quadrant QNE(H) belongs to the s-

kernel of P ;

if ϑHNN 
ontains a N-dent or an W-dent, then no

point of the quadrant QNW (H) belongs to the s-

kernel of P .

Similar results hold for the boundary sub
hains

ϑHWW , ϑHSS, and ϑHEE.

The fa
t that if ϑHNW 
ontains a S-dent, then no point

of the quadrant QSW (H) belongs to the s-kernel of P

(statement (ii) of Lemma 3) follows from the fa
t that

there 
annot exist x- and y-monotone paths from any

point p of QSW (H) to both points q, q′ on either side

of the S-dent; see Figure 6. Figure 7 shows examples of

sub
hains ϑHNW 
ontaining a S-dent but no W-dents

(at left) and an W-dent but no S-dents (at right).

Lemma 3 implies that for a hole H of the given or-

thogonal polygon P , points of the s-kernel of P belong

to all, some, or none of the four quadrants QNW (H),
QNE(H), QSW (H), and QSE(H).

3 Computing the s-Kernel

Let P be an orthogonal polygon. In [5℄, the s-kernel

of an orthogonal polygon P with h holes is 
omputed

as the interse
tion of the s-kernel A of P after having

ignored the holes in P with the external s-kernels of

all of P 's holes. However, as the external s-kernel of

ea
h hole 
ontains a horizontal and a verti
al strip, the

interse
tion of the external s-kernels may result to 
om-

puting a partial s-kernel of quadrati
 (in h) size, most

of whi
h may be 
lipped in the end. So, in order to get a

faster algorithm, we need to avoid this. Hen
e, we pro-


ess the horizontal strips S=( ) of the holes separately,

omputing the horizontal \in"-strips, i.e., the horizon-

tal strips that form the 
omplement of the strips S=( );
these strips thus 
ontain the entire s-kernel of P (see

Lemma 3(i)). We work similarly for the verti
al strips

S||( ). Next, we 
lip the 
omplement of the union UQ of

all the quadrants not 
ontaining points of the s-kernel
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Figure 7: No point of the quadrant QSW (H) belongs to
the s-kernel if ϑHNW 
ontains: (left) a S-dent or (right)

an W-dent.

(resulting from the holes as des
ribed in Lemma 3(ii)

and (iii)) about the polygon A. Finally, we interse
-

t the 
lipped 
omplement of UQ with the verti
al and

horizontal \in"-strips. A detailed des
ription of the al-

gorithm is given in Algorithm s-Kernel below.

Algorithm s-Kernel(P )

Input : an orthogonal polygon P possibly with holes

Output : the s-kernel of P

1. 
ompute the s-kernel A of the orthogonal polygon

bounded only by P 's outer boundary 
omponent;

if P has no holes

then return A as the s-kernel of P ;

exit;

let xmin, xmax, ymin, ymax be the extreme values

of x- and y-
oordinates of the bounding re
tangle

BBox(A) of A;

2. pro
ess the holes of P to determine the (open)

strips and (
losed) quadrants that do not 
ontain

points of the s-kernel of P (see Lemma 3);

if all 4 quadrants QNW (H), QNE(H), QSW (H),
QSE(H) of a hole H do not 
ontain points of

the s-kernel of P

then print(\The s-kernel of P is empty.");

exit;

let C= (C||, CQ, resp.) be the set of horizontal strip-

s (verti
al strips, quadrants, resp.) not 
ontaining

points of the s-kernel of P ;

3. {pro
ess the strips in C= and C||}

ompute the union of the horizontal strips in C=,


lip it about the range [ymin, ymax], and store it in

a y-ordered array M= of alternating 
losed \in"-

strips (
ontaining points of the s-kernel) and open

\out"-strips (not 
ontaining points of the s-kernel);

work similarly for the verti
al strips in C|| using
the range [xmin, xmax], produ
ing an x-ordered ar-

ray M||;

4. {pro
ess the quadrants in CQ}

ompute the union UQ of all the quadrants in CQ,

and 
lip its 
omplement about the boundary of the
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polygon A 
omputed in Step 1;

if the 
lipped 
omplement of the union UQ of

the quadrants in CQ is empty

then print(\The s-kernel of P is empty.");

exit;

5. for ea
h polygon Bj in the 
lipped 
omplement of

UQ in y-order do

for ea
h horizontal \in"-strip I interse
ting

Bj in y-order do


ompute the boundary ϑBj(I) = ϑBj ∩ I;

lo
ate a leftmost point of ϑBj(I) in the

verti
al strips array M||;

walk on ϑBj(I) and in M|| until a right-

most point of ϑBj(I) is found, printing
ea
h polygon (if any) 
ontributed by

Bj ∩ I and ea
h \in"-strip of M||;

(Note that the 
lipped 
omplement of the union UQ

at the 
ompletion of Step 4 does not 
ontain its en-

tire boundary; it 
ontains the edges that resulted from

the 
lipping about A but it does not 
ontain the edges

that resulted from the quadrants in CQ.)

The 
orre
tness of Algorithm s-Kernel follows from

Lemma 3 and the fa
t that the s-kernel of P indeed is

the interse
tion of polygon A (see Step 1) with the 
om-

plement of the union of the 
olle
ted strips and quad-

rants from the holes of P .

Time and Spa
e Complexity. Let n and h be

the number of verti
es and holes of the input orthogo-

nal polygon P . In the following lemma, we show that

the 
omplement of the union of axes-aligned quadrants

has some very interesting properties; two polygons are

horizontally (verti
ally, resp.) separated if no horizontal

(verti
al, resp.) line interse
ts both them.

Lemma 4 (i) Ea
h hal
ine bounding a quadrant in

CQ 
ontributes at most one edge to the polygons

forming the 
omplement of the union UQ of all the

quadrants in CQ.

(ii) The 
omplement of UQ 
onsists of O(h) orthogonal-
ly 
onvex polygons that are horizontally and verti-


ally separated and have O(h) total size.

(iii) The 
lipped 
omplement of UQ 
omputed upon 
om-

pletion of Step 4 of Algorithm s-Kernel 
onsists of

O(h) horizontally and verti
ally separated orthogo-

nally 
onvex polygons of O(n) total size.

Lemma 4(iii) and the fa
t that the interse
tion of

O(h) horizontal strips with O(h) verti
al strips 
onsist-
s of O(h2) 
onne
ted 
omponents of O(h2) total size

imply the following 
orollary.

Corollary 5 The s-kernel of an n-vertex orthogonal

polygon that has h holes 
onsists of O(1 + h2) orthogo-

nally 
onvex polygons of O(n + h2) total size.

The number of orthogonally 
onvex polygons and the

size of a s-kernel given in Corollary 5 are tight; a lower

bound 
an be obtained by a generalization of the poly-

gon in Figure 2.

The 
omputation of the s-kernel in Step 1 takes O(n)
time [1℄ and so does the entire Step 1. Step 2 takes O(n)
time as well by traversing the boundary of ea
h hole H

of P , 
omputing the sub
hains ϑHNW , ϑHNW , ϑHNE ,

ϑHSW , ϑHSE , ϑHNN , ϑHWW , ϑHSS , and ϑHEE , de-

termining whether they 
ontain dents, and applying

Lemma 3. The pro
essing of the h horizontal strips

in C= in Step 3 
an be 
ompleted in O(h log h) time by

sorting them by non-de
reasing bottom side and then

pro
essing them from bottom to top; similarly, the pro-


essing of the verti
al strips in C|| takes O(h log h) time.

In Step 4, we sort the quadrants in y-order in O(h log h)
time and 
ompute the right-bounding line of the union

of quadrants QNW (Hi) and QSW (Hi′ ) in CQ and the

left-bounding line of the union of quadrants QNE(Hi)
and QSE(Hi′ ) in O(h) time. The 
omplement of these

unions is 
lipped about polygon A and by traversing

their boundaries from top to bottom we 
ompute the


lipped 
omplement of UQ in O(n) time. In total, Step 4

takes O(n+h log h) time. For Step 5, let tj be the num-

ber of horizontal \in"-strips interse
ting polygon Bj .

Be
ause the polygons in the 
lipped 
omplement of UQ

are horizontally separated (Lemma 4(iii)), then any oth-

er polygon may be interse
ted only by the topmost or

bottommost of these tj \in"-strips. Then, the num-

ber of pairs of polygons and \in"-strips 
onsidered is∑
j tj =

∑
j 2+

∑
j(tj − 2) = O(h) sin
e the total num-

ber of polygons Bj (see Lemma 4(iii)) and the total

number of \in"-strips are both O(h). Thus, if the s-

kernel of P has k 
onne
ted 
omponents, Step 5 takes

O(n + h log h + k) time by using binary sear
h in the

x-sorted array M|| for lo
ating leftmost points. There-

fore:

Theorem 6 Let P be an orthogonal polygon having n

verti
es and h = O(n) holes. Algorithm s-Kernel 
om-

putes the s-kernel of P in O(n + h log h + k) time using

O(n) spa
e where k is the number of 
onne
ted 
ompo-

nents of the s-kernel of P .

4 Computing the Number of Components of the s-

Kernel

Algorithm s-Kernel 
an be modi�ed to help us 
om-

pute the number k of 
onne
ted 
omponents of the s-

kernel of a given orthogonal polygon P ; it suÆ
es to

modify Step 1 so that if P has no holes it returns 0 if

A is empty and 1 otherwise, Steps 2 and 4 to return
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0 if the s-kernel is found empty, and Step 5 as follows:

for ea
h polygon Bj and ea
h horizontal \in"-strip I

interse
ting Bj , we 
ompute a leftmost point a and a

rightmost point z of the boundary of Bj in I, and lo-


ate them in the verti
al strips array M|| using binary

sear
h; then, depending on the indi
es of the strips to

whi
h a, z belong and whether they are \in"- or \out"-

strips, we 
ompute the number κ(Bj , I) of \in"-strips

(if any) between (and in
luding) the strips of a and of

z. The total number of 
omponents of the s-kernel of P

is the sum of all the 
omputed κ(Bj , I).
The 
orre
tness of the modi�ed algorithm follows

immediately from the fa
t that for ea
h polygon Bj

and ea
h horizontal \in"-strip I, ea
h\in"-strip between

(and in
luding) the strips 
ontaining a and z 
ontributes

a separate 
omponent to the s-kernel of P . The 
om-

plexity analysis of Step 5 of Algorithm s-Kernel and

the fa
t that κ(Bj , I) 
an be 
omputed in 
onstant time

after the strips 
ontaining a and z have been determined

imply that the modi�ed Step 5 takes O(n+h log h) time.

Re
all that the number k of 
onne
ted 
omponents of

the s-kernel may be as large as Θ(1 + h2); see Corol-

lary 5.

Therefore, we have:

Theorem 7 Let P be an orthogonal polygon having n

verti
es and h = O(n) holes. The des
ribed modi�ed al-

gorithm 
omputes the number of 
onne
ted 
omponents

of the s-kernel of P in O(n + h log h) time using O(n)
spa
e.

5 Recognizing s-Stars

The modi�ed algorithm of Se
tion 4 to re
ognize

whether a polygon P is an s-star (i.e., its s-kernel 
on-

sists of at least 1 
omponent) or not. A simpler version

that does not 
ompute the number k of 
omponents sim-

ply 
he
ks in Step 5 whether a and z fall in the same

verti
al \out"-strip of M||; if they don't, then there ex-

ists a point in Bj ∩ I belonging to the s-kernel of P and

hen
e P is an s-star (the algorithm 
an be augmented

to return su
h a point as a 
erti�
ate of its de
ision). If

the above 
ondition for a, z does not hold for all poly-

gons Bj and \in"-strips I, then 
learly the s-kernel of

P is empty, and hen
e P is not an s-star.

Theorem 8 Let P be an orthogonal polygon having n

verti
es and h = O(n) holes. It 
an be de
ided whether

P is an s-star in O(n + h log h) time using O(n) spa
e.

6 Concluding Remarks

In this paper, we presented a simple output-sensitive

algorithm for 
omputing the s-kernel of an orthogonal

polygon possibly with holes. The algorithm runs in

O(n + h logh + k)-time using O(n) spa
e, where n and

h are the numbers of verti
es and holes, respe
tively,

of the input polygon, and k is the number of 
onne
t-

ed 
omponents of the 
omputed s-kernel. Modi�
ations

of our algorithm enable us to 
ompute the number k of


onne
ted 
omponents and to re
ognize if an orthogonal

polygon is an s-star in O(n + h log h) time using O(n)
spa
e.

S
huierer and Wood [5℄ mention that Rawlins in his

PhD thesis [4℄ showed that the 
omputation of the ker-

nel of a multiply 
onne
ted polygon under restri
ted

orientation visibility has a lower bound of Ω(n log n).
This may imply that our s-kernel algorithm is optimal.

It is interesting to investigate the 
omplexity status

of the s-star re
ognition problem, i.e., 
an there be an

algorithm running in o(n + h logh) time or is there an

Ω(n + h logh) lower bound? Additionally, it would be

interesting to study extensions of the problem to 3-

dimensional spa
e.
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