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André van Renssen The University of Sydney
Carola Wenk Tulane University

iii



Additional Reviewers

A. Karim Abu-Affash, Hugo Akitaya, Helmut Alt, Sergey Bereg, Erin Chambers, Steven Chaplick,
Anthony D’Angelo, Patrick Eades, Nicolas Grelier, Qizheng He, Darryl Hill, Kristian Hinnenthal,
Hung Hoang, Bruno Jartoux, Wouter Meulemans, Majid Mirzanezhad, Ramin Mousavi, Saladi
Rahul, Benjamin Raichel, Saurabh Ray, Alexandre Rok, Leonie Ryvkin, Anna Schenfisch, Patrick
Schnider, Martin Seybold, Stavros Sintos, Manuel Wettstein, Charles Wolf, Sampson Wong, Yelena
Yuditsky, Alena Zhukova

Local Organization

Zachary Friggstad (Co-chair)

With many thanks to Deborah Choi, Cathy Hurst, Sunrose Ko and Barb Robinson at the Uni-
versity of Alberta, and also Ruth Situma from PIMS.

iv



Table of Contents

Thursday, August 8
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Graph Drawing via Layered Partitions

Vida Dujmovic∗

Whether planar graphs have 3-dimensional grid draw-
ings in linear volume was asked in 2001 by Felsner, Li-
otta, and Wismath. Subsequent research related this
question to an older conjecture from 1992 by Heath,
Leighton and Rosenberg on whether planar graphs have
bounded queue-number.

I will give some history of these problems and show
how they were finally resolved this year with the help
of a new tool called layered partitions.

∗School of Computer Science and Electrical Engineering , Uni-
versity of Ottawa
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Maintaining a Centerpoint in the Plane with Amortized Optimal Logarithmic
Insertions

Morten Eskildsen∗ † Matias Frank Jensen∗ ‡ Sebastian Kolby∗ § Jesper Steensgaard∗ ¶

Abstract

A centerpoint of a set of n points P in R2 is defined
as a point p, not necessarily in P , such that any half-
plane containing p contains at least dn/3e points of P .
We show how to dynamically maintain a centerpoint
of a planar point set, allowing insertions in amortized
O(log n) time. This builds upon the work of Jadhav
and Mukhopadhyay [5] who show how to find a center-
point in linear time. Our method also suggests a way of
supporting deletions in amortized O(log2 n) time. We
provide a proof of a matching lower bound for the amor-
tized O(log n) insertion time as well as a corresponding
Ω(log n) lower bound for deletions.

1 Introduction

A centerpoint is a generalization of the median in higher
dimensions and is an interesting measure due to its ro-
bustness. The notion of robustness is relevant when
estimating a set of points with a single point. As an ex-
ample, for a set of points in R1 the mean is not a robust
measure: Corrupt just a single point by moving it to-
wards infinity and the mean will do the same. However,
doing the same to the median requires corrupting half of
the points. This makes the median a more robust mea-
sure, and can be more interesting for data containing
noisy points or outliers.

Centerpoints are defined in terms of half-space depth.
Let P be a set of n points in Rd. The half-space depth
of a point p ∈ Rd with respect to P is defined to be
the smallest number, t, such that there exists a closed
half-space containing p that contains exactly t points of
P . A centerpoint of P is defined to be any point whose
depth is at least d n

d+1e [6]. By Helly’s theorem [4], such

a point always exists. In particular, in R1 the median
is a centerpoint. For point set P we denote the set of
centerpoints as the center of P .

Jadhav and Mukhopadhyay [5] showed how to com-
pute a centerpoint in R2 in linear time. Their method
uses the ham sandwich theorem [6] and Megiddo’s [7]

∗Department of Computer Science, Aarhus University, Aarhus,
Denmark
†m.eskildsen@post.au.dk
‡matias.frank.jensen@post.au.dk
§sebastian.kolby@post.au.dk
¶jesper.steensgaard@post.au.dk

method for finding such a partition in linear time in R2.
We briefly explain their method in section 1.2.

We focus on the problem of dynamically maintain-
ing a centerpoint of a planar set under insertions and
deletions of points.

Centerpoints are particularly interesting due to their
robustness and maintaining them under updates could
be interesting for applications in which points may be
added or deleted to quickly compute a centerpoint with-
out having to do a linear time recomputation.

1.1 Related work

The problem of computing centerpoints has been exten-
sively studied. Jadhav and Mukhopadhyay discovered
an optimal linear time algorithm for the planar case
in [5]. In three dimensions, Naor and Sharir introduced
an efficient algorithm in [9]. In [2] Chan and Timothy
M. found an O(nd−1 +n log n) algorithm for computing
the Tukey median in the general case (and any Tukey
median is a centerpoint). An efficient, randomized al-
gorithm for computing an approximate centerpoint in
Rd was found in [3], and a deterministic version of this
algorithm developed in [8].

1.2 The Centerpoint Algorithm

The original algorithm for finding a centerpoint of a set
of planar points P by Jadhav and Mukhopadhyay [5]
works as follows:

1. Construct four open half-planes that each contain
less than dn/3e − 1 points, ensuring that their re-
spective intersections are at least of size dn/3e −
dn/4e. The half-planes can be seen in Figure 1 de-
noted by U, D, L and R. The half-planes are con-
structed using a generalized version of the Ham-
Sandwich Cut, see section 2.2.

2. Prune points from the pairwise intersections of the
U, D, L and R half-planes while maintaining that
the new center is a subset of the old center.

3. Once one of the intersections is empty steps 1-2 are
repeated. Repeat until the point set has a constant
size.

4. Finally, a brute-force algorithm is applied to the
remaining points.

2
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To prune points the algorithm chooses four points, one
from each half-plane intersection. These points are then
removed and a new point, called a Radon point, is in-
serted into the complements of the half-spaces. This
ensures the center after pruning is a subset of the cen-
ter before pruning.
The half-spaces are chosen such that at least a constant
fraction of the points are pruned in each iteration. This
results in O(log n) iterations before a constant size set
of points remains.

1.3 Our Results

We were able to buffer the half-planes used in the
linear time algorithm [5] for computing a centerpoint
to achieve amortized O(log n) insertions and O(log2 n)
deletions while maintaining a centerpoint. Additionally,
we demonstrate that O(n) insertions or deletions take
Ω(n log n) time, thus amortized Ω(log n) time per inser-
tion or deletion, showing our O(log n) bound is tight for
insertions.

2 Dynamic result

We adapt the original linear time algorithm by Jadhav
and Mukhopadhyay to support updates as follows. At
any time in the execution of the algorithm, we have
O(log n) iterations, with the center of each iteration be-
ing a subset of the center of the previous iteration. De-
note these iterations and their respective point sets and
half-planes as I1, ..., Im. We let |Ik| denote the number
of points in the kth iteration. The middle of Ik is the
intersection of the complements of Ik’s four half-planes.
We also let Middlek and Centerk be the middle and cen-
ter of Ik respectively.

When a point is inserted, it is inserted into every it-
eration. We maintain the invariant that for every itera-
tion Ik, Centerk ⊆ Middlek. When too many points have
been inserted into the half-planes of Ik, this invariant
can potentially be broken. At that point we throw away
the iterations Ik, ..., Im and run Jadhav and Mukhopad-
hyay’s linear time algorithm on the points in Ik gener-
ating a new set of iterations from Ik and downwards.
We call this process recomputing Ik.

We also maintain the invariant that the number of
points in the last iteration Im is bounded by some fixed
constant. Whenever a point is inserted into Im, we
recompute a centerpoint of Im using any brute force
method which is why we need |Im| to be bounded by a
constant.

If too many points are inserted into a given iteration I
this invariant can be broken, requiring the recomputing
of I. Recomputing an iteration I takes O(|I|) time, so to
achieve O(1) amortized cost per insertion per iteration,
we construct the half-planes such that a constant frac-

tion of |I| points can be inserted before a recomputation
is necessary. We call this buffering the half-planes.

2.1 Constructing the buffered half-planes

To buffer the half-planes, it is necessary to modify the
method used in [5] with which half-planes are con-
structed.

We need to construct the half-planes such that they
all contain a certain fraction of the points which give the
half-planes the desired properties described above. The
fraction must be larger than dn/4e−1 because 4(dn/4e−
1) may be smaller than n, making it possible for the
intersections of the half-planes to be empty.

The other bound of the the half-planes is borrowed
from the static algorithm. If every half-plane contains
less than dn/3e points, then Center ⊆ Middle [5].

We select an x such that 3 < x < 4. We define
VP = d|P |/xe to be the number of points contained
in the buffered half-planes. With VP points in each half
plane, their pairwise intersections must each contain the
following number of points:

⌈
4VP − |P |

4

⌉
≥
⌈ |P |(4− x)

4x

⌉
.

We define WP to be the number of points in every in-
tersection as

WP =

⌈ |P |(4− x)

4x

⌉
: 3 < x < 4.

2.2 Adapting the algorithm

The static algorithm can be adapted such that every
half-plane contains VP points and every intersection
contains WP points. This can be done using the general-
ized Ham-Sandwich Cut algorithm as described in the
original algorithm [5], deriving from the algorithm by
Megiddo [7]. We specify that no more than 4WP points
may be pruned from the intersections in a given itera-
tion so that the constant size iteration may be bounded.

For the pruning used in [5] to work, it is only required
that Centerk ⊆ Middlek for every iteration Ik. If this is
the case, then Centerk+1 ⊆ Centerk. Remember that if
all half-planes of Ik has less than d|Ik|/3e points, then
Centerk ⊆ Middlek.

We also maintain the invariant that a constant frac-
tion is pruned away in each iteration which means
|Ik+1| ≤ |Ik|/y for some y > 1. This ensures a loga-
rithmic number of iterations.

These invariants are maintained after every insertion.

2.2.1 Notation

We denote by I ′i the ith iteration and the points that
have been added to it since the last recomputation of

3
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U

D

RL

Case A Case A Case B
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D

L R L R

D

U
Inserted point

Inserted point

Inserted point

Figure 1: Examples of cases A and B. The dot represents
the inserted point.

Ii. The sets αi and βi denote the points added to Ii
since the last recomputation that fall into case A and B
respectively, as described below.

The set Pruned(Ii) refers to the set of points that were
pruned in the iteration Ii,this can range between 3 and
4WIi

2.2.2 Inserting into the iterations

Each inserted point, q, is added to all of the iterations
starting from I1. For each iteration the point can enter
one of three cases.

Case A where q is contained within at least one of the
half-planes. Case B where the point is contained in the
middle. Case C where the point is being added to the
constant size problem of the final iteration.

2.2.3 Case A

In Case A we add q to the half-plane(s) that contain it
in Ii. If this results in any of the planes having more
than or equal to NIi points, the problem is recomputed
from the current iteration. The subsequent iterations
are discarded, and the new iterations, used to solve the
problem, are saved as Ii to Ii+j−1 where j is the number
of iterations required to solve the new sub-problem.

If adding the point to the half-planes that contain it
does not cause any of them to have at least NIi points,
the point can be added to the point set of the iteration
and then iteratively added to the subsequent iteration
Ii+1. This maintains the Centeri+1 ⊆ Centeri invariant.

In this case it is also necessary to consider whether
the fraction of points pruned remains greater than 1/y,
where 1/y is as defined in section 2.2.4. If this is not the
case recomputation of the iteration is done as mentioned
above.

2.2.4 Case B

In the case where the inserted point, q, is in the mid-
dle of an iteration, q may be added to the point set of
the iteration. If the pruned fraction becomes smaller
than 1/y recompute the iteration, as mentioned in case
A. Otherwise the point can be added iteratively to the
following iteration.

We choose the constant y so it satisfies the following
conditions:

0 <
1

y
<

3(4− x)

4x
<

3

12
for 3 < x < 4.

The lower bound is needed to ensure a positive number
of tokens in the amortized analysis. The upper bound is
necessary due to the minimum fraction of pruned points,
since at least 3Wp points are pruned when each iteration
is calculated. These 3Wp points are guaranteed to be
pruned as the four intersections will have at least WP

points each, which can result in the inclusion of WP

Radon points in the next iteration. Therefore the min-
imum fraction of pruned points after insertions should
be smaller than this to allow for adding a fraction of |I|
before recomputation is required.

If the fraction of points that have been pruned
|Pruned(Ii)|
|I ′i |

becomes smaller than or equal to 1/y the sub-

problem from Ii should be recomputed and the new iter-
ations should be saved replacing the old iterations from
Ii onwards.

2.2.5 Case C

The constant size problem, in the last iteration, must
be recomputed every time a point is inserted in said it-
eration. As a result, it must be ensured that this final
iteration remains within constant bounds, so that the
bruteforce calculation does not affect the running time
of the algorithm. We demonstrate that the final iter-
ation remains within constant bounds in section 2.5.4.
This is guaranteed as more iterations are added if the
constant iteration becomes too large.

2.3 Correctness

When an iteration is recomputed the linear time algo-
rithm ensures that Centeri ⊆ Middlei. Because of this,
Centeri+1 ⊆ Centeri for all iterations i = 1, ...,m − 1.
Thus a centerpoint of Im, calculated by any brute force
method, is also a centerpoint of P .

After every insertion we have argued in case A that
either the Centeri ⊆ Middlei invariant is maintained or
otherwise the iteration Ii is recomputed. Case B and C
cannot break this invariant.

Letting Center denote the center of P , we therefore
conclude that after every insertion

Centerm ⊆ · · · ⊆ Center1 = Center

and thus, any centerpoint of the last iteration Im is a
centerpoint of P .

2.4 Maintaining logarithmic iterations

At least a fraction 1/y of the points is pruned in every
iteration. Hence, for every iteration the problem size

4
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is scaled down by at least y−1
y , giving a logarithmic

number of iterations of size O(log y
y−1

(|P |)) where y
y−1

is a constant.

2.5 Amortized analysis

There are two cases where an insertion would require
the recomputation of the current and subsequent iter-
ations. The first case is where some half-plane would
contain too many points. In this case the recomputa-
tion is payed for by the ♠ tokens. The second case
is where too small a fraction of the points are pruned
in the iteration. This is payed by ♥ tokens. Depend-
ing on the two cases points contribute differently to the
recomputation, which is why we have chosen to distin-
guish these tokens from one another. It takes O(|Ii|) to
recompute an iteration and all its subsequent iterations.
Thus we can show the amortized constant bound, if it
can be demonstrated that adding a constant number of
tokens for each insertion provides sufficient tokens, |Ii|,
for this recomputation.

2.5.1 Insertions

A point is given a number of tokens when it is added
to the point set of an iteration. If the point is con-
tained in any of the half-planes, Case A, the point will
be given 3x

x−3 + 1 ♠ tokens and 4x
12y−3xy−4x + 1 ♥ to-

kens. Additionally, if the point’s insertion necessitates
recomputation further 2( 3x

x−3 ) ♠ tokens will be added.
If a point is added in the middle, Case B, then the

point will be given one ♠ token and 4x
12y−3xy−4x + 1 ♥

tokens.

2.5.2 Recomputation due to overfull half-planes

First we will consider the tokens for when our recompu-
tation is as a result of a Case A insertion where one of
our half-planes contains too many points.

Let I be an iteration which is recomputed and α be
the number of Case A insertions into I. In this case α
has become too large and can be bounded as follows:

|α| ≥ NI − 1−
⌈ |I|
x

⌉
≥ |I|

3
− |I|

x
− 2 =

|I|(x− 3)

3x
− 2

Each point of β has given one ♠ to account for its own
recomputation. Similarly, every point in α will have one
♠ token for its own recomputation, this leaves 3x

x−3♠
tokens for each point of α to contribute toward the re-
computation of the original point set I. The final point
that is inserted has 2( 3x

x−3 ) additional ♠ tokens to con-
tribute toward the recomputation of I. This gives a
total number of ♠ tokens on at least:

3x

x− 3

( |I|(x− 3)

3x
− 2

)
+ 2

3x

x− 3
= |I|

With these |I| ♠ tokens, we have enough tokens to re-
compute the iteration with the inserted points as there
are |I ′| = |I|+ |α|+ |β| which are enough to recompute
the current and subsequent iterations linearly.

2.5.3 Recomputation for too few pruned points

For this case, where the fraction of points pruned grows
too small, it can be similarly demonstrated that a linear
number of tokens will have been accumulated before
recomputation. We consider the case where the fraction
pruned is the smallest possible, 3WI . For all the points
in α ∪ β one of each points ♥ tokens can be used to
account for their recomputation which provides |α|+ |β|
tokens. After this each point in α ∪ β has 4x

12y−3xy−4x
remaining ♥ tokens. Since

1

y
=
|Pruned(I)|
|I ′| = 3

d|I| 4−x4x e
|I|+ |β|+ |α|

we have

|β|+ |α| = 3y

⌈ |I|(4− x)

4x

⌉
− |I|

≥ 3y
|I|(4− x)

4x
− |I| = |I|(12y − 3xy − 4x)

4x
.

This means α∪β will have at least |I| ♥ tokens remain-
ing. Thus, there will be at least |I ′| = |I| + |α| + |β|
♥ tokens allowing for the linear recomputation of the
iteration and subsequent iterations.

2.5.4 The constant size iteration

We show that the size of the final iteration Iz+1 only
increases by a constant bound between the recomputa-
tions of Iz. This means that we can recompute the final
iteration in constant time.

Let the constant c denote the initial size of the con-
stant iteration Iz+1 and c′ denote the updated value of
c after one or more insertions. An upper bound can be
defined as follows:

c′ = |Iz| − |Pruned(Iz)|+ |αz|+ |βz|
≤ |Iz| − |Pruned(Iz)|+ y|Pruned(Iz)| − |Iz|
= (y − 1)|Pruned(Iz)|

≤ (y − 1)4WIz = 4(y − 1)

⌈ |Iz|(4− x)

4x

⌉

The lower bound can be demonstrated as shown below:

c′ > c ≥ |Iz|−|Pruned(Iz)| ≥ |Iz|−4WIz ≥
|Iz|(2x− 4)

x
−4

With these upper and lower bounds it follows that the
value of c′ remain within a constant factor of the penul-
timate iteration. The point set of the final iteration,
initially bounded by some constant size would therefore
remain within some constant bound.
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2.5.5 Result

The number of iterations is limited by log y
y−1

(|P |) as

Case B necessitates pruning at least 1/y. Given that
each insertion only requires a constant number of tokens
we can conclude that the amortized running time of the
algorithm is O(log y

y−1
|P |).

2.5.6 Deletions

Using our insertion algorithm it follows that it is pos-
sible to support deletions in amortized O(log2 n) time.
These deletions can be performed by considering how a
point, q, was originally pruned by the centerpoint algo-
rithm. If a new Radon point was added to the point set
in the subsequent iteration, it must be deleted recur-
sively from the following iteration. This occurs when
q was pruned with three other points forming a con-
vex quadrilateral, as described in [5]. Following this
the points that were pruned with q must be inserted
again, to the subsequent iteration, as if they were not
pruned. The need for recursive deletions gives rise to
the O(log2 n) bound.

3 Lower bounds for centerpoint updates

In the following we will show amortized asymptotic
lower bounds for dynamic insertions and deletions of
points in the plane while maintaining a centerpoint. We
will show that doing O(n) insertions or deletions both
take worst case Ω(n log n) time, thus amortized Ω(log n)
time per insertion or deletion.

To show that O(n) deletions/insertions take
Ω(n log(n)) time, we construct two algorithms Sortdelete
and Sortinsert which sort n numbers. The algorithms
first transform the input numbers into a set of points
in the plane, and then while maintaining a centerpoint
under O(n) deletions or insertions respectively, sort the
original numbers.

3.1 Main planar point construction

Both Sortinsert and Sortdelete use the following construc-
tion. Consider a set of planar points P = L1 ∪ L2 ∪ L3

where L1, L2, L3 are disjoint. We refer to these subsets
as legs and position the points in P such that all the
points in one of the legs lie on the same ray starting in
(0, 0). More precisely, for each Li, i = 1, 2, 3, Li is a
finite subset of the ray

Ri = {(cos (2iπ/3) · x, sin (2iπ/3) · x) | x ∈ R+}

Before we get into further details about the construction
we need a bit more notation: For i = 1, 2, 3 and j =
1, ..., |Li| let lij be the jth closest point to the origin of
the ith leg. Figure 2 illustrates this construction.

By carefully setting the number of points in the three
legs, we can force a single specific point to be the only
centerpoint of P , which the sorting algorithms can then
utilize.

Lemma 1 Let P = L1∪L2∪L3 be defined as above. If
|L1| = m+ 2k+ 1, |L2| = m+ k and |L3| = m for some
m, k ∈ N0, then the only centerpoint of P is l1,k+1

Proof: First notice that |P | = 3m + 3k + 1 and
dn/3e = m + k + 1. We first show that l1,k+1 is a cen-
terpoint of P . Consider any hyperplane H containing
l1,k+1. Let HP be H ∩ P . Assume H contains any of
the points l1,1, ..., l1,k. Then H contains all of the points
l1,1, ..., l1,k since they all lie on the same line on the same
side of l1,k+1. But then H must also contain either all
of L2 or all of L3. From the sizes of L2 and L3 we get
that

|HP | ≥ k + 1 + min(|L2|, |L3|) = m+ 1 + k = dn/3e

If H does not contain any of the points
l1,1, ..., l1,k then H must contain all of the points
l1,k+1, l1,k+2, ..., lm+2k+1. In this case we have that

|HP | ≥ m+ 2k + 1− k = m+ k + 1 = dn/3e

This proves that l1,k+1 is a centerpoint of P .
We now show that no other point p can be a center-

point. We do this through three cases. For all three
cases, Figure 2 illustrates the configuration.

Case 1: p does not lie on the line extending R1

Consider the line l parallel with R1 and going through
p. The line l either intersects R2 or R3. Let H
be the hyperplane with l as boundary line and con-
taining the side of the plane with the ray R that
l intersects. Then H only contains points of P ly-
ing on the ray R which is either R2 or R3. Thus
|HP | ≤ max(|L2|, |L3|) = m+ k < dn/3e which shows p
is not a centerpoint.

Case 2: p lies on the line extending R1 and there
are strictly less than k + 1 points of L1 below p.
Let L1,≥p be the points of L1 above p and L1,≤p the
points on L1 below p. Note that |L1,≤p| < k + 1.

The line l is a line through p which separates
the plane such that all the points in L2 are on the
same side as the points in L1,≥p and all the points
in L3 are on the same side as the points in L1,≤p.
For the hyperplane H bounded by l and contain-
ing L3 it then holds that HP = L1,≤p ∪ L3, so
|HP | = |L1,≤p| + |L3| < k + 1 + m = dn/3e. Thus p is
not a centerpoint in this case either.

Case 3: p lies on the line extending R1 and there
at least k + 1 points of L1 below p.
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l23

l31

l1,k+1

pcase1

pcase2

pcase3

lcase1

lcase2

lcase3

Figure 2: The main planar point construction and the
three cases in the proof of lemma 1. (m = 2 and k = 1)

Let L1,≥p and L1,≤p have the same meaning as before.
Since p 6= l1,k+1, |L1,≥p| ≤ n+2k+1−(k+1) = n+k+m.
The line l is a boundary line through p parallel with R2

and H the hyperplane bounded by l containing L1,≥p.
Then H will not contain any points of either L2 or L3,
and thus |HP | = |L1,≥p| ≤ n + k + m < dn/3e. This
shows p cannot be a centerpoint.

These three cases contain all possibilities for p 6= l1,k+1

and completes the proof of the lemma.

3.1.1 Transformation of numbers into planar points

The sorting algorithms are given as input n real num-
bers x1, ..., xn. Let x∗ = 1 + maxi=1,...,n xi. The num-
bers are then transformed into the following sets of
planer points

L1 = {(xi, 0) | i = 1, ..., n} ∪ {(x∗, 0)}
L2 = {(cos (2π/3) · xi, sin (2π/3) · xi) | i = 1, ..., n}
L3 = {(cos (4π/3) · xi, sin (4π/3) · xi) | i = 1, ..., n}

For the rest of this section y1, ..., yn will be the input
numbers x1, ..., xn in sorted order, so y1 ≤ y2 ≤ ... ≤ yn.

3.2 Sorting using deletions

Sortdelete works by first transforming the input points
into P = L1∪L2∪L3 as described above. At this point
the only centerpoint of P is (y1, 0). Then we delete
c = (y1, 0) and c rotated by 2π/3 and 4π/3 around
origo. By lemma 1 the only centerpoint of P is now
(y2, 0). We iteratively delete the current centerpoint
and its two rotations around origo, and by lemma 1 after
each deletion of these 3 points, the only centerpoint is
(yi, 0) with yi being the next number in sorted order.

Sortdelete uses O(n) centerpoint deletions and O(n)
instructions outside these.

3.3 Sorting using insertions

Sortinsert works in a similar way as Sortdelete. It starts
by transforming the input points into the same planar
construction P . Again by lemma 1, the only centerpoint

is (y1, 0). We then iteratively add x∗ twice to leg 1 and
once rotated to leg 2. After each triple of insertions
lemma 1 gives that the only centerpoint is (yi, 0) with
yi being the next point in sorted order. Thus, we can
do sorting using insertions.

Sortinsert uses O(n) insertions and O(n) instructions
outside these.

Theorem 2 Given a point set P , maintaining a center-
point of P under O(n) insertions or deletions of points
requires worst case Ω(n log(n)) operations.

Proof: We consider algorithms which can be repre-
sented by an algebraic decision tree [1]. This first of
all requires that the fundamental operations of the al-
gorithm are additions, subtractions, multiplications, di-
visions and square root. Next, the branching of the
algorithm must only depend on comparisons and data
lookup by either referencing local variables directly or
simple integer indexing into arrays.

The algorithms Sortdelete and Sortinsert implement sort
in O(n · delete) time and O(n · insert) time respec-
tively. For any implementation of insert and delete

representable by an algebraic decision tree, Sortdelete and
Sortinsert are representable by an algebraic decision tree.
The complexity of sort is Ω(n log n) in this model [1],
thus the worst case complexity of doing O(n) delete or
insert operations is Ω(n log n).

4 Conclusion

We have developed an algorithm for maintaining cen-
terpoints under insertions and deletions in amortized
O(log n) time for insertions and O(log2 n) for deletions.
We also showed an amortized Ω(log n) lower bound
for insertions and deletions, thus achieving amortized
asymptotically optimal insertions of points.

It remains an open problem whether or not it is pos-
sible to support deletions in amortized O(log n) time.
The limitation of our method with regards to support-
ing deletions stems from the need to recursively delete
added Radon points. Doing so naively requires using
our O(log n) insertion algorithm to insert some addi-
tional points, yielding an O(log2 n) bound.
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I/O Optimal Data Structures for Categorical Range Skyline Queries

Arnab Ganguly∗ Daniel Gibney† Rahul Shah‡ Sharma V. Thankachan §

Abstract

The skyline of a set of two-dimensional points is the
subset of points which are not dominated by any other
point. In this paper, we deal with two-dimensional
points (in rank space) which are assigned an additional
category, or color. The goal is to preprocess n points so
that given a three-sided region of the form [a, b]× [τ,∞]
we can return the set of colors on the skyline of the
queried region. We approach the problem in the ex-
ternal memory model and present an I/O optimal data
structure requiring O(n log∗ n) words of space.

1 Introduction

Skyline queries ask the following: given a set of points
P , what are the points in P that are not dominated by
any other point in P . In two dimensions a point p2 =
(x2, y2) dominates a point p1 = (x1, y1) if x2 ≥ x1 and
y2 > y1 or x2 > x1 and y2 ≥ y1. That is, p2 is at least
the value of p1 in one dimension and larger than p1 in
the other dimension. This paper deals with a variation
on this problem called categorical range skylines. In
a categorical range skyline we begin with a set of two-
dimensional points P , where every point in P has been
assigned to a category, which we synonymously call a
color. Given the point set P , we would like to build a
data structure such that for any three sided region of the
form R = [a, b] × [τ,∞] we can answer in optimal I/O
which colors are on the skyline of the region R. A point
in P is described by an x-coordinate i, y-coordinate A[i],
and color C[i]. We assume the points are in rank space,
that is, the points are on an n × n grid where no two
points share the same x-coordinate or y-coordinate.

Problem 1.1 Given a set of points P in rank space
of the form (i, A[i], C[i]), preprocess P so that given a
query R = [a, b] × [τ,∞] the query response is the dis-
tinct values of C[·] present on the skyline of R.

Theorem 1 Under the external memory model of com-
putation, Problem 1.1 can be answered in optimal I/O
using a near-linear space index. Specifically, we present
an O(1 + k

B )-I/O solution using a data structure which

∗University of Wisconsin - Whitewater, gangulya@uww.edu
†University of Central Florida daniel.gibney@ucf.edu
‡Louisiana State University rahul@csc.lsu.edu
§University of Central Florida sharma.thankachan@ucf.edu

requires O(n log∗ n) words of space, where n is the num-
ber of points in P , B is the block size, k is the output
size, and log∗ is the iterated logarithm.1

In the full version of this paper we give a data struc-
ture which uses linear space and answers queries in
O(log∗ n+ k

B ) I/O.

2 Related Work

The proposal to incorporate the skyline operator into
database systems came from Börzsönyi et al., in
2001 [3]. Since then there have been notable results,
for example, an I/O optimal solution by Papadias et.
al [24], and an online algorithm that allows for effi-
ciently finding an element on the skyline, which then
provides the user the ability to direct the search along
the skyline [14]. In a slightly different setting, Rahul and
Janardan [28] considered points in d-dimensions, where
each point has t additional features. They showed how
to answer skyline queries using O(n logd+t−1 n) space
and O((1 + occ) logd+t n) I/O; here, n is the number of
points in the dataset and occ is the output size. They
also showed that if d ≥ 2 and t ≥ 3, reporting the
number of points on the skyline is at least as hard as
the set-intersection problem. Other works on skyline
include finding the skyline in uncertain databases [29],
finding k-dominant skylines [6], computing categorical
skyline in streaming data [30]; see [12] for a catalog of
problems related to skyline computation.

The colored (or categorical) range reporting problem
has also received significant attention [4, 5, 9, 10, 11,
18, 19, 22, 23]. Other variants, such as top-k color
reporting [13, 20] have also been studied. The prob-
lem of approximate range counting has also been ap-
proached in [27]. In the external memory model, one-
dimensional color reporting has seen a series of improve-
ments [2, 15, 21], culminating in the I/O optimal in-
dex of Nekrich and Vitter [23]. For answering two-
dimensional and three-sided categorical range queries,
Larsen and Walderveen [17] presented an O(logB n +

log
(h)
B n + k

B ) I/O index that occupies O(nh) words
of space, where 1 ≤ h ≤ log∗ n. This allows for a
trade-off between space and memory. For example,
one can obtain either a linear space solution requiring

1log∗ n is the iterated logarithm. It represents the number of
times log has to be applied to n before the result is ≤ 1.
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O(logB n + k
B ) I/O per query, or a O(n log∗ n) space

solution requiring O(logB n+ k
B ) I/O per query. To an-

swer four-sided queries, standard techniques lead to an
index with a log n multiplicative factor in space which
retains the query time. Patil et al. [25] propose a so-
lution for Categorical Range Maxima Queries with a
similar space-time trade off.

We obtain our results by modifying the double chain-
ing techniques presented in [25], allowing for the iden-
tification of unique highest instances of colors on the
skyline. We also demonstrate a novel way to combine
precomputed answers in the bootstrapping.

3 Preliminaries

External Memory Model: Given its applicability to
large data sets, it makes sense to analyze algorithms re-
lated to Problem 1.1 under the external memory model.
The external memory model has a two-level memory
structure, where the main (internal) memory is fast
and is of bounded size, whereas the external memory
(disk) is much slower, and has unlimited storage. Al-
though arithmetic operations can be performed on the
data stored in the main memory, the data structure,
owing to the huge size of the data, does not fit in the
main memory and must be stored on the disk. Using
one I/O operation, we can read a contiguous block of
B words from disk into the main memory or write a
block of B words from main memory into the exter-
nal disk. All main memory operations are considered
free and the algorithm complexity is measured in the
number of I/O operations. Thus, this model of compu-
tation is appropriate in cases where the transfer of data
between external memory and the processor dominates
the computation time.

Three-dimensional Dominance Reporting: Given
a set of three-dimensional points P , we can build a data
structure such that for any query point q = (q1, q2, q3)
we can report points (x1, x2, x3) ∈ P − {q} where q1 ≤
x1, q2 ≤ x2, and q3 ≤ x3. That is, we can report all
points dominating q. This can be done in linear space
requiring O(logB n+ k

B ) I/O per query [1].

Three-sided Orthogonal Range Reporting: Given
a set of two-dimensional points P in rank space, we can
build a data structure such that for any query region
R = [a, b] × [τ,∞] we can report the points in P ∩ R.
This can be done in linear space with an optimal O(1 +
k
B ) I/O per query [16].

4 Internal data structure

In this section, we outline a data structure that pro-
vides solutions to Problem 1.1 in linear space using

Figure 1: An example of the two sided chaining. The
point p1 is the only point that satisfies the conditions
4.1. The point p2 has a next value less than b. The
point p3 has a prev value greater than a.

O(log3 n
B + k

B ) I/O per query. Although sub-optimal
in terms of I/O, it will provide us with the essential
building block to arrive at the desired results (via boot-
strapping technique to be discussed later). The overall
idea is to first augment each data point with a pair of
intervals, and then build three dimension dominance re-
porting structures over some subsets of the points.

We begin by describing the pair of intervals that each
point is augmented with. Later at query time, we shall
check if one of the intervals is stabbed by the value a
and the other by the value b. Thus, finding all candidate
pairs of intervals that meet this criterion can be found
using nested interval trees. The remaining inequalities
are checked using 3D dominance reporting structures.

4.1 Double Chaining

The notion of chaining to create intervals was intro-
duced by Gupta et al., [8] and expanded by [25]. We
present a variation on the idea. For each data point
(i, A[i], C[i]) we define:

prev(i) = max{{j ∈ [1, i) | C[i] = C[j] and A[j] > A[i] and

(j, A[j]) is not dominated by any point (k,A[k])

where j < k ≤ i} ∪ {−∞}}
next(i) = min{{j ∈ (i, n] | A[i] < A[j]} ∪ {∞}}

See Figure 1 for a graphical illustration. The follow-
ing lemma establishes the role of next in solving the
problem. It’s proof can be easily established recogniz-
ing that next(i) gives the first component of the next
point which dominates (i, A[i]).

Lemma 2 A point (i, A[i], C[i]) in the region R =
[a, b] × [τ,∞] is on the skyline of R iff next(i) > b.
(proof Appendix A)

In other words, the next values allow us to check
which points are on the skyline. The role of the prev
value is established by the following lemma.
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Lemma 3 A point (i, A[i], C[i]) on the skyline of the
region R = [a, b]× [τ,∞] is the highest instance of color
C[i] on the skyline iff prev(i) < a.(proof Appendix B)

Combining Lemmas 2 and 3, we see that a point p =
(i, A[i], C[i]) is the highest instance of color C[i] on the
skyline of region R = [a, b] × [τ,∞] iff prev(i) < a and
next(i) > b. See Figure 1 for a motivating example.
Combining the remaining constraint that the points be
in R, our solutions to Problem 1.1 will be the points
that satisfy the following conditions.

Condition 4.1 The necessary and sufficient conditions
for a point (i, prev(i), next(i), A[i], C[i]) to be in the so-
lution set for a query [a, b] × [τ,∞] are: a ≤ i, i ≤ b,
A[i] ≥ τ , prev(i) < a, and next(i) > b.

Crucially, the last two constraints, can be phrased
in terms of interval stabbing. The backward interval
(prev(i), i] must be stabbed by a. Here, by using the
notation (a, b] being stabbed by c, we mean that a <
c ≤ b. Similarly, the ’forward’ interval [i, next(i)) must
be stabbed by b. To notate the connection between
these interval pairs and the original point (i, A[i], C[i])
we use the five tuple (i, prev(i), next(i), A[i], C[i]). This
can be viewed as weighted rectangle stabbing.

It is worth mentioning, for categorical range skylines
the Word-RAM model, optimal solutions for 5-sided
rectangle stabbing in 3D can adapted [7]. Similarly, in
the pointer machine model we can adapt near optimal
solutions for 5-sided rectangle stabbing in [26]. How-
ever, we study this problem in the I/O model and our
techniques are similar to the ones in [25, 26].

4.2 First level interval Tree

We first describe how to construct an interval tree which
allows us to find all candidate points where (prev(i), i]
is stabbed by a in O(log n

B ) I/O.
We begin with a balance binary search tree using the

right end points of the intervals (prev(i), i] for 1 ≤ i ≤ n
as the keys. For every node vi for 1 ≤ i ≤ n we assign
a set of intervals.

I(i) = {(prev(j), j] | (prev(j), j] is stabbed by i and

(prev(j), j] is not stabbed by k for any ancestor vk}

Although simple, we establish the following fact be-
cause it allows us to later truncate the trees while main-
taining linear space.

Lemma 4 Every interval (prev(i), i] is included in ex-
actly one node’s interval set.(proof Appendix C)

To figure out which intervals are potentially stabbed
by a, we can traverse the tree from the root until we
find the vertex vi corresponding to the predecessor of a.

Then, any interval stabbed by a must belong to an in-
terval set along the path from the root to vi. Identifying
these intervals takes O(log n) I/O.

Remembering that the target number of I/O in this
section is in fact O(log n

B ), we now modify the tree
slightly. Let size(v) denote the number of nodes in
a vertex v’s subtree. We next identify the nodes, vi,
where size(vi) ≤ B and the size of vi’s parent is greater
than B. Using subtree(i) to denote the indices belong-
ing to the nodes of the subtree rooted at vi, we then
set I(i) = ∪j∈subtree(i)I(j). The height of each sub-
tree removed was logB. It follows that the height of
the resulting tree, and thus the worst case search re-
quired to identify the interval sets of interest, is now
log n− logB = O(log n

B ).

4.3 Second level interval tree

For each node vi, we now have a set of intervals I(i).
Each of these backward intervals, say (prev(j), j] ∈ I(i)
has it paired forward interval [j, next(j)). For this set of
forward intervals, which are paired with the intervals in
I(i), we now construct an interval tree. Just as above,
for each j we create a node vj in a balanced binary
search tree. Define an interval set for the node vj ,

I(j) = {[h, next(h)) | [h, next(h)) is stabbed by j and

[h, next(h)) is not stabbed by k for any ancestor vk}

Again we combine the interval sets by unioning the
interval sets of nodes where the size is less than B into a
single interval set. Just as above, this makes the height
of the tree O(log n

B ).
To query which of the forward intervals derived from

I(i) are stabbed by b, we can traverse the tree from the
root until we find the successor of b, say vs. Then, all of
the potential forward intervals are in some interval set
for the nodes from the root to vs.

To get nodes whose interval sets potentially contain
intervals where the backward and the forward intervals
are stabbed by a and b respectively, we traverse the
interval tree described in section 4.2, gather up O(log n

B )
nodes on the first level. Then for each of these first
level nodes, vi, we traverse their interval tree, gathering

O(log |I(i)|
B ) nodes corresponding to O(log |I(i)|

B ) subsets
of I(i). Based on the heights of the trees, the total
number of I/O for this is O(log2 n

B ).
In terms of space, notice by Lemma 4 that every back-

ward interval appears in only one node’s interval set in
the first-level interval tree. This implies the paired for-
ward interval will only appear in one second-level in-
terval tree. By the same argument, this paired forward
interval appears only once in its second-level interval
tree. Therefore, a forward and backward interval pair
is only stored once in the entire structure. Hence, the
total space used by this data structure is linear.
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By the time we have finished traversing the nested
interval tree, we have gathered a set of points (without
explicitly reporting them) such that any point which is
in our solution set is in this set as well. We need an
additional data structure to check which of these points
satisfy the first three inequalities in Condition 4.1.

4.4 Dominance Queries

Let vi be a node in the first-level interval tree. Let
vj be a node in the second-level interval tree which is
built off of the intervals in I(i). Let I(i, j) = I(i) ∩
I(j) and suppose we obtained I(i, j) while querying on
the values a and b. Remember that we traverse to a
predecessor of a on the first-level interval tree and a
successor of b on the second-level interval tree. We have
the following cases to consider in order to identify which
points corresponding I(i, j) satisfy the conditions 4.1:

Case 1. a ≤ i ≤ j ≤ b: We need to find the points
(h, prev(h), next(h), A[h], C[h]) ∈ I(i, j) such that
A[h] ≥ τ , prev(h) < a, and next(h) > b.

Case 2. i ≤ a ≤ j ≤ b: We need to find the points
(h, prev(h), next(h), A[h], C[h]) ∈ I(i, j) such that
A[h] ≥ τ , a ≤ h, and next(h) > b.

Case 3. a ≤ i ≤ b ≤ j: We need to find the points
(h, prev(h), next(h), A[h], C[h]) ∈ I(i, j) such that
A[h] ≥ τ , prev(h) < a, and h ≤ b.

Case 4. i ≤ a ≤ b ≤ j: We need to find the points
(h, prev(h), next(h), A[h], C[h]) ∈ I(i, j) such that
A[h] ≥ τ , a ≤ h, and h ≤ b.

Although we can’t know prior to seeing a and b which
of these four cases will apply, we do have the values i,
A[i], next(i), prev(i) at our disposal in pre-processing.
We can therefore prepare each interval set I(i, j)
corresponding points (i, prev(i), next(i), A[i], C[i]) for
answering four types of three-dimensional dominance
queries. These four queries correspond to the four cases
above. We build the data structure for answering:

Q1. On points (A[i],−prev(i), next(i)) for query point
q = (τ,−a, b) we can find all points dominating q.

Q2. On points (A[i], i, next(i)) for query point q =
(τ, a, b) we can find all points dominating q.

Q3. On points (A[i],−prev(i),−i) for query point q =
(τ,−a,−b) we can find all points dominating q.

Q4. On points (A[i], i,−i) for query point q = (τ, a,−b)
we can find all points dominating q.

Using the data structure described in section 3 we
can build each of these dominance reporting struc-
tures in linear space. From this it follows that the

overall space usage of the structure remains linear.
The query I/O for the dominance reporting structure

is O
(

logB |I(i, j)|+ ki,j
B

)
= O

(
log n

B +
ki,j
B

)
, where

ki,j is the number of solutions present in this interval
set. It follows then that the total number of I/O is

O
(

log2 n
B log n

B +
∑
i,j

ki,j
B

)
= O

(
log3 n

B + k
B

)
.

4.5 Summary of internal data structure

In summary, the data structure consists of an interval
tree with a nested interval tree for each node. Three-
dimensional dominance structures are built for every
second level node. The first level interval tree is for
the backward intervals, where each node is assigned a
subset of intervals. The second level interval tree of vi is
built for the forward intervals whose backward intervals
are in vi’s interval set. Each second level node has three-
dimensional dominance reporting structures to answer
queries of the types Q1, Q2, Q3, and Q4. The total
space is linear.

Querying is then done by traversing the first level
interval tree until the predecessor of a is reached. All
vertices along this path have their second level interval
tree searched until the successor of b is reached. Then
all vertices along the path on the second level trees have
a three-dimensional queries applied to them, depending
on which of the four cases apply. The number of I/O
per query is O

(
log3 n

B + k
B

)
.

5 A O(n log∗ n) space solution with optimal I/O

We are now ready to apply bootstrapping to convert
our linear space, O

(
log3 n

B + k
B

)
I/O solution to a so-

lution with O(n log∗ n) words of space and a query cost
of O(1 + k

B ) I/O.
The overall idea is to store the answers to sub-

problems in such a way that they can be efficiently re-
combined into the correct solution. Notice first that we
only have to worry about the case where the log3 n

B term
dominates. Therefore, we consider in this section when
it is the case that B log3 n

B ≥ k.

5.1 Data Structure

We decompose the query range as in Figure 5. On in-
ternal sub-ranges we will use pre-computed solutions,
whereas on the sub-ranges on the far ends we will
use the data structure described in Section 4. De-
fine ∆j = B(log(j) n

B )5 and kj = B(log(j) n
B )3 for

j = 1, . . . , log∗ nB , and ∆0 = n. WLOG we assume
that all ∆j values are multiples of 2.

• Internal Structures: First, partition the array A
into ∆j disjoint blocks for j = 0, . . . , log∗ n. For
each of these blocks we build the internal structure

12
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described in section 4. The space for storing the
internal structures is linear. Summing over j from
1 to log∗ n, the total cost is n log∗ n.

• Precomputed solutions (type 1): For each ∆j

block A[i, i+ ∆j ], for 1 ≤ i ≤ b n∆j
c, 1 ≤ j ≤ log∗ n,

create the blocks ∆j , 2∆j , 4∆j , 8∆j , . . . , each start-
ing from A[i, i + ∆j ]’s left boundary and continu-
ing in powers of two until the next power of two
would cause it to cross a ∆j−1 boundary. For each
of these blocks store kj points from the solution
on that block’s skyline. Do this in order from the
point whose C[·] value is highest to the point whose
C[·] value is lowest.

The space to store the kj
n

∆j
answers per j is

O

(
n

∆j
kj log

∆j

∆j−1

)
= O


n

log
∆j

∆j−1

(log(j) n
B )2


 = O(n)

Summing over all j from 0, . . . , log∗ n gives us that
the space overall is O(n log∗ n) words.

Figure 2: Type 1 precomputed solutions are stored for
multiples of two for the blocks of size ∆j+1 until the
they would cross the next ∆j boundary.

Next we add one more type of precomputed solution.

• Precomputed solutions (type 2): For each
block of size ∆j we store the top kj solution points
on the skyline for the span starting on the right
boundary of the block and ending at the next
boundary of a block with size h for all h < j, for
1 ≤ j ≤ log∗ n. Also, for each block A[i, i + ∆j ]
of size ∆j store the top kj solution points on the
skyline for the span starting at rightmost boundary
of the preceding block with size h for all h < j and
ending at the leftmost boundary of A[i, i+∆j ]. For
an illustration of the concept, consider the values
h1, h2 < j in Figure 3.

The total space taken by these precomputed solutions
is kj times the number of precomputed solutions per

Figure 3: Here h1, h2 < j. Type 2 precomputed solu-
tions are stored from the right boundary of a ∆j block
to first boundary of a ∆h1

. They are also stored to the
first boundary of a ∆h2

block. The regions are shown
in the grey rectangles.

Figure 4: Here h1, h2 < j. Type 2 precomputed solu-
tions are stored from the left boundary of a ∆j block to
the first boundary of a ∆h1

block. They are also stored
to the first boundary of a ∆h2 block. The regions are
shown in the grey rectangles.

block which is j− 1 times the total number of blocks of
size ∆j , that is n

∆j
. This gives

O




log∗ n
B∑

j=1

kj
n

∆j
(j − 1)


 = O




log∗ n
B∑

j=1

n
j − 1

(
log(j) n

B

)2




= O (n log∗ n) .

5.2 Range Decomposition and Querying

We are given a query region [a, b] × [τ,∞]. We first
suppose the output size is kπ+1 < k ≤ kπ (we will show
how to deal with not knowing the value of k in section
6). Let [aπ, bπ] be the longest span of blocks of size
∆π inside [a, b]. Let j be the largest value of j such
that [aπ, bπ] completely contains a ∆j block. Let the
maximal span of say m blocks of size ∆j inside [aπ, bπ]
consist of the blocks [aj , aj + ∆j ], [a

j + ∆j + 1, aj +
2∆j ], . . . , [a

j + (m− 1)∆j + 1, aj +m∆j ].
We claim that [aj , aj + m∆j ] can be covered by two

overlapping ranges of length 2`1∆j and 2`2∆j for some
`1, `2 ≥ 0. These ranges can start from different left
boundaries of ∆j blocks within [aj , aj + m∆j ]. To see
that this is always true, take `1 = blogmc with the
span starting from the index i, and `2 = blogmc with
the span starting from the index i+m∆j − `2 + 1.

We decompose the span [a, b] into six parts. They are:
R1 = [a, aπ], R2 = [aπ, aj ], R3 = [aj , aj + 2`1∆j ], R4 =
[aj +m∆j − 2`2∆j + 1, aj +m∆j ], R5 = [aj +m∆j , b

π],
and R6 = [bπ, b]. See Figure 5 for an illustration.
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Figure 5: The six subspans in the decomposition of
[a, b]. R1 and R6 are solved with the internal structure,
R2 and R5 with type 2 precomputed solutions, and R4

and R3 with type 1 precomputed solutions.

We process the sub-problems in the order R6, R5, . . .,
R1. We keep track of the highest point on the skyline
seen so far. That value gets set as the τ value on the
next sub-problem, see Figure 6. This is necessary to
ensure that we do not output points that are not on the
skyline of the original queried range.

5.2.1 Processing R6 and R1

For R6 and R1 we get the solutions from the internal
data structure for the blocks [bπ + 1, bπ + ∆π + 1] and
[aπ − ∆π, a

π − 1] respectively. The number of I/O re-
quired is

O

(
log3 ∆π

B
+
kπ
B

)
= O

(
kπ+1

B
+
kπ
B

)

Under the assumption that kπ+1 < k < kπ we have that
kπ
B dominates kπ+1

B asymptotically, hence this happens

in O(1 + kπ
B ) I/O.

For R6, while getting the results from the internal
structure we keep track of the largest A[·] seen so far
and set it as the τ value for the next subrange, R5.
We iterate through the precomputed solutions stopping
when A[·] < τ . When processing R6 we check for every
point reported by the internal structure whether its prev
value is less than a. If it is we report it as part of the
solution, otherwise we do not. For R1 we report all
solutions.

5.2.2 Processing Precomputed Solutions R5, R4,
R3, and R2

When we arrive at a span we have a value τ from the
previously processed span to the right. Recall that the
answers are stored from the highest leftmost instance
of a skyline color to the lowest. We take the first A[·]
reported within the precomputed solution and set that
as the τ value for the next span. Following this, we
process each point. If a point has a A[i] value less than
τ , we break and move onto the next span. If a point
has a prev(i) value which is less than a we report it
as part of the solution, otherwise we don’t report it.
Notice that a given color only gets its points rejected a
constant number of times.

5.2.3 Summary

The essential reason for decomposing the interval in the
way demonstrated in Figure 5 is that the internal struc-
ture from section 4 can be used on the far ends, where
as a constant number of type 1 and type 2 solutions
can be used inside the [aπ, bπ] interval. Having a con-
stant number of sub-problems implies that the number
of times a solution will be rejected so as to not be re-
ported multiple times will be a constant as well. As a
result the total I/O’s are O

(
1 + k

B

)
.

Figure 6: When processing R6 and R5 we first take the
A[·] value of p1 and set as the lower bound of the next
range. This is necessary otherwise p2 and p3 might be
included in the solution set. The point p1 however is
not included in the final output since its prev value is
greater than a.

6 Computing Output Size

Applying the algorithms described in section 5 requires
knowing the output size of the solution k. Fortunately,
determining the value of k is relatively simple.

We have that there exists data structures for an-
swering queries of size k where kj < k ≤ kj+1 and
1 ≤ j ≤ log∗ nB − 1. Therefore, we can apply the proce-
dure described below to obtain the solution.

for all j = log∗ nB − 1 down to 1 do
Run procedure (assuming kj < k ≤ kj+1).
if the output size is kj+1 then

continue
end if
if the output size is less than kj+1 then

return output
end if

end for

The number of I/O used running this procedure is

O

(
1 +

k
log∗ n

B−1

B
+
k

log∗ n
B−2

B
+ . . .+

k

B

)
= O

(
1 +

k

B

)
.
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A Proof of Lemma 2

First, suppose p = (i, A[i], C[i]) is on the skyline of region
R. Then by definition of the skyline, p is not dominated by
any other point in R. Hence, the next dominating point, if
it exists, has a first component value greater than b. If it
doesn’t exist, then its value∞ is greater than b. Conversely,
if next(i) > b, then the next point which dominates p must
be to the right of b, which implies p is not dominated by any
point in R.

B Proof of Lemma 3

Suppose p = (i, A[i], C[i]) is the highest instance of C[i] on
the skyline of region R, and for the sake of contradiction,

let us assume that j = prev(i) ≥ a. We will show that the
point pprev = (j, A[j], C[j]) is on the skyline of region R.
Then, the fact that C[i] = C[j] and A[j] > A[i] will cause
a contradiction. By the definition of prev(i), we have that
A[j] ≥ A[k] for j < k ≤ i. Combining this with the fact
that A[i] ≥ A[`] for i < ` ≤ b, we have that A[j] > A[h] for
j < h ≤ b and pprev is not dominated in R. This implies
pprev is on the skyline.

In the other direction, assume j = prev(i) < a. Suppose
for the sake of contradiction that (i, A[i], C[i]) is not the
highest instance of C[i] on the skyline for R. Then there
exists another point q = (h,A[h], C[h]) where A[h] > A[i],
C[h] = C[i], h ≥ a, and q also on the skyline for region R.
But then q must not be dominated by any of the points in
R, including the points (k,A[k]) for h < k ≤ i. This implies
that prev(i) ≥ h ≥ b, a contradiction.

C Proof of Lemma 4

The interval (prev(i), i] is included in I(i) unless (prev(i), i]
was stabbed by some k for an ancestor vk. Moreover, once
it appears on some path from the root to the leaf on some
vertex vj it cannot appear anywhere else on that path. Sup-
pose for the sake of contradiction that (prev(i), i] appears
at some other node vh where vh is not on this path. With-
out loss of generality, we assume h < j. Then there must
exists some key value for a least common ancestor ` such
that h < ` < j. But then ` must stab (prev(i), i] as well, a
contradiction.
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Bipartite and Series-Parallel Graphs Without Planar Lombardi Drawings

David Eppstein∗

Abstract

We find a family of planar bipartite graphs all of whose
Lombardi drawings (drawings with circular arcs for edges,
meeting at equal angles at the vertices) are nonplanar.
We also find families of embedded series-parallel graphs
and apex-trees (graphs formed by adding one vertex to
a tree) for which there is no planar Lombardi drawing
consistent with the given embedding.

1 Introduction

Lombardi drawing is a style of graph drawing using
curved edges. In this style, each edge must be drawn as
a circular arc, and consecutive edges around each vertex
must meet at equal angles. Many classes of graphs are
known to have such drawings, including regular bipartite
graphs and all 2-degenerate graphs (graphs that can be
reduced to the empty graph by repeatedly removing ver-
tices of degree at most two) [5]. This drawing style can
significantly reduce the area usage of tree drawings [6],
and display many of the symmetries of more general
graphs [5].

When a given graph is planar, we would like to find
a planar Lombardi drawing of it. When this is possi-
ble, the resulting drawings have simple edge shapes, no
crossings, and optimal angular resolution, all of which
are properties that lead to more readable drawings. It
is known that all Halin graphs have planar Lombardi
drawings [5], that all 3-regular planar graphs [7] and all
4-regular polyhedral graphs [8] have planar Lombardi
drawings, and that all outerpaths have planar Lombardi
drawings [4]. For some other classes of planar graphs,
even when a Lombardi drawing exists, it might not be
planar. Classes of planar graphs that are known to
not always be drawable planarly in Lombardi style in-
clude the nested triangle graphs [5], 4-regular planar
graphs [7], planar 3-trees [4], and the graphs of knot and
link diagrams [8].

However, for several other important classes of planar
graphs, the existence of a Lombardi drawing has re-
mained open. These include the outerplanar graphs, the
series-parallel graphs, and the planar bipartite graphs.
All of these classes are 2-degenerate, so they always
have Lombardi drawings, but these drawings might not

∗Department of Computer Science, University of California,
Irvine. Research supported in part by NSF grants CCF-1618301
and CCF-1616248.

Figure 1: The bipartite graph B(5) formed by our con-
struction. Although drawn planarly with curved edges,
this is not a Lombardi drawing: the edges are arcs of
ellipses rather than of circles, and pairs of consecutive
edges at the same vertex do not all have the same angles.

be planar. In this paper we settle this open problem
for two of these classes of graphs, the planar bipartite
graphs and the (embedded) series-parallel graphs. We
construct a family of planar bipartite graphs whose Lom-
bardi drawings are all nonplanar. We also construct a
family of series-parallel graphs with a given embedding
such that no planar Lombardi drawing respects that
embedding. Our construction for series-parallel graphs
can be extended to maximal series-parallel graphs, to
bipartite series-parallel graphs and to apex-trees, the
graphs formed by adding a single vertex to a tree.

2 The graphs

We begin by describing the family of planar bipartite
graphs B(k) that we will prove (for sufficiently large k)
do not have a planar Lombardi drawing. Each vertex in
B(k) has degree either 2 or 2k. To construct B(k), begin
with a complete bipartite graph K2,2k and its unique
planar embedding; in Figure 1, the two-vertex side of the
bipartition of this graph is shown by the yellow vertices
and the 2k-vertex side is shown by the blue vertices.
Each yellow vertex has exactly 2k blue neighbors.

Next, partition the blue vertices into k pairs of vertices,
each sharing a face. For each pair of blue vertices in this
partition, add another complete bipartite graph K2,2k−2
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Figure 2: The embedded series-parallel graph S(3)
formed by our construction.

connecting these two blue vertices to 2k − 2 additional
vertices (shown as red in the figure). After this addition,
each blue vertex has exactly 2k neighbors, two of them
yellow and the rest red. Each red vertex has exactly
two neighbors. There are two yellow vertices, 2k blue
vertices, and k(2k− 2) red vertices, for a total of 2k2 + 2
vertices in the overall graph.

Clearly, the graphs B(k) are all planar, because they
are formed by attaching together planar subgraphs (com-
plete bipartite graphs where one side has two vertices)
on pairs of vertices that are cofacial in both subgraphs.
They are bipartite, with the yellow and red vertices on
one side of their bipartition and the blue vertices on the
other side. Although they are not 3-vertex-connected,
all of their planar embeddings are isomorphic.

Analogously, we define a family of embedded series-
parallel graphs S(k). Again, each such graph will have
two yellow vertices and 2k blue vertices, connected in the
pattern of a complete bipartite graph K2,2k. For each
yellow–blue edge e of this graph, we add a path of 2k− 1
red vertices. We connect every vertex in this path to the
blue endpoint of e, and we connect one endpoint of the
path to the yellow endpoint of e. We fix an embedding of
S(k) in which every yellow–blue quadrilateral contains
either zero or four red paths (Figure 2). The resulting
graph has two yellow vertices, 2k blue vertices, and
4k(2k−1) red vertices, for a total of 8k2−2k+2 vertices.
The yellow and blue vertices have degree 4k, while the
red vertices have degrees two or three.

We claim that, for sufficiently large values of k, the
graphs G(k) and S(k) do not have planar Lombardi draw-
ings. Therefore, neither every planar bipartite graph
nor every series-parallel graph has a planar Lombardi
drawing. In the remainder of this paper we prove this
claim.

Figure 3: Illustration for Lemma 1: Four circles with
centers on a rhombus, and with opposite pairs of circles
having equal radii, define two rectangles of pairwise
intersection points.

3 Equiangular arc-quadrilaterals

The key feature of both of our graph constructions B(k)
and S(k) is the existence of many yellow–blue quadrilat-
eral faces in which all vertices have equal and high degree
(this degree is d = 2k in B(k) and d = 4k in S(k)). If
such a graph is to have a Lombardi drawing, each of these
faces must necessarily be drawn as a quadrilateral with
circular-arc sides and with the same interior angle 2π/d
at all four of its vertices. Equiangular arc-quadrilaterals
have been investigated before from the point of view
of conformal mapping [2]; in this section we investigate
some of their additional properties.

Our main tool is the following lemma:

Lemma 1 Let abcd be a non-self-crossing quadrilateral
in the plane with circular-arc sides and equal interior
angles. Then the four points abcd lie on a circle and the
quadrilateral abcd either lies entirely inside or entirely
outside the circle.

Proof. We abbreviate the conclusion of the lemma by
saying that abcd is cyclic. The properties of being an
equiangular non-self-crossing circular-arc quadrilateral
and of being cyclic are both invariant under Möbius
transformations, which preserve both circularity and the
crossing angles of curves. Therefore, if we can find a
Möbius transformation of a given equiangular circular-
arc quadrilateral such that the transformed quadrilateral
is cyclic, the original quadrilateral will also be cyclic, as
the lemma states it to be.

Start by finding a Möbius transformations which
makes two opposite arcs ab and cd come from circles
with the same radius as each other. Because of the
equality of crossing angles, and by symmetry, both of
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the other two circular arcs bc and ad must come from
circles whose centers lie on the perpendicular bisector of
ab and cd. There remains a one–dimensional family of
Möbius transformations that preserve the position of the
circles containing the transformed copies of arcs ab and
cd but that move the other two circles along the bisector
of these two fixed circles. We can use this remaining
degree of freedom to move the other two circles so that
their centers are equidistant from the midpoint of the
centers of the two fixed circles.

After this transformation, it follows from the equality
of crossing angles that the circles containing the trans-
formed copies of arcs bc and ad have the same radii as
each other, and the four circles have been transformed
into a position centered at the vertices of a rhombus with
opposite pairs having the same radius as each other. By
symmetry, the transformed copies of vertices abcd must
lie on one of the two rectangles defined by the crossing
points of these four transformed circles. (Figure 3).

If the interior angle of abcd is less than π, then the
transformed copy of abcd must lie within the circle that
circumscribes the inner rectangle, forming the boundary
of a hole in the union of the four transformed disks. If
the interior angle is greater than π, it must lie outside
the outer circle, forming the outer boundary of the union
of the four disks. In either case, the transformed copy
of abcd is cyclic, so abcd itself must be cyclic. �

A special case of this lemma for right-angled arc-
quadrilaterals was used previously by the author to
prove that some 4-regular planar graphs have no planar
Lombardi drawing [7]. Another special case, for arc-
quadrilaterals in which all interior angles are zero, has
been used previously in mesh generation [1].

Definition 2 We define the tilt of an equiangular
circular-arc quadrilateral to be the maximum interior
angle of any of the four circular-arc bigons between the
quadrilateral and its enclosing circle.

Each of the four bigons has equal angles at its two
vertices. At each of the four vertices, the two bigon
angles and the interior angle of the quadrilateral add to
π. It follows that opposite bigons have the same angles
as each other, and each vertex of the quadrilateral is
incident to a bigon with vertices of the tilt angle.

4 Bipolar coordinates

To describe a second parameter of equiangular circular-
arc quadrilaterals, it is convenient to introduce the bipo-
lar coordinate system, defined from a pair of points s and
t, the foci of the coordinate system. These coordinates
are conventionally denoted σ and τ . The σ-coordinate
σp of a point p is the (oriented) angle spt, whose level
sets are the blue circular arcs through the two foci in

Figure 4: Curves of constant and evenly-spaced coordi-
nate values for bipolar coordinates, forming two orthog-
onal pencils of circles.

Figure 4. The τ -coordinate τp of p is the logarithm of
the ratio of the two distances from p to the two foci,
whose level sets are the red circles separating the two
foci in Figure 4. This coordinate system has the conve-
nient property that any (orientation-preserving) Möbius
transformation that preserves the location of the two
foci acts by translation on the coordinates.1

Lemma 3 Any Möbius transformation that preserves
the location of the two foci acts on the bipolar coor-
dinates of any point by adding a fixed value to its σ-
coordinate (modulo 2π) and adding another fixed value
to its τ -coordinate, with the added values depending on
the transformation but not on the point.

Proof. All Möbius transformations preserves circles, in-
cidences between points and curves, and angles between
pairs of incident curves. Therefore, any focus-preserving
Möbius transformation takes circles through the two foci
(the level sets for σ-coordinates) to other circles through
the two foci, and it takes the perpendicular family of
circles (the level sets for τ -coordinates) to other circles
in the same family. Therefore it acts separately on the
σ- and τ -coordinates. The additivity of its action on
the σ-coordinates follows from the preservation of angles
between pairs of circles through the two foci.

To show that the transformation acts additively on
τ -coordinate (the logarithm of the ratio of distances of

1This property can be seen as a reflection of the fact that the
bipolar coordinate system comes from a conformal mapping of a
rectangular grid; see, e.g., [3].
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Figure 5: Illustration for Lemma 5: If quadrilateral sptq
has high tilt, and r lies between the quadrilateral and its
enclosing circle, to the left of the red arc, then r must
have a higher τ -coordinate value than p.

a point from the two foci), we can assume without loss
of generality (by scaling, translating, and rotating the
plane if necessary) that the two foci are at the two points
q = ±1 of the complex plane. Consider the general form
q 7→ (aq + b)/(cq + d) of a Möbius transformation as a
fractional linear transformation of the complex plane.
For a transformation to fix q = 1 we need a+ b = c+ d
and for it to fix q = −1 we need b−a = −(d−c). Solving
these two equations in four unknowns gives a = d and
b = c. Therefore, the transformations fixing the foci take
the special form q 7→ (aq + b)/(bq + a).

For a transformation of this form, and for any point
x on the interval [−1, 1] of real numbers with distance
ratio (1 + x)/(1− x), the image of x has distance ratio

1 + (ax+ b)(bx+ a)

1− (ax+ b)(bx+ a)
=
a+ b

a− b ·
1 + x

1− x,

multiplying the original distance ratio of x by a value
that depends only on the transformation. Because the
transformation acts separately on σ- and τ -coordinates,
we obtain the same multiplicative action on distance
ratios for any other point on the complex plane with
the same τ -coordinate as x. This multiplicative action
on distance ratios translates into an additive action on
their logarithms. �

Another advantage of bipolar coordinates is that they
provide a way of comparing angles at the two foci, that

Figure 6: Two arc-quadrilaterals with sharp angles be-
tween them at their shared vertices reach into each
other’s pockets to touch their circumscribing circles. The
two smaller pockets on the outer arcs of the circles have
significantly different τ -coordinates from each other in
bipolar coordinates with the shared vertices as foci.

will be convenient for relating the tilts of different quadri-
laterals to each other:

Observation 4 Let sptq be an equiangular arc-
quadrilateral with interior angle θ and tilt ϕ. Then,
in the bipolar coordinate system with foci s and t, the
angle (difference between the σ-coordinates) of arc tp in
the limit as it approaches t and of arc sq as it approaches
s is exactly 2θ + 2ϕ− π.

We can also use bipolar coordinates to show that
heavily tilted quadrilaterals lead to an increase in τ -
coordinate:

Lemma 5 Let sptq be an equilateral arc-quadrilateral
with tilt at least 3π/4, such that the large angle between
vertex s and the circle C containing the quadrilateral is
on the clockwise side of s (the side closest to p). Let
r be a point in the bigon between arc tq and C, such
that circular arc srt makes an angle of at most π/2 with
circular arc spt. Then, in the bipolar coordinate system
for foci s and t, τr > τp.

Proof. Because of the Möbius invariance of coordinate
differences in the bipolar coordinate system, we can with-
out loss of generality perform a Möbius transformation
so that s, p, and t are the bottom, left, and topmost
points of C, as shown in Figure 5. After this transfor-
mation, points above the horizontal line through p will
have higher τ -coordinate than o, and points below the
horizontal line through o will have lower τ -coordinate.
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As the figure shows, an arc with tilt exactly 3π/4
through p and s passes through the center of circle C,
causing the region in which r may lie to be bounded by
a vertical line segment (red) from the circle’s center to t.
All points within this region have higher τ -coordinate
than p. For tilt values greater than 3π/4, the arc from p
to s with that tilt extends even farther beyond the center
of C, so (although arc tq may also extend farther to the
left) the region in which r may lie remains bounded
within the upper left quarter of C, within which all
τ -coordinates are greater than that of p. �

5 Nonplanarity

We are now ready for our main theorems.

Theorem 6 For k > 8, the bipartite graph B(k) does
not have a planar Lombardi drawing.

Proof. Let s and t be the two yellow vertices of the
graph B(k). We will consider a bipolar coordinate sys-
tem with foci s and t. Note that graph B(k) contains
k quadrilateral faces spitqi, where pi and qi are blue
vertices. Because all four vertices of these quadrilaterals
have degree 2k, these quadrilaterals must be drawn (if
a planar Lombardi drawing is to exist) as equiangular
arc-quadrilaterals with interior angle π/k.

Consider the two consecutive quadrilaterals spitqi and
spi+1tqi+1 whose enclosing circles Ci and Ci+1 meet
each other at the sharpest angle of any two consecutive
enclosing circles. The sum of the angles between the k
consecutive circles is 2π so this minimum angle is at most
2π/k. In order for point qi to lie on circle Ci, some arc of
circle Ci must lie on the same side as qi of quadrilateral
spi+1tqi+1. This arc must stay outside of quadrilateral
spi+1tqi+1 from its crossing point with the quadrilateral
until terminating at either s or t; by symmetry, we can
assume without loss of generality that it terminates at
the lower vertex s, as shown in Figure 6. Then, near s,
quadrilateral spi+1tqi+1 lies between circles Ci and Ci+1,
so it must have tilt at least π(1− 2

k ). By Observation 4
and the equal spacing of angles around s and t, all
quadrilaterals spitqi must have the same tilt.

Because k > 8, this tilt is ≥ 3π/4, so each quadri-
lateral spitpi meets the precondition of having high tilt
of Lemma 5. For any quadrilateral spitqi, the point
pi+1 of the next quadrilateral is connected to s by an
arc of quadrilateral spi+1tqi+1 that lies entirely within
Ci+1 and makes an angle of π/k to arc sqi, so the arc
of Ci+1 containing pi+1 makes an angle of at most 3π/k
to the arc of Ci containing pi. Thus, point pi+1 meets
the other precondition of Lemma 5 for the position of
the point r with respect to the quadrilateral. By this
lemma, each point pi+1 has a greater τ -coordinate than
pi. But it is impossible for this monotonic increase in
τ -coordinates to continue all the way around the circle

of quadrilaterals surrounding the two foci and back to
the starting point. This impossibility shows that the
drawing cannot exist. �

Theorem 7 For k > 8 the series-parallel graph S(k),
embedded as shown in Figure 2, does not have a planar
Lombardi drawing.

Proof. As with B(k), this graph contains k quadrilat-
eral faces, sharing the same two opposite yellow vertices,
in which all vertices have equal degree (4k in S(k) in-
stead of 2k in B(k)). The proof of Theorem 6 used only
this property of B(k), and not the precise value of the
interior angle of these quadrilaterals, so it applies equally
well to S(k). �

We remark that the construction of S(k) can be ad-
justed in several different ways to obtain more con-
strained families of embedded series-parallel and related
graphs that, again, have no planar Lombardi drawing:

• If we add an edge between the two yellow vertices,
and adjust the lengths of the red chains to keep
the yellow and blue degrees equal, we obtain a
family of embedded maximal series-parallel graphs
(that is, embedded 2-trees) with no planar Lombardi
drawing.

• If we subdivide the yellow–red and red–red edges
of S(k), we obtain a family of embedded bipar-
tite series-parallel graphs with no planar Lombardi
drawing.

• If we replace the red chains of S(k) by an appropri-
ate number of degree-one red vertices, connected to
the blue vertices, we obtain a family of embedded
apex-trees (graphs formed by adding a single vertex
to a tree) with no planar Lombardi drawing. The
apex vertex (the vertex whose removal produces a
tree) can be chosen to be either of the two yellow
vertices.

We omit the details.

6 Conclusions

We have shown that bipartite planar graphs, and series-
parallel graphs with a fixed planar embedding, do not
always have planar Lombardi drawings, even though
their low degeneracy implies that they always have (non-
planar) Lombardi drawings. In the question of which
important subfamilies of planar graphs have planar Lom-
bardi drawings, several important cases remain unsolved.
These include the outerplanar graphs, both with and
without assuming an outerplanar embedding, the cactus
graphs, and the series-parallel graphs without a fixed
choice of embedding. We leave these as open for future
research.
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Three-Coloring Three-Dimensional Uniform Hypergraphs

Ahmad Biniaz∗ Prosenjit Bose† Jean Cardinal‡ Michael S. Payne§

Abstract

We study the chromatic number of hypergraphs whose
vertex-hyperedge incidence poset has dimension at most
three. Schnyder (1989) showed that graphs with this
property are planar and thus four-colorable. Results
of Keszegh and Pálvölgyi (2015) imply that k-uniform
hypergraphs with dimension at most three are two-
colorable for k ≥ 9. In this paper we show that k-
uniform hypergraphs with dimension at most three are
three-colorable for k ≥ 6. This implies three colorabil-
ity of k-uniform triangle Delaunay hypergraphs and k-
uniform hypergraphs induced by points and octants in
3-space. We also observe that the chromatic number
of k-uniform hypergraphs with dimension d ≥ 4 is not
bounded by any function of k and d.

1 Introduction

A hypergraph G consists of a set of vertices and a col-
lection of non-empty subsets of vertices called hyper-
edges. The incidence poset of G is the partially ordered
set (poset) describing the vertex-hyperedge containment
relationship. The order dimension of a poset P is de-
fined as the minimum size of a set of total orders on
the elements of P whose intersection is P. The dimen-
sion of G is the order dimension of its incidence poset.
A k-uniform hypergraph (or k-graph) is a hypergraph
in which all hyperedges have cardinality k. A (simple)
graph is one for which k is 2. A c-coloring of G is to
color each vertex by one of the colors {1, . . . , c} such
that no edge of G has all vertices of the same color. A
hypergraph is c-colorable if it admits a c-coloring.

In 1989, Schnyder showed that a graph has dimension
at most three if and only if it is planar [13]. Therefore,
all such graphs are 4-colorable by the Four Colour The-
orem. We study the problem of coloring k-graphs of
dimension at most three. We will refer to hypergraphs
of dimension at most three as three-dimensional hyper-
graphs. It follows from the seminal work of Keszegh
and Pálvölgyi [10] that three-dimensional k-graphs are
2-colorable for k ≥ 9. In this note we adapt their ap-
proach and show the following result.

∗University of Waterloo, ahmad.biniaz@gmail.com
†Carleton University, jit@scs.carleton.ca
‡Université Libre de Bruxelles (ULB), jcardin@ulb.ac.be
§La Trobe University, m.payne@latrobe.edu.au

Theorem 1 Every three-dimensional k-uniform hyper-
graph is 3-colorable, for k ≥ 6.

2 Background

The dimension of a hypergraph can be determined by
representing the incidence poset as the intersection of
a number of total orders on vertices. The following is
a well-known characterization of hypergraphs of dimen-
sion d that we will rely upon often [13].

Proposition 2 (Schnyder 1989) A hypergraph H
has dimension at most d if and only if there exist d
total orders <1, . . . , <d on the vertices of H such that

• the intersection of all the orders is empty, and

• for each hyperedge e of H and each vertex z /∈ e
there exists i such that x <i z for every x ∈ e.

This characterization implies that any hyperedge e is
uniquely determined by its maximum vertices in the d
total orders. Every vertex not in e must be above at
least one of these maxima. See Figure 6 for an illustra-
tion of a hyperedge.
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vy
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z
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x

yw zx

w

v

w

Figure 1: Illustration of a hyperedge e = {v, w, x}.

Our work is inspired by the work of Keszegh and
Pálvölgyi [10] on coloring octant k-graphs (a subclass of
k-graphs). Given any finite set P of points in R3, take as
hyperedges every set of k points that is the intersection
of P with some axis-parallel octant (which is an open
set of the form (−∞, x)× (−∞, y)× (−∞, z) with apex
point (x, y, z)). They showed that any octant k-graph
is 2-colorable for k ≥ 9, and there are octant 4-graphs
that are not 2-colorable. It is implied by Proposition 2
that three-dimensional k-graphs are a subclass of octant
k-graphs—just use the three total orders to give coor-
dinates to the vertices. (Octant hypergraphs are more
general because the coordinates need not satisfy the first
property in Proposition 2.)

Another relevant class of geometric hypergraphs are
triangle Delaunay k-graphs: Given a finite set P of
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points in general position in R2 and a triangle T , a set
of k points form a hyperedge if there exists a homothet1

of T containing just those k points. The classical De-
launay graph of a point set has a similar construction
but with respect to a circle instead of a triangle.

With Proposition 2, it can readily be seen that tri-
angle Delaunay hypergraphs have dimension at most
three. The three necessary total orders can be obtained
by sweeping P with three lines parallel to the three sides
of T , as in Figure 2. Combining this with Theorem 1
we get the following corollary.

Corollary 3 Every k-uniform triangle Delaunay hy-
pergraph is 3-colorable, for k ≥ 6.

<1

<2

<3

p

q

q <1 p
q <2 p
p <3 q

T

z

p <3 z
q <3 z

Figure 2: Obtaining three total orders that satisfy the
conditions of Proposition 2. The set {p, q} is an edge of
triangle Delaunay 2-graph.

Returning to graphs, another (perhaps lesser known)
result of Schnyder [13, Corollary 5.4] implies that every
three-dimensional graph (and thus every planar graph)
can be represented as a subgraph of a triangle Delaunay
graph. Schnyder called these representations ‘barycen-
tric embeddings’. One might wonder whether every
three-dimensional k-graph is also a subgraph of a trian-
gle Delaunay k-graph. We note that there exist three-
dimensional 10-graphs that are not realizable as a tri-
angle Delaunay 10-graph (Stefan Felsner, private com-
munication). To sum up, we can see that the class of
triangle Delaunay hypergraphs is a proper subset of the
class of three-dimensional hypergraphs, which is in turn
a proper subset of the class of octant hypergraphs.

There exist a large number of fascinating coloring
problems for geometric hypergraphs that are closely re-
lated to the problem studied here; e.g. [1, 2, 3, 4, 5, 6,
8, 9, 11, 12]. In particular, the question of whether k-
uniform Delaunay hypergraphs (induced by points and
circles in the plane) are 3-colorable for some k remains
open [1], while the analogous questions for homothets of
a convex n-gon have relatively loose bounds on k [11].
On the other hand, it is known that there is no finite k
such that k-graphs induced by axis parallel rectangles

1Homothets of T include translations and scalings but not ro-
tations or reflections.

on points in the plane are 2-colorable [6]. For further
related problems and results see the discussion in [11].

3 Further results

The result about axis parallel rectangles just mentioned,
which is due to Chen, Pach, Szegedy, and Tardos [6],
implies that there can be no analogue of Theorem 1 in
higher dimensions (see Corollary 5). The statement for
k = 2 (graphs) was first proved by Ossona de Mendez
and Rosenstiehl [12], then rediscovered by Trotter and
Wang [14].

Theorem 4 (Chen et al. [6]) For any positive inte-
gers c and k, there is a finite point set in the plane with
the property that no matter how we color its elements
with c colors, there always exists an axis-parallel rect-
angle containing at least k points, all of which have the
same color.

Corollary 5 For any triple of integers c ≥ 1, k ≥ 1,
and d ≥ 4, there exists a d-dimensional k-uniform hy-
pergraph that is not c-colorable.

Proof. Let H1 be a hypergraph whose vertex set is a fi-
nite point set P in the plane that satisfies the conditions
of Theorem 4, and whose edge set contains all k-subsets
of points that can be obtained by intersecting P with an
axis-aligned rectangle. By considering the four total or-
ders obtained by sweeping P horizontally and vertically
in both directions, and using Proposition 2, we observe
that H1 is a k-uniform hypergraph with dimension at
most 4. Theorem 4 implies that H1 is not c-colorable.

Let H2 be any d-dimensional k-uniform hypergraph.
Then the disjoint union of H1 and H2 is a k-uniform
hypergraph that is d-dimensional due to the dimension
of H2, and not c-colorable because H1 requires more
than c colors. �

Finally we note an extension of Theorem 1. Despite
the important role of graph planarity in the proof of
Theorem 1, the analogous result for octant k-graphs
follows as a corollary.

Corollary 6 Every k-uniform octant hypergraph is 3-
colorable, for k ≥ 6.

Proof. An octant k-graph has vertex set P ⊂ R3. We
consider the three coordinate directions as three total
orders on P . Unlike the case of three-dimensional k-
graphs, the intersection of the three orders may not be
empty. Consider the poset B on P with the order rela-
tion being the intersection of these three orders. Note
that if u dominates v in this partial order then every
octant containing u also contains v.

Start with the subset S ⊂ P consisting of all the
minimal elements in B. As S is an antichain in B, it
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induces a three-dimensional k-graph, and so we may 3-
color it by Theorem 1.

Now add in a point x that is minimal in B \ S, and
notice that x dominates some point(s) of S. This means
that some hyperedges disappear, and some others are
created with x and k − 1 points of S. We need only
ensure that these new hyperedges are properly colored,
and this can be done by giving x any of the 3 colors that
is distinct from the color of a point dominated by x.

By iteratively adding minimal elements from the re-
maining points, we can build up a 3-coloring for the
whole set P . �

4 Proof of Theorem 1

Let H denote the three-dimensional k-graph that we
want to color. Following Keszegh and Pálvölgyi, the
proof strategy involves constructing a graph F that has
an edge in every hyperedge of H. Thus a proper col-
oring of F is a proper coloring of H. In the proof of
Keszegh and Pálvölgyi, F is a forest, and therefore
2-colorable. In our proof, F is a triangle-free three-
dimensional graph, and thus planar by Schnyder’s theo-
rem and hence 3-colorable by Grötzsch’s theorem which
says that triangle-free planar graphs are 3-colorable [7].

Let V be the vertex set of H, and let <1, <2, <3 be the
three total orders on V with empty intersection. For ev-
ery ordered triple (x, y, z) of (not necessarily distinct) el-
ements of V , we define the combinatorial triangle ∆xyz
as the subset of V determined by three maxima x, y, z:

∆xyz = {v ∈ V | v ≤1 x ∧ v ≤2 y ∧ v ≤3 z}.

Triangles containing k elements are precisely the hyper-
edges of H. If two elements of V are reversed by <1

and <2 we say they are incomparable, otherwise they
are comparable. If for two comparable elements x and
y we have x <1 y and x <2 y, then we say y domi-
nates x. See Figure 3 for an illustration. Note that if
y dominates x then we must have y <3 x because the
intersection of <1, <2, <3 is empty.

<1

<2 y

yx

xz

z

Figure 3: The elements x and z are incomparable, while
x and y are comparable and y dominates x.

Without loss of generality we assume that H is edge
maximal, that is, H contains all hyperedges (with k ver-
tices) that satisfy the second property in Proposition 2.
Let G be the edge-maximal planar graph obtained by
the same three orders. We describe an iterative algo-
rithm that processes V in the order of <3 and creates
a planar triangle-free subgraph F of G such that every

hyperedge of H contains an edge of F . By slightly abus-
ing notation, in the rest of description we refer to F as
an edge set (the graph F is induced by this edge set).

We maintain a sequence Y of vertices and a set F
of edges that satisfy the following invariants after each
iteration of the algorithm:

• Elements of Y are pairwise incomparable and no
element in Y dominates a processed element. (By
the definition of incomparability, Y is ordered for-
wards by <1 and backwards by <2.)

• The set F is a subset of G, has no 3-cycles, has no
edge between two vertices of Y , and has an edge in
every hyperedge formed by processed vertices.

The sequence Y plays the role of “staircase” in [10]
that separates the processed vertices from unprocessed
vertices. Initially, F is empty and Y contains the least
element in <3. The algorithm processes the next vertex
m in <3 as follows:

(1) While there exists v ∈ Y that dominates m, then
add vm to F and remove v from Y .

(2) Add m to Y .

(3) While there exist three consecutive vertices
u, v, w ∈ Y such that u <2 v <2 w and ∆uwm
does not contain any vertex outside Y , then add
uv and vw to F and remove v from Y .

Since we apply step (3) greedily, any triple considered
in this step contains m, that is m ∈ {u, v, w}. Moreover,
since u <2 v <2 w and the elements of Y are pairwise
incomparable, we have w <1 v <1 u. This in turn
implies that ∆uwm contains u, v, and w.

It remains to show that each of the claimed properties
for Y and F holds at the end of every iteration. In
the proof of these properties we use the fact that m is
the maximum element in <3 that is processed so far,
without further mentioning. Let X denote the set of
processed elements that are not in Y .

<1

<2

<3 m

m

my

y

y

Figure 4: The processed elements (in the order <3) are
shaded; m is processed in the current iteration.

– Elements of Y are pairwise incomparable: Before we
add a new vertex m to Y in step (2), we remove all
vertices that dominate m in step (1). The vertex m
does not dominate any vertex y ∈ Y because otherwise
we would have y <1 m, y <2 m, and y <3 m which
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contradicts the intersection of total orders being empty;
see Figure 4 for an illustration. Therefore, the elements
of Y are pairwise incomparable after each iteration.

– Elements of Y do not dominate elements of X: We
need to ensure this only when we add the current ele-
ment m to Y . If m dominates an element of X, then
similar to the previous claim (as in Figure 4) we get
a contradiction to the emptiness of the intersection of
total orders.

– F has no edge between two vertices of Y : In step (1)
after adding the edge vm, we remove v from Y . In step
(3) after adding the edges uv and vw, we remove v from
Y . Therefore, this claim follows.

– F is a subset of G: Consider an edge vm added to F
in step (1). We show that the triangle ∆vvm contains
only v and m; this implies that vm is an edge of G. This
triangle contains m because m <1 v and m <2 v (as v
dominates m) and contains v because v <3 m (as m
is the largest element of <3 processed so far). Now we
show, by contradiction, that ∆vvm does not contain any
other point. Recall that before adding vm, the vertex v
belongs to Y . If ∆vvm contains another element y ∈ Y
(as in Figure 5) then v dominates y; this contradicts the
fact that elements of Y are pairwise incomparable. If
∆vvm contains an element x ∈ X (as in Figure 5) then
v dominates x; this contradicts the fact that elements
of Y do not dominate elements of X.

<1

<2

<3
m

v

vy

y

y

x

x

x

m

m

v

∆vvm

Figure 5: The triangle ∆vvm contains m, v, x, and y.

Now consider edges uv and vw added to F in step (3),
and recall that due to greedily application of this step
we have m ∈ {u, v, w}. Our choices of u, v, w (as three
consecutive elements of Y ) and ∆uwm (as having no
element of X) ensures that ∆uwm contains only u, v, w.
In this setting the triangle ∆uv∗ contains only u, v, and
the triangle ∆vw∗ contains only v, w (∗ represents the
maximum of the first two elements with respect to <3).
Thus, uv and vw are edges of G. See Figure 6 for an
illustration.

– F has no 3-cycle: Since there are no edges between
elements of Y , the edges added in step (1)—between m
and elements of Y —do not create any 3-cycle. Consider
edges uv and vw added in step (3). Since there was no
edge between u and w which belong to Y , the three
vertices u, v, w cannot form a 3-cycle. If uv creates a 3-
cycle then u and v were joined by a path of length two

<1

<2

<3
m

w

vw

u

u

v

u, v, w

∆uwm

Figure 6: The triangle ∆uwm contains only u, v, w.

through x say which now belongs to X. For x to have
two neighbors in Y , the edges ux and xv must come
from a prior application of step (3), and thus we must
have u <2 x <2 v and v <1 x <1 u, as in Figure 7.
In this setting the triangle ∆uwm contains x, which
contradicts the current application of step (3). Thus uv
does not create a 3-cycle. A similar argument applies
for vw.

<1

<2

<3 m

w

vw

u

u

v

u, x, v, w

x

x

∆uwm

Figure 7: The triangle ∆uwm contains u, v, w and x.

– Every hyperedge formed by processed vertices contains
an edge in F : It suffices to show this only for hyperedges
containing m. Consider any such hyperedge h, and re-
call that |h| = k ≥ 6. Consider the state of Y and F
at the end of current iteration, and set i := |h ∩ X|.
Depending on i, we consider three cases.

If i = 0, then all elements of h belong to Y and an
edge would be added inside h in step (3).

Now suppose that i = 1, and let v be the only element
in h ∩X (here is the place where we use k ≥ 6). Then
|h ∩ Y | ≥ 5. Let a <1 b <1 c <1 d <1 e be five
consecutive elements of h∩ Y , and note that e <2 d <2

c <2 b <2 a. Thus ∆eam ⊆ h, as in Figure 8. Let m1 be
the greatest of a, b, c and let m2 be the greatest of c, d, e
both with respect to <3. In this setting either ∆ecm2

or ∆cam1 does not contain v because otherwise v <1 c,
v <2 c, and v <3 c (as in Figure 8) which contradicts the
emptiness of the intersection of total orders. Therefore,
in step (3) we get edges ed, dc or cb, ba, and thus h
contains an edge of F .

<1

<2

<3
m

a

cv

d

e

c

d

v

∆eam
ba

be

m2 m1

Figure 8: The triangle ∆eam is a subset of h.
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Now suppose that i ≥ 2. Then h ∩ X contains two
elements that are either comparable or incomparable.

First suppose that h ∩ X contains two comparable
elements v and t. We may assume that t dominates v
(this implies that t <3 v). Moreover, we may assume
that v was added to X in step (3) because otherwise by
step (1) we get an edge in ∆ttm which is a subset of h.
Since step (3) has been applied, as its prerequisites v has
two incomparable neighbors u,w such that u <2 v <2 w
and ∆uwm1 does not contain t, where m1 ≤3 m is the
maximum of u, v, w with respect to <3; see Figure 9. In
step (3) the edges uv and vm were added to F . Recall
that t <3 v, and thus t <3 m1. In this setting either
u, v <1 t (as in Figure 9) or v, w <2 t. In the first case u
and v are contained in ∆ttm1 while in the second case v
and w are contained in ∆ttm1. Since ∆ttm1 is a subset
of ∆ttm which is in turn a subset of h, we get an edge
of F in h.

<1

<2

<3
m

vw

u wv

h

t

u t

m1t

Figure 9: The triangle ∆uwm1 does not contain t.

Now suppose that h ∩ X contains two incomparable
elements v and t. We may assume that both were added
to X in step (3) because otherwise by step (1) we get
an edge in ∆vvm or in ∆ttm which are subsets of h.
Without loss of generality assume that t <2 v and that
v was added to X after t. As prerequisite of step (3) the
vertex v has two incomparable neighbors u <2 v <2 w
in the triangle ∆uwm1 that does not contain t, where
m1 ≤3 m is the maximum of u, v, w with respect to <3.
In step (3) the edges uv and vm were added to F . We
show (by contradiction) that ∆tvm contains u and v,
or v and w; this would imply our claim because ∆tvm
is a subset of h.

<1

<2

<3
m

vw

u wt

h

v

t u

m1t

Figure 10: The triangle ∆uwm1 does not contain t.

Observe that ∆tvm contains v. For the sake of con-
tradiction assume that ∆tvm does not contain any of u
and w, and thus t <1 u and v <2 w, as in Figure 10.
Recall that v was added to X when we were processing
the greatest element of {u, v, w} in <3, which is m1. At
that time, t was already in X which means that t was
processed before m1, i.e., t <3 m1, as in Figure 10. In

this setting ∆uwm1 contains t, which contradicts the
application of step (3) on u, v, w. This completes the
proof.
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Redundant Persistent Acyclic Formations for Vision-Based Control of
Distributed Multi-Agent Formations

Alyxander Burns∗, Peter Klemperer†, Jaemarie Solyst‡, Audrey St. John§

Abstract

We present theoretical and experimental results on the
application of acyclic persistent leader-follower forma-
tions with redundancy to a distributed multi-agent sys-
tem. A leader-follower formation is defined on a set of
point agents constrained by fixed distance assignments
for following other agents; if satisfying the constraints
results in the distances between all pairs of agents being
maintained, the formation is persistent. The (generic)
persistence of a leader-follower formation in 2D is com-
binatorially characterized by a directed graph with one
“leader” vertex having no out-edges, one “co-leader”
vertex having exactly one out-edge (to the leader), all
other “follower” vertices having out-degree at least 2,
and an underlying minimally rigid (undirected) graph.

We provide theoretical results for three types of per-
sistent formations with redundancy, including an induc-
tive construction for generating redundantly persistent
graphs (the strongest notion of redundancy). We ap-
ply redundant persistence to multi-robot systems as a
mechanism for incorporating robustness to sensing fail-
ure. In particular, we implement the approach on a
vision-based distributed multi-robot platform. Using
acyclic orientations permits a simple, “wave”-based con-
trol that converges reliably, and redundant edges allow
the control to recover effectively from sensing limita-
tions (e.g., a camera’s limited field of view or obstruc-
tion by another robot).

1 Introduction

In applications such as collective transport [12], a for-
mation of robots may be required to maintain a single
“shape” or rigid structure. We focus on leader-follower
formations in the plane, where two pre-specified agents
determine the formation’s trajectory (e.g., via teleop-
eration): a leader with two degrees of freedom and a
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62.2°

Figure 1: From left to right is a schematic of bottom
view of robot (horizontal field of view is 62.2◦), 3D
model of robot design, picture taken of built robot with-
out cover to show hardware inside.

co-leader1 with one degree of freedom. The remaining
robots are called followers and compute their trajecto-
ries independently using local geometric conditions.

By modeling these geometric constraints as directed
edges, persistence theory [8] can be applied to dis-
tributed multi-agent systems as a way of controlling
a leader-follower formation so that it maintains global
structure through local sensing and actuation. Persis-
tence theory is analogous to rigidity theory, where the
combinatorics of bar-and-joint frameworks (defined by
fixed distance constraints between points) can capture
the rigidity or flexibility of the system. When applied to
a multi-agent formation, where agents are modeled as
points, the source of a directed edge can be assigned the
sensing and maintenance of the distance constraint,
reducing overall sensor and actuation costs.

Sensing on a mobile robotic platform is susceptible to
hardware and environmental limitations (for instance,
a hardware component may fail or the field of view of
a camera may be obstructed or limited by lighting).
To address this aspect, we build robustness into the
theoretical model using constraint redundancy. While
a combinatorial characterization and an efficient algo-
rithm for redundantly rigid 2D bar-and-joint frame-
works are both known, we are only aware of redun-
dancy in persistence being studied in our previous work
[3]. Furthermore, the behavior of persistent formations
does not always mimic the corresponding notions in
rigid frameworks. Particularly relevant to redundancy
is that, while adding an edge to a rigid framework main-
tains rigidity, adding an edge to a persistent for-
mation may cause persistence to be lost [8]. In [3],
it was shown that every rigidity circuit can be oriented

1The term “first-follower” is also used in related work.
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to create a persistent leader-follower formation (with a
weak notion of redundancy), and a subsequent recursive
algorithm was presented.

In a distributed system, each mobile robot must have
a control scheme for actuation that satisfies its set of
assigned distance constraints. We restrict our focus to
acyclic persistent formations, captured by a directed
graph with no cycles; a simple, “wave”-based control
approach can then be used to ensure reliable conver-
gence.

1.1 Related work.

Results from (undirected) rigidity theory have been ap-
plied in similar domains, including network localization
[4], decentralized approaches to rigid network construc-
tions [16, 19] and control of multi-robot formations in
3D [20]. A necessary condition for global rigidity is re-
dundant rigidity (drop any edge and remain rigid), lead-
ing to the adaptation of the “pebble game” algorithm
of [11] to a distributed network. In [5], redundancy is
noted as an obstacle to formation control due to real-
world sensing inconsistencies.

A directed application of rigidity theory to leader-
follower architectures appeared in [5], with persistence
theory developed in [8]. A combinatorial characteri-
zation for acyclic persistent leader-follower formations
was given in [8], along with an inductive “vertex addi-
tion” construction technique; the vertex addition step
is also known in the rigidity theoretic literature as a 0-
extension or a Henneberg I step. The work of [15] uses
this construction approach to generate minimally persis-
tent leader-follower formations; a control scheme based
on “target points” is proposed and analyzed through
simulation and proof of convergence. Given an undi-
rected graph, the existence of an acyclic persistent ori-
entation can be checked in polynomial time [1].

We apply the concept of “cooperative positioning,”
where follower robots sense other neighboring robots,
which are momentarily stationary and serve as “land-
marks” [13] for pose calculations. Distance or range
measurements can be sensed via an external motion cap-
ture system [20], a combination of GPS and computer
vision [9], or even infrared [10, 18]. We use popular on-
board computer vision techniques for sensing local in-
formation, allowing a completely distributed approach.

This paper builds upon the work of [3]; to the best
of our knowledge, the use of redundancy as a tool
for robustness had not been studied previously in the
literature2. In this work, we address additional no-
tions of redundancy in persistence, left open in [3],
and demonstrate the application on a vision-based dis-
tributed multi-robot platform (the simulation results of
[3] relied on idealized beacon sensors).

2Research in this area is scattered, appearing in various math-
ematical, computational and engineering settings.

Figure 2: (a) A rigid graph that is not minimally rigid
(removing a dashed edge does not result in a flexible
framework) and is not redundantly rigid (removing a
solid edge does result in a flexible framework). The
K4 subgraph is a rigidity circuit, as removing any edge
results in a minimally rigid graph. (b) The complete
bipartite graph K3,4 is a rigidity circuit.

1.2 Contributions.

We provide theoretical and applied results for acyclic re-
dundant persistence. Analogous to rigidity circuits, we
define a persistence circuit to be a directed graph such
that the removal of any edge results in a minimally per-
sistent graph. We give an algorithm for constructing a
persistence circuit from a rigidity circuit before proving
that a persistence circuit cannot be a leader-follower
formation. By relaxing the notion of redundancy to
sets of redundant edges (where any edge in the set may
be dropped without impacting persistence), the work
of [3] gives an algorithm for constructing a persistent
leader-follower formation from a rigidity circuit. In this
paper, we show that not every rigidity circuit has an
acyclic persistent leader-follower formation. Finally, we
work with a strong notion of redundancy by defining re-
dundantly persistent leader-follower formations, where
almost any edge can be dropped without losing persis-
tence, and give an inductive construction algorithm.

We conclude by applying the theoretical framework
to a homogeneous formation of non-holonomic (differ-
ential drive) robots, each equipped with a single cam-
era for sensing (see Figure 1). We provide experimental
results that validate the ability for a fully distributed
multi-robot formation to move and converge to a global
structure, where redundancy provides robustness in the
presence of limited sensing capabilities.

2 Preliminaries

Our work relies on persistence theory [8] and rigidity
theory (see, e.g., [7, 17]). For containment, we give a
high-level overview of the relevant concepts here.

2.1 Rigidity theory

Let G = (V,E) be an undirected graph with n ver-
tices and ` : E → R an assignment of distances (or
lengths) to each edge; we refer to (G, `) as a (bar-and-
joint) framework. If p ∈ (R2)n assigns positions to each
vertex such that the distance constraints are satisfied,
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2
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3

4

(a) An acyclic persistent
formation with redundancy;
any edge from vertex 4 can
be dropped without losing
persistence.

2

1

3

4

(b) Without an edge, the
formation from 3a is mini-
mally persistent; its acyclic-
ity permits an ordering with
3 waves: ({1}, {2}, {3,4}).

2

1

3

4

(c) Dropping a different edge
gives a different minimally
persistent formation with an
ordering requiring 4 waves:
({1}, {2}, {3},{4}).

4

2

1

3

4

(d) The underlying (rigid)
graph remains the same, but
reversing edge 43 in the for-
mation from 3c results in a
formation that is not persis-
tent.

Figure 3: Examples of persistent and not persistent graphs on 4 vertices.

i.e., ||p(i) − p(j)|| = l(ij)2 for each edge ij ∈ E, we
refer to p as a realization of the framework (G, `). A
graph is said to be (generically3) rigid if the distances
between all pairs of vertices is determined by the dis-
tances specified by edges; otherwise, it is flexible. A
graph is minimally rigid if the removal of any edge re-
sults in a flexible graph. Rigid graphs that are not min-
imally rigid include redundant edges; such a graph is
called redundantly rigid if the removal of any edge re-
sults in a rigid graph. Minimality of redundant rigidity
is captured through the notion of a rigidity circuit (cor-
responding to the circuits of the rigidity matroid), a
rigid graph where removing any edge results in a mini-
mally rigid graph. Figure 2(a) depicts a rigid graph that
is neither minimally rigid nor redundantly rigid; remov-
ing any dashed edge maintains rigidity, but removing
a solid edge results in a flexible graph. The complete
graph K4 (dashed edges) and complete bipartite graph
K3,4 (also in Figure 2) are rigidity circuits.

Rigidity is defined via undirected graphs, so a
straightforward application to a multi-robot formation
could require both robots to sense and maintain the con-
straint dictated by an edge, incurring unnecessary sens-
ing, computation and actuation costs. Therefore, the
notion of persistence provides the analogous definition
in the directed setting: a directed graph is persistent if
each vertex can be assigned a position satisfying the dis-
tance constraints dictated by its out-going edges and the
pairwise distances between all vertices is determined.

Figure 3 highlights the distinct behavior of persis-
tence. The formations of Figures 3c and 3d share the
same underlying undirected (rigid) graph, but only the
formation of Figure 3c is persistent. The formation de-
picted in Figure 3d does not have the property that
every vertex can satisfy its assigned constraints. Intu-
itively, vertex 4 can move anywhere on a circle about

3The technical definition of genericity is outside of the scope
of this paper, but can be thought of as applying to “almost all”
realizations (i.e., those not in a special position).

vertex 1. Vertex 3 can find a position that satisfies two
of the three out-going constraints; however, for almost
all positions of vertex 4, such as the faded gray position,

the third constraint (red edge
−→
34) will be violated.

The formal definition of persistence requires technical
overhead that is outside the scope of this paper. Instead,
we will use the following characterization of persistence
from Theorem 3 of [8]: a directed graph is persistent
if and only if the underlying undirected graph of ev-
ery subgraph obtained by removing out-edges from ver-
tices with degree ≥ 2 until all vertices have out-degree
≤ 2 is rigid. In particular, a directed graph is min-
imally persistent (i.e., removing any constraint results
in a loss of persistence) if and only if its underlying undi-
rected graph is (minimally) rigid and every vertex has
out-degree at most 2. For example, the graph in Fig-
ure 3a is persistent; without an edge, as in Figures 3b
and 3c, it is minimally persistent. We are interested in
persistent leader-follower formations, where there is a
“leader” vertex with out-degree 0, a “co-leader” vertex
with out-degree 1 incident to the leader and all other
vertices having out-degree at least 2. Since the leader
and co-leader vertices have 3 degrees of freedom between
them, their positions can be used to determine the co-
ordinates of a persistent formation.

3 Results

We present results on three types of redundancy for
persistence theory, analogous to those found in rigidity
theory: (1) persistence circuits, (2) persistent forma-
tions with redundant edges, and (3) redundantly per-
sistent formations. Due to space constraints, we refer
the reader to the Appendix for proofs of the results (in-
cluding proofs of algorithm correctness) in this section.

3.1 Persistence circuits

In rigidity theory, minimal redundancy is captured by
rigidity circuits: removing any edge results in a mini-
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Figure 4: Construction of an acyclic redundantly persistent formation using Algorithm 2.

mally rigid graph. Analogously, we define a persistence
circuit to be a graph such that any edge’s removal gives
a minimally persistent graph.

A persistence circuit must have an underlying rigid-
ity circuit. Since rigidity circuits are well-understood
combinatorially and can be constructed inductively [2],
Algorithm 1 produces a persistence circuit from a rigid-
ity circuit. The (2, 3)-pebble game algorithm of [11, 14],
which appears as a subroutine, determines rigidity of
an undirected graph in quadratic time by constructing
a directed graph. If the input graph is rigid, the out-
put will be a directed graph with out-degree at most
2 and an underlying undirected minimally rigid graph,
i.e., a minimally persistent graph. Throughout the algo-
rithm, pebbles are used as a mechanism for controlling
the out-degree of a vertex; “pebble collection moves”
rely on depth-first search to re-orient directed edges.

Algorithm 1 Construction of a persistence circuit from
a rigidity circuit

Given a rigidity circuit G = (V,E):

1. Remove any edge e = ij ∈ E.

2. Play the (2, 3)-pebble game on G′ = (V,E \ {e}) to
obtain a directed graph H.

3. If i has 0 pebbles, use pebble collection moves on
H to collect a single pebble on i.

4. Output the resulting directed graph with the addi-

tional edge
−→
ij .

While persistent, the class of graphs output by Algo-
rithm 1 are not leader-follower formations. In fact, we
can show the following:

Lemma 1 A persistent leader-follower formation can-
not be a persistence circuit.

Although we cannot have leader-follower formations
which are persistence circuits, [3] presents an algorithm
that orients a rigidity circuit to be a persistent leader-
follower formation with a more restricted notion of re-
dundancy. The graphs produced contain sets of redun-
dant edges; for example, the set of out-edges from vertex

4 in Figure 3a is redundant, as any edge may be dropped
without losing persistence.

3.2 Acyclic persistent formations with redundant
edge sets

We now restrict our focus to acyclic persistent forma-
tions, which permit a “wave”-based control approach to
satisfying the constraints. These are characterized com-
binatorially in Theorem 5 of [8]: an acyclic graph is per-
sistent if and only if it has (1) one “leader” vertex with
out-degree 0, (2) one “co-leader” vertex with out-degree
1, incident to the “leader,” (3) all other “follower” ver-
tices with out-degree 2 or larger. Then there exists
a Henneberg sequence for the vertices (corresponding
to an inductive “Henneberg”-type construction of the
underlying undirected rigid graph) such that each ver-
tex only has out-going edges to vertices earlier in the
sequence. The first two vertices in the sequence are
the leader and co-leader. We can group the subsequent
vertices into a sequence of k waves (w0, w1, . . . , wk−1),
where wi ⊂ V , such that the vertices in a wave only
have out-going edges to vertices in earlier waves. For
example, Figure 3b depicts a graph with 3 waves, while
Figure 3c requires 4 waves. We use the waves to con-
trol a formation so that it converges reliably, as shown
through the experimental results of Section 4.

Note that the algorithm from [3] can be used to
find an acyclic persistent leader-follower orientation of
a rigidity circuit, if one exists, by brute-force consider-
ation of the removal of every edge. This naturally leads
to the question of whether there are rigidity circuits for
which no acyclic persistent leader-follower orientations
exist. The following gives the answer in the negative.

Lemma 2 There are no acyclic leader-follower persis-
tent orientations of the rigidity circuit K3,4.

3.3 Inductive constructions for acyclic redundantly
persistent leader-follower formations

Following the results from the previous section, it is
of interest to understand properties of acyclic persis-
tent leader-follower formations. Theorem 5 of [8] im-
plies that the out-edges of any follower vertex with out-
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Figure 5: Screenshots of persistent formations taken from overhead during an experiment. The robot IDs and
specified distance constraint (in meters) label the graph.

degree larger than 2 form a redundant set of constraints:
any subset of edges such that at least 2 remain can be
dropped without losing persistence. For example, con-
sider the Butterfly graph of Figure 5d. Vertex 1 is the
leader, vertex 2 the co-leader and vertices 3, 4 and 5
are followers. Since vertices 4 and 5 have out-degree
3, their out-edge sets (dashed and dotted, respectively)
each form a redundant set; any out-edge can be dropped
from either set without losing persistence.

Algorithm 2 constructs graphs that are acyclic per-
sistent leader-follower formations which satisfy a ver-
sion of the (strong) notion of being redundantly persis-
tent. We define this notion in the context of an acyclic
leader-follower formation, which always contains a base
triangle, so we do not require redundancy within it. Let
G = (V,E) be an acyclic persistent leader-follower for-
mation and vL, vC , v3, . . . , v|V | be a Henneberg ordering
for G; let Eb = {−−−→vCvL,

−−→v3vL,
−−→v3vC} be the base triangle

edge set. We call G redundantly persistent if the re-
moval of any edge e not in the base triangle results in a
persistent graph. We extend the trilateration approach
of [4] to persistence to inductively construct acyclic re-
dundantly persistent leader-follower formations. Refer
to Figure 4 for an example run of the construction. Note
that any set of vertices can be chosen in Step 2(b); the
choice could be random or constrained by additional cri-
teria (such as visibility determined by the geometry of
a formation).

4 Application to multi-robot formations

Acyclic persistent leader-follower formations can be con-
trolled with reliable convergence by having each wave
(in order) sense and satisfy constraints; after the final
wave is completed, the resulting positions form a real-
ization for the underlying framework. We validate this
approach through experiments on four acyclic leader-
follower formations with varying levels of redundancy,
depicted in Figure 5. The persistent graphs are overlaid
on the multi-robot formation, with distances (in me-
ters) labeling the edges. We chose these formations to
analyze the impact of both combinatorial and geometric
properties.

Algorithm 2 Inductive construction of a redundantly
persistent acyclic formation

1. Initialize a set of vertices V = {vL, vC} and a set
of edges A = {−−−→vCvL}

2. For i ∈ [3..n]:

(a) If i = 3, add edges −−→vivL and −−→vivC to A

(b) Else select a set V ′ ⊆ V of at least 3 distinct

vertices and add edges
−−→
viv
′, for all v′ ∈ V ′, to

A

(c) Add vi to V

3. Output the directed graph H = (V,A)

The Rectangle formation is minimally persistent,
composed of four robots geometrically positioned at the
corners of a rectangle; the two robots (vertices 3 and 4)
are constrained to follow leader vertex 1 and co-leader
vertex 2. The addition of edge

−→
43 gives the Kite forma-

tion, where robot 4 has a set of 3 redundant out-edges;
any edge may be lost without impacting the persistence
of the formation. The Star formation is persistent with
the out-edges of vertex 5 forming a redundant set; any
pair of out-edges may be dropped without impacting
persistence. Note that the Star formation is not redun-
dantly persistent, as dropping an out-edge from vertex
4 will result in the loss of persistence. Finally, the But-
terfly formation, produced by Algorithm 2 on 5 vertices,
is redundantly persistent.

In all formations, vertices 1 and 2 are the leader and
co-leader, together determining the global positioning of
the formation. For ease of control, we simplify the im-
plementation using a single leader robot platform con-
taining the points for the leader and co-leader and use
the same predetermined path for the leader throughout
our experiments. Followers sense their positions relative
to neighbors using a dictionary of OpenCV-Aruco [6]
computer vision markers. When redundant edge sets
are present, the follower has a prioritized list of target
pairs to use for constraint maintenance. This results in a
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Figure 6: Scatter plots illustrating the tracks of each robot for each of four formations. We outline the convex hull
(cyan) of each formation during every tenth measurement to emphasize the formation.

more robust multi-agent system than using a minimally
persistent formation, as the formation can recover from
sensing failure, e.g., due to environmental factors, such
as lighting, or occlusion of targets by other robots or
objects. Given the relative positions of two targets, the
follower computes a point satisfying both constraints
(choosing the closer point of intersection of the two cor-
responding circles) and moves directly to that position.
We refer the reader to the Appendix for more details on
the hardware setup and wave-based control approach.

4.1 Experimental results

An overhead camera was used to obtain the coordinates
of each robot for analysis. Figure 6 illustrates the move-
ment tracks of the robots in each of the tested forma-
tions. Note that, for the Butterfly formation, the initial
sharp turn of the leader caused Robot ID-5 to move out
of the view of the overhead camera. We overlay the con-
vex hull at timed intervals to highlight the maintenance
of the overall structure.

Formation From To Robot 1 To Robot 2 To Robot 3

Rectangle
Robot 3 0.012±0.020, 0.168 0.004±0.019, 0.136 NA
Robot 4 0.009±0.012 ≤ 0.163 0.005±0.012, 0.166 (-0.027±0.009 ≤ 0.057)

Kite A
Robot 3 0.005±0.008 ≤ 0.142 -0.001±0.008 ≤ 0.097 NA
Robot 4 0.005±0.012 ≤ 0.130 -0.001±0.013, 0.122 -0.020±0.010 ≤ 0.145

Kite B
Robot 3 0.008±0.015, 0.161 0.004±0.019 ≤ 0.230 NA
Robot 4 0.007±0.014 ≤ 0.149 0.001±0.013 ≤ 0.194 -0.018±0.018 ≤ 0.139

Kite C
Robot 3 0.005±0.019≤ 0.136 -0.002±0.018 ≤ 0.142 NA
Robot 4 0.007±0.028 ≤ 0.181 -0.014±0.032 ≤ 0.206 0.004±0.025 ≤ 0.132

Table 1: Constraint accuracy for four formations: the
Rectangle formation and three variations of Kite.

For the Rectangle and Kite formations, Table 1 pro-
vides more precise validation of constraint maintenance.
Since the Kite formation has a set of redundant edges
from vertex 4, we ran 3 experiments, varying the pri-
ority list of pairs of vertices to follow: Kite A used
({1,2},{1,3},{2,3}), Kite B used ({1,3},{2,3},{1,2}) and
Kite C used ({2,3},{1,3},{1,2}). The results were com-

piled by calculating the mean error for each pair-wise
constraint within each formation, then calculating the
minimum, mean and maximum of those means; they
are formatted as: mean error during camera wave (m)
±standard deviation ≤ max error from constraint. The
maximum single-wave leader movement is 0.112 m and
10 degrees, which affects the maximum error from con-
straint throughout the movement waves. The results
in parentheses were not directly controlled, but instead
maintained by the formation. Additional results and
data may be found in the Appendix.

5 Remarks

Rigidity and persistence theory are typically applied as
static analysis tools, but control of a multi-agent mobile
formation must include approaches for dynamic move-
ment. By working with acyclic formations, we are able
to exploit Henneberg sequences (developed primarily as
a tool for inductive proof techniques) to implement a
wave-based control scheme with reliable convergence.

Performing experiments through a low-cost hardware
platform can give insight into the challenges to creat-
ing a robust control for multi-robot formations; popu-
lar vision-based sensing is susceptible to geometric and
environmental factors, including viewing angle, lighting
and occlusion. Our results confirmed the robustness
brought to the system through the incorporation of re-
dundancy in the theoretical model, allowing the control
to recover from sensing loss.

While redundancy in rigidity theory is well-
understood, the analogous concepts in persistence the-
ory have not been well-studied. Our results reveal dis-
tinct behaviors of redundancy in the directed graphs of
persistence theory that do not arise in the undirected
graphs of rigidity theory.

We are grateful to the anonymous reviewers for their detailed
and helpful comments.
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Appendix

5.1 Proofs for theoretical results

We include here the proofs for correctness of Algorithm 1,
Lemma 1, Lemma 2 and Algorithm 2.

Proof. [of correctness of Algorithm 1] Let H = (V,A) be
the output of Algorithm 1. By construction and Invariant
(1) of Lemma 10 of [14] (for any vertex v, the sum of the
number of pebbles on v and the out-degree of v is 2), H
has either 1 vertex with out-degree 0 or 2 vertices with out-
degree 1; all other vertices have out-degree 2. We show that
H is a persistence circuit. Let e ∈ A and J = (V,A\e). Then
J either has (1) 3 vertices with out-degree 1, and all other
vertices with out-degree 2; or (2) 1 vertex with out-degree
0, 1 vertex with out-degree 1, and all others with out-degree
2. Since the underlying (undirected) graph of H is a rigidity
circuit, the underlying graph of J is minimally rigid. Thus,
by Theorem 3 of [8], J is minimally persistent and H is a
persistence circuit. �

Proof. [of Lemma 1] Let H = (V,A) be a persistent leader-
follower formation with vC , vL the leader and co-leader ver-
tices having out-degree 0 and 1, respectively. Then there
must be exactly one vertex x with out-degree 3 and all other
vertices with out-degree 2. Assume, for a contradiction, that
H is a persistence circuit; since the underlying graph of H
must be a rigidity circuit, |V | ≥ 4. Let y ∈ V be a ver-
tex with out-degree 2 and e = −→yz be one of the out-going
edges. By assumption, J = (V,A \ e) is minimally persis-
tent and its underlying graph is minimally rigid. Since x has
out-degree 3, dropping any out-going edge must result in a
persistent graph J ′ by Theorem 3 of [8]. However, the un-
derlying graph of J becomes flexible after the removal of any
edge, so J ′ cannot be persistent, giving the contradiction.

�

Proof. [of Lemma 2] Consider any persistent leader-follower
orientation G = (U, V,E) of K3,4, where |U | = 3 and |V | =
4 are disjoint vertex sets. We show it must have a cycle.
Suppose, for a contradiction, it is acyclic. Since K3,4 is
a rigidity circuit, |E| = 2n − 2 edges, there must be one
vertex vL with out-degree 0, one vertex vC with out-degree
1, one vertex x with out-degree 3 and all other vertices with
out-degree 2. Since G is an acyclic persistent orientation,
there exists an ordering of vertices vL, vC , v3, . . . , v7 such
that the out-edges of each vi are directed to vertices with
smaller indices. Then x = v7 ∈ V and v3, . . . , v6 must have
out-degree 2. However, v6 is incident to 3 vertices of the
set {vL, vc, v3, . . . , v5} and must be oriented towards them;
thus, v6 has out-degree 3, giving the contradiction. �

Proof. [of Algorithm 2] Let G be the output of an exe-
cution of Algorithm 2. By construction, G is an acyclic
graph with (1) one “leader” vertex with out-degree 0, (2)
one “co-leader” vertex with out-degree 1, incident to the
“leader,” (3) all other “follower” vertices with out-degree
3. By Theorem 5 of [8], G is persistent. Let e 6∈ Eb =
{−−−→vCvL,

−−→v3vL,
−−→v3vC}; then e is an out-edge from a vertex of

degree 3. By Theorem 3 of [8], the graph obtained by remov-
ing e is persistent. Thus, G is redundantly persistent. �

Formation {1,2} {1,3} {2,3} Search

Kite A 98% 0% 0% 2%
Kite B 0% 99% 1% 0%
Kite C 0% 76% 23% 1%

Star Robot 3 95% NA NA 5%
Star Robot 4 100% NA NA 0%
Star Robot 5 96% 0% 0% 4%

Butterfly Robot 3 100% NA NA 0%
Butterfly Robot 4 4% 71% < 1% 25%
Butterfly Robot 5 7% 1% 75% 17%

Table 2: Summary of the landmark-pair selections taken
by robots during experiments. Followers require two
landmarks and choose from a prioritized list of pairs
(column labels) when more are available; the top prior-
ity pair is boldface in each row.

5.2 Experimental details

This section contains a more detailed description of our ex-
perimental setup as well as additional data and analysis.

Setup. Figure 5 provides a depiction of the hardware
design. Robots are based on a Pololu Romi4 wheeled
differential-drive chassis and electronics fitted within a oc-
tagon camera target body. The leader is fitted with two
camera targets 30 cm apart, centered over the Romi Chas-
sis. On-board computation is provided by a Raspberry Pi
version 3 with connected Raspberry Pi Camera (v2, 8 MP
version). These robots are relatively low-cost, with a total
bill-of-materials under $200 USD.

The robot shells are designed as an octagonal prism, with
2.7” edges, and 2.3” square Aruco vision markers centered
within each face; a unique marker was assigned to each
robot, allowing it to be used as an identifier. We chose 8
sides as it experimentally produced the best results. Shells
with fewer sides were more susceptible to marker identifica-
tion loss due to viewing angle or occlusion factors. Using
more sides (while keeping the overall shell dimensions con-
stant) forced a decrease in the size of the markers, resulting
in marker recognition loss susceptible to distance factors; the
octagonal prism allowed recognition up to 3 meters away.

Formation control. The overall movement of the for-
mation is dictated by the leader robot; individual follower
robots move to maintain their specified constraints. By
working with acyclic persistent formations, we can use a sim-
ple “wave” control that converges reliably. Robots only move
during their assigned waves, with the specific wave assigned
to a robot using a Henneberg ordering for the formation.
Each wave ends only when all robots assigned to that wave
have finished moving and satisfied their constraints.

Separating the formation into waves creates several ad-
vantages beyond reliable convergence: the landmarks (Aruco
markers) tracked by the followers are not moving, resulting
in improved camera accuracy, followers need only minimize

4Pololu Corporation: https://www.pololu.com/category/203/romi-
chassis-kits
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constraint deviation with their landmarks, and fewer robots
moving reduces the risk of collisions. However, the wave-
motion procedure suffers from the disadvantage that the
minimum deviation from the range-constraints is bounded
by the distance traveled by the leader, and the cascading
effects as the following waves move increase the error.

Redundancy data and analysis. Table 2 summarizes
the landmark usage of each robot in determining move-
ment targets throughout 5 experiments on the formations
with redundancy: 3 with the Kite formation (varying the
top landmark-pair in the priority list), one for the Star
and one for the Butterfly formation. Each robot made ap-
proximately one-hundred movements, and the results are re-
ported as a percentage of total movements (including those
required rotate while searching for markers). Note that
sensing constraints play a role in the experiment for Kite
C, where (Robot 2,Robot 3) is the prioritized pair, but
(Robot 1,Robot 3) determines 76% of the movements. The
geometry of the formation places landmarks Robot 2 and
Robot 3 at the extreme opposite edges of Robot 4’s field-of-
vision, making them less likely to be viewed simultaneously.
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Abstract

Let P be a set of points in Rd, B a bicoloring of P and O
a family of geometric objects (that is, intervals, boxes,
balls, etc). An object from O is called balanced with
respect to B if it contains the same number of points
from each color of B. For a collection B of bicolorings of
P , a geometric system of unbiased representatives (G-
SUR) is a subset O′ ⊆ O such that for any bicoloring
B of B there is an object in O′ that is balanced with
respect to B.

We study the problem of finding G-SURs. We obtain
general bounds on the size of G-SURs consisting of in-
tervals, size-restricted intervals, axis-parallel boxes and
Euclidean balls. We show that the G-SUR problem is
NP-hard even in the simple case of points on a line and
interval ranges. Furthermore, we study a related prob-
lem on determining the size of the largest and smallest
balanced intervals for points on the real line with a ran-
dom distribution and coloring.

Our results are a natural extension to a geometric con-
text of the work initiated by Balachandran et al. on
arbitrary systems of unbiased representatives.

1 Introduction

Let P be a set of size n. A bicoloring B of P is a color
assignment (red or blue) of the points in P , that is,
B : P → {Red, Blue}, where B contains at least one
red and at least one blue point. For a bicoloring B, a
subset of points P ′ ⊆ P is called balanced with respect
to B if P ′ contains the same number of red and blue
points, with respect to B. Given a set P and a set
of bicolorings B, a system of unbiased representatives
(SUR) consists of a collection S of subsets of P such
that for every bicoloring B ∈ B, there is at least one
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subset in S that is balanced with respect to B.

Balachandran et al. [2] studied various problems related
to finding SURs, with the motivation that SURs are
useful for product testing over a large population. For
example, suppose the effectiveness of a drug on patients
is studied with respect to a large set of binary attributes
related to physical characteristics, such as body weight,
height, age. It is desirable to choose few families of
test subjects that help to represent these attributes in
a balanced manner.

Now, consider an instance where in addition we are
given specific geographic locations for our test subjects
and we are asked to pick them close to each other to save
costs in sampling. In this situation, we cannot choose
arbitrary families of test subjects: we would be required
to impose some geometric constrains on them.

A natural way to model this restriction is to represent
the population by a point set P in Euclidean space
of some dimension and to sample using ranges from
some fixed family of geometric objects, that is, intervals,
boxes, balls, etc. This leads to the following definitions.

For a bicoloring B of P , we say that a geometric range
is balanced with respect to B if the subset of points of
P that it contains is balanced with respect to B. Given
a set P , a set of bicolorings B and a family of allowed
geometric ranges O, a geometric system of unbiased rep-
resentatives (G-SUR) consists of a subfamily O′ ⊆ O
such that for every bicoloring B ∈ B, there is at least
one object in O′ that is balanced with respect to B.

Problem 1 (G-SUR) Given a set P ⊂ Rd of n points,
a set of bicolorings B of P , and a collection of allowed
geometric ranges O, find a G-SUR of minimal size.

For a specific attribute, it is desirable to understand
how big a balanced range (for this attribute) can be.
Assuming attributes are uniformly distributed over the
population, leads to the following problem:

Problem 2 (Balanced Random Covering) Given a
set P of n points and a random bicoloring B of P (cho-
sen uniformly at random from a collection of bicolorings
B of P ), what can be said about the behavior of the size
of the largest/smallest balanced interval as n goes to in-
finity?

In addition to the practical motivation, Problem 1 and
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Problem 2 are related to the vast literature on color-
ings of geometric objects in which a balanced property
is desired. This includes classical results as the ham-
sandwich theorem and its algoritmic version by Lo et
al. [6]. Other relevant results on balanced coloring of
point sets include the balanced island problem studied
by Aichholzer et al. [1], balanced partitions problem for
3-colored planar sets by Bereg et al. [4], and balanced
4-holes in bichromatic point set [3].

1.1 Our Results

As an introduction to the subtleties of the geometric
context, we study the G-SUR problem for n points on
a line and interval ranges in Section 2. We show, given
a set of n points on a line and a collection of interval
ranges, there is G-SUR of size n − 1. Moreover, this
bound is tight, that is, there are a set of bicolorings for
which n− 1 intervals are required to obtain a balanced
interval (Theorem 3). Motivated by statistical signifi-
cance, we then focus on G-SURs where the set of ranges
are intervals of size 2k. Here, we show that for any set of
bicolorings B, where each bicoloring in B contains more
than

⌊
n
2k + 1

⌋
(k−1) red and

⌊
n
2k + 1

⌋
(k−1) blue points

such a G-SUR exists (Theorem 4). Next, for m < n/2,
we give bounds on the size of G-SURs for when each
bicoloring of B has at least m red and m blue points.
More precisely, we show that n − m intervals are al-
ways sufficient and sometimes necessary (Theorem 6).
All these results extend to higher dimensions to point
sets in Rd and G-SURs consisting of axis-parallel boxes.
Section 3 provides the hardness results. We show that
the problem of finding a minimal size G-SUR is NP-
hard even in the simple case of points on the real line
and interval ranges (Theorem 7). To do this we provide
a reduction from the Set Cover problem.

In Section 4, we study the problem for points in Rd and
G-SURs consisting of Euclidean balls. Once more, we
show n − 1 balls are sometimes necessary and always
sufficient to give a G-SUR (Theorem 10).

Finally, in Section 5, we study the Balanced Random
Covering problem, where we compute the asymptotic
size of the largest/smallest balanced interval for uni-
formly random bicolorings of points on a line in a dis-
crete model (Theorem 11) and a continuous one (The-
orem 12).

2 Points on a Line and Interval G-SURs

Let P = {p1. . . . , pn} be a set of points on the real line
R. Throughout this section we assume that {p1. . . . , pn}
is sorted from left to right on the real line. Here our goal
is to find a minimum size G-SUR consisting of interval
ranges for a given family of bicolorings B of P .

2.1 Lower and Upper Bounds

In this section we show that n − 1 intervals are always
sufficient and sometimes necessary.

Theorem 3 Let P = {p1, . . . , pn} be a set of n points
on a line. Then, the following hold:

(a) There exists a set of n− 1 bicolorings B, for which
any G-SUR consisting of intervals has size at least
n− 1 and

(b) There exists a set I of n− 1 intervals such that for
any bicoloring B of P there is at least one balanced
interval in I with respect to B.

Figure 1: An illustration of the case where n−1 intervals
are necessary.

Proof. We prove the first part of the theorem by con-
structing an example where n − 1 intervals are nec-
essary. Without loss of generality, we can assume
P = {1, 2, . . . , n}. We consider the set of bicolorings
B = {B1, . . . , Bn−1} where the bicoloring Bi colors the
first i-points red and the remaining (n − i) points blue
(see Figure 1).

A balanced interval with respect to Bi may be shortened
until its endpoints are integers. Thus, we may choose
a minimal G-SUR that consists only of intervals with
integral endpoints. In such a system, an interval that is
balanced for Bi must be symmetric around 2i+1

2 . Dif-
ferent bicolorings need intervals symmetric around dif-
ferent points, so a G-SUR for B requires at least n − 1
intervals.

For the second part of the theorem consider

I = {[p1, p2], [p2, p3], . . . , [pn−1, pn]}.

Let B be any bicoloring of P . We claim that there
exists an interval in I which is balanced with respect to
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B. Indeed, if this is not the case then all the intervals
in I are monochromatic, so

B(p1) = B(p2) = . . . = B(pn),

which is a contradics the fact that B contains at least
one red and one blue point. This concludes the proof of
(b). �

Theorem 3 is already evidence of the contrast between
the geometric and the abstract setting. While Balachan-
dran et al. proved that n − 1 arbitrary sets are some-
times necessary, their example consists of all 2n−2 pos-
sible bicolorings. The theorem above shows that only
taking (n−1) bicolorings are enough for the necessity, in
the geometric context. Theorem 3 says that this is still
the case even if we further restrict the allowed ranges to
be intervals.

An analogous proof shows that the n−1 bound carries to
point sets in Rd and G-SURs consisting of axis-parallel
boxes.

2.2 G-SURs Consisting of Intervals of Size 2k

In this section we fix a positive integer k and consider
the case where the G-SUR consists of intervals of length
exactly 2k. Certainly, with this restriction it is not pos-
sible to have a G-SUR for every possible set of bicolor-
ings. For example, consider any bicoloring B that con-
tains exactly one red point. No interval of size greater
than 2 is balanced with respect to B. In the following
lemma we show that if each color is large enough, then
there exists a G-SUR consisting of intervals of length
2k.

Theorem 4 Given n ≥ 2k, a set P = {p1, . . . , pn} of
points on the real line and a set of bicolorings B, where
each bicoloring in B contains more than

⌊
n
2k + 1

⌋
(k−1)

red and
⌊

n
2k + 1

⌋
(k−1) blue points, there exist a G-SUR

for B consisting of intervals of size 2k.

Proof. Let B be a bicoloring of P containing more than⌊
n
2k + 1

⌋
(k − 1) red and

⌊
n
2k + 1

⌋
(k − 1) blue points.

Consider now the set of consecutive disjoint intervals of
size 2k. More formally,

I = {Ij |Ij = [pj , pj+2k−1] where 1 ≤ j ≤ n− 2k + 1}.

Let rj (resp. bj) be the number of red (resp. blue)
points in the interval Ij . We say that an interval in I
is red (resp. blue) if rj > bj (resp. bj > rj).

We claim that I is a G-SUR. For the sake of contradic-
tion, we suppose that every interval from I is either red
or blue. We may assume I1 is red.

Claim 5 Every interval Ij ∈ I is red.

Proof. We prove this by induction on j. By assump-
tion, I1 is red. Now, suppose that Ij is red, that is,
rj > bj , so rj ≥ k + 1. As we shift from Ij to Ij+1 we
lose or gain at most one red point, so rj+1 ≥ rj−1 ≥ k.
It is then impossible for Ij+1 to be blue. Since each
interval is either red or blue, Ij+1 must be red. �

Consider now the set of disjoint intervals

I ′ = {Ij |j ≡ 1 mod 2k, 1 ≤ j ≤ n− 2k + 1}.

The intervals from I ′ and the interval In−2k+1 cover the
entire set P . Since every interval from I is red, it has
at most k − 1 blue points. Therefore, the coloring has
at most ⌊ n

2k
+ 1
⌋

(k − 1)

blue points. This yields a contradiction to the number
of blue points of B given by the hypothesis, so I must
have a balanced interval with respect to B. �

The result in Theorem 4 is tight, in the sense that if we
have fewer points of either color we cannot guarantee the
existence of a G-SUR of size 2k. This can be witnessed
by an example on n = 3k−1 points on the real line and
the coloring B whose first k − 1 and last k − 1 points
are blue, and the middle k + 1 ones are red.

An analogous proof shows that Theorem 4 extends to
point sets in Rd and G-SURs consisting of axis-parallel
boxes of size 2k.

2.3 G-SURs for m-restricted Bicolorings

For m ≤ n/2, a bicoloring B of P is m-restricted if it
contains at least m points of each color. In this section
we study the size of G-SURs for m-restricted colorings.

If n is even and m = n/2, then there is a G-SUR of size
1: the one consisting of the interval [p1, pn]. Otherwise,
we have the following result.

Theorem 6 Let P = {p1, . . . , pn} be a set of n points
on the real line and m < n/2 a positive integer. Then,

(a) There exists a set of n−m bicolorings B, for which
any G-SUR consisting of intervals has size at least
n−m.

(b) There exists a set I of n−m intervals such that for
any bicoloring B of P there is at least one balanced
interval in I with respect to B.

Proof. To prove the second part of the theorem con-
sider the set of points

P ′ = {p1, . . . , pn−m+1},
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and let I be the G-SUR given in Theorem 3 for P ′,
which is of size n −m. Let B be any m-restricted bi-
coloring of P . Note that P \ P ′ is of size m − 1, so by
definition it is impossible that all the red or blue points
are completely contained in P \ P ′. Then P ′ contains
both blue and red points, so the restriction B′ of B to
P ′ is also a valid coloring for P ′. We may then take a
balanced interval I ∈ I with respect to B′. This inter-
val is also balanced with respect to B, so I is a G-SUR
for all the m-restricted bicolorings of P .

Now we prove that n−m intervals are sometimes nec-
essary. We may assume P = {1, 2, . . . , n}. We consider
the set of m-restricted bicolorings B = {B1, . . . , Bn−m}
defined as follows. For i = 1, 2, . . . , n− 2m + 1, the bi-
coloring Bi has the leftmost m+ i−1 points colored red
and the rest blue. For i = n − 2m + 2, . . . , n −m, the
bicoloring Bi has the points in the interval

{i− n + 2m, . . . , i + m− 1}

colored red and the remaining m points colored blue.
See Figure 2 for an example.

Figure 2: An example of the construction in which n−m
intervals are needed in Theorem 6 for n = 9 and m = 3.
Vertical dashed segments indicate where the symmetries
must hold.

As in the proof of Theorem 3, we may assume that a G-
SUR consists of intervals with integral endpoints. For
i = 1, 2, . . . , n−2m+1, an interval balanced with respect
to Bi must be symmetric around 2m+2i−1

2 .

For i ≥ n−2m+2, an interval balanced with respect to
Bi cannot have blue points from both the left and right
sides, as otherwise it would have n − m > n/2 > m
red points, but at most m blue points. So it has to
be symmetric either around the 2i−2n+4m−1

2 or around
2i+2m−1

2 .

Regardless of these final choices, we obtain intervals
symmetric around n−m different points, so they must
all be different. This finishes the proof.

�

3 Hardness Results

In this section we study the computational aspect of
finding minimal size G-SURs for points on the real line
using interval ranges. We receive as input a set of n
points P = {p1, . . . , pn} and a family of bicolorings B =
{B1, . . . , Bm} of P . We expect as output the size of
the minimal G-SUR consisting of interval ranges. We
denote this problem as Minimal Interval G-SUR.

Theorem 7 The Minimal Interval G-SUR prob-
lem is NP-hard.

B1

B2

B3

B4

B5

p1 p′1 p2 p′2 p3 p′3

S1 S2 S3 S4

p4 p
′
4

Figure 3: An illustration of the construction used in
Theorem 7. In each bicolring Bi, the blue points be-
tween two consecutive pairs {pi, p′i} and {pi+1, p

′
i+1} are

dummy points.

Proof. We give a reduction from the Set Cover prob-
lem. In the Set Cover problem, we are given a set of
elements X = {x1, . . . , xn} (called the universe), and a
collection S = {S1, . . . , Sm} of m subsets, where each
Si ⊆ X, and

⋃
1≤i≤m Si = X. The goal is to identify

the smallest sub-collection of S whose union equals the
universe.

From an instance (X,S) of the Set Cover prob-
lem we create an instance (B, P ) of the Minimal
Interval G-SUR problem in the following manner.
For every set Si, we create a pair of consecutive
points {pi, p′i}. The points are in the following or-
der {{p1, p′1}, {p2, p′2}, . . . , {pm, p′m}} on the line. Be-
sides for any two consecutive pair of points {pi, p′i}
and {pi+1, p

′
i+1}, we introduce two dummy points be-

tween them. For every xj ∈ X we construct a bi-
coloring Bj as follows: the points pi and p′i are col-
ored red and blue, respectively, if xj ∈ Si. Other-
wise, the points pi and p′i are colored blue. Further-
more, we color all the dummy points blue in any bicol-
oring. This completes the construction. We illustrate
an instance (B, P ) that is reduced from the set system
S1 = {x1, x2, x3}, S2 = {x1, x2, x4}, S3 = {x3, x4, x5},
S4 = {x1, x3, x4} (see Figure 3).

In the forward direction, we show that if there is a so-
lution of the Set Cover problem of size k then there

41



CCCG 2019, Edmonton, Canada, August 8–10, 2019

is a solution of Minimal Interval G-SUR problem
of size k. Assume that the Set Cover problem has a
solution S∗ where |S∗| ≤ k. We construct a set I∗ of in-
tervals cardinality k as follows. I∗ = {(pi, p′i)|Si ∈ S∗}.
The claim is I∗ is a solution of Minimal Interval
G-SUR problem. Otherwise, there exists a bicoloring
Bi ∈ B such that there is no balanced interval in I∗
with respect to Bi. However we know there exists a set
Sj ∈ S∗ that contains xi. Thus the interval (pj , p

′
j) is

already taken in I∗, and by construction it is balanced
with respect to Bi. Hence the claim holds.

Conversely, suppose I∗ is a solution of the Minimal
Interval G-SUR of cardinality at most k. Observe
that, due to the construction of (B, P ), any interval that
is not either of the form (pi, p

′
i) or (d, pi) (where d is a

dummy point) is not balanced with respect to any Bi.
Hence we may assume that any interval in I∗ has one
of these two forms. Next, we construct the following set
S∗ = {Sj |(pj , p′j) ∈ I∗ or (d, pj) ∈ I∗}. Observe that
|S∗| ≤ k. We claim S∗ is a set cover for the set system
(X,S). If not, there exists an element xi ∈ X that is not
covered. Consider the corresponding bicoloring Bi. We
know there is a balanced interval I ∈ I∗ with respect to
Bi. By construction, I can be either (pj , p

′
j) or (d, pj).

Hence we know Sj ∈ S∗, and xi ∈ Sj . This contradicts
our assumption and the claim holds. �

4 Points in Rd and Ball G-SURs

Let P = {p1. . . . , pn} be a set of points in Rd. Given
a family of bicolorings B, here the goal is to find a G-
SUR O∗ consisting of Euclidean balls. We show general
bounds for the size of O∗.
To give a lower bound, we embed the one-dimensional
example from Lemma 3 in a line ` of Rd and note that a
ball is balanced if and only if the interval resulting from
intersecting the ball with ` is balanced. Any ball creates
at most one such interval on `, so a G-SUR must have
size at least n− 1.

We now show that n − 1 balls always suffice. For this
we consider the Gabriel graph G(P ) whose vertex set is
P and there is an edge (x, y) when the closed ball with
diameter on the line segment xy contains no other point
of P .

Lemma 8 The Gabriel graph is connected.

This result is well-known on the plane (see e.g. [5]). For
completeness, here we provide a proof which works in
higher dimensions.

Proof. It is enough to show that for any partition P =
Q ∪R of the vertices of G(P ) there is an edge between
a vertex of Q and a vertex of R. Let (q, r) be a pair of

closest points q ∈ Q and r ∈ R, that is, that minimize
d(q, r).

If the ball with diameter qr contains another point r′

from, say, R, then d(q, r′) < d(q, r), a contradiction.
Similarly, this ball cannot contain another point from Q.
So qr is an edge of G(P ), and the proof is complete. �

Lemma 9 For any set P of n points in Rd and any
family B of bicolorings of P , there exists a G-SUR con-
sisting of n− 1 Euclidean balls.

Proof. Consider the set of n− 1 edges E of a spanning
tree T of the Gabriel graph G(P ). For every edge e =
(p, q) ∈ E, let Oe be the ball with diameter pq. Let
O = {Oe|e ∈ E}. We claim that O is a G-SUR.

For any bicoloring B of P there is at least a red point r
and a blue point b. Since T is connected, there is a path
on T that connects r to b, and thus there is an edge in
this path with endpoints of opposite colors with respect
to B. The ball corresponding to this particular edge is
balanced, as it only contains r and b. �

Thereby we conclude the following theorem.

Theorem 10 Let d ≥ 1 and n ≥ 2 be positive integers.
Then the following hold:

(a) There exists a set P of n points in Rd and a family
of n− 1 bicolorings B for P , for which any G-SUR
consisting of Euclidean balls has size at least n− 1.

(b) For any set of n points P in Rd there exists a set O
of n−1 Euclidean balls such that for any bicoloring
B of P there is at least one balanced ball in O with
respect to B.

5 Balanced Covering on Random Points on a Line

In this section we study the properties of balanced inter-
vals for random bicolorings of points on a line. Consider
a set P = {p1, p2, . . . , pn+m} on a line, pick a subset of
P of size m uniformly at random, color these points red.
Color the remaining n points blue. Define the random
variables:

– Tm,n = the size of the smallest balanced interval.

– Sm,n = the size of the largest balanced interval,

We are interested on the asymptotic behaviour of Tm,n

and Sm,n as m and n become large. Due to space con-
straints, here we focus only in the case in which m is
much smaller compared to n. In this situation we have
the following result.
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Theorem 11 For m = o(
√
n),

Sm,n = Tm,n = 2,

with high probability.1

Proof. The equality Tm,n = 2 is direct because there
are always two consecutive points of different color.

Next, we consider Sm,n. Without loss of generality, we
may assume that n > 3(m+2). Let E be the event that
are at least three blue points between each pair of red
points, before the first red point and after the last red
point. Note that the event Sm,n ≥ 4 is impossible if E
happens.

We can calculate the probability of E happening using
the following argument. Consider blocks of colors of
type bbbrbbb, rbbb and b. Each situation in which E
happens corresponds to placing a bbbrbbb block, then
m− 1 blocks rbbb to its right, and then distributing the
remaining b’s in between these blocks. Therefore, the
number of situations in which the event happens is

(
m + n− 3(m− 1)− 6

m

)
=

(
n− 2m− 3

m

)

The probability space has size
(
m+n
m

)
. Therefore, by

Bernoulli’s inequality,

P(E) =

(
n−2m−3

m

)
(
m+n
m

) =
(n− 2m− 3)!n!

(n− 3m− 3)!(m + n)!

=
m−1∏

j=0

(
1− 3m + 3

m + n− j

)

≥
(

1− 3m + 3

n + 1

)m

≥ 1−m

(
3m + 3

n + 1

)
.

Since m = o(
√
n), the right hand side converges to 1

as n goes to infinity. This means that with high prob-
ability the event E happens, and therefore, with high
probability Sm,n = 2. �

In the discrete model presented above the points are
equally spaced. In practical applications this is not al-
ways the case. Thus we can also study an analogous
problem in the following continuous model which takes
into consideration the distance between random sam-
ples.

We independently and uniformly sample m points from
the interval [0, 1] and color them red, and, similarly,

1Here we use the usual convention that Xn = x with high
probability if limn→∞ P(Xn = x) = 1.

sample n independent and uniform points and color
them blue. By symmetry, any of the red/blue discrete
orderings are equally probable, and thus they distribute
as in the discrete model above. Therefore, as before,
Sm,n = Tm,n = 2, with high probability. Furthermore,
in this case, we can also consider the length of the bal-
anced intervals. More precisely,

– Mm,n = the length of the shortest balanced inter-
val,

– Lm,n = the length of the longest balanced interval.

Once more, suppose that m = o(
√
n). Since Sm,n =

2 with high probability, the largest balanced interval
must have as endpoints two consecutive points with high
probability. Moreover, as n increases, the maximum
spacing between consecutive blue points converges to 0
almost surely. These two remarks give a sketch of the
proof for the following theorem.

Theorem 12 For m = o(
√
n), Mm,n and Lm,n con-

verge to 0 almost surely.
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Chirotopes of Random Points in Space are Realizable on a Small Integer Grid

Jean Cardinal∗ Ruy Fabila-Monroy† Carlos Hidalgo-Toscano†

Abstract

We prove that with high probability, a uniform sample
of n points in a convex domain in Rd can be rounded to
points on a grid of step size proportional to 1/nd+1+ε

without changing the underlying chirotope (oriented
matroid). Therefore, chirotopes of random point sets
can be encoded with O(n log n) bits. This is in stark
contrast to the worst case, where the grid may be forced

to have step size 1/22
Ω(n)

even for d = 2.
This result is a high-dimensional generalization of

previous results on order types of random planar point
sets due to Fabila-Monroy and Huemer (2017) and Dev-
illers, Duchon, Glisse, and Goaoc (2018).

1 Introduction

Chirotopes, order types, and oriented matroids.
Many interesting properties of planar point sets in gen-
eral position are captured by the combinatorial abstrac-
tion consisting of the orientation – clockwise or coun-
terclockwise – of every triple of points. This generalizes
naturally to d-dimensional point sets. Consider a set
S ⊂ Rd of n points in general position (no d + 1 on
a hyperplane). Let us denote by Λ(S, k) the set of all
ordered k-tuples of distinct points of S. With every or-
dered (d+ 1)-tuple P = (p1, p2, . . . , pd+1) ∈ Λ(S, d+ 1)
of points we can associate a binary value χ(P ) indicat-
ing the orientation of the corresponding simplex. This
can be expressed as the sign of a determinant:

χ(P ) = sgn

∣∣∣∣∣∣∣∣∣

p1,1 p1,2 . . . p1,d 1
p2,1 p2,2 . . . p2,d 1

. . . 1
pd+1,1 pd+1,2 . . . pd+1,d 1

∣∣∣∣∣∣∣∣∣
.

The map χ is referred to as the chirotope of the point
set S. The values of χ(P ) obey the chirotope axioms, in
particular the Grassmann-Plücker relations, and com-
pletely characterize the rank-(d + 1) oriented matroid
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defined by the point set. Note that not all maps satis-
fying the chirotope axioms are chirotopes of point sets.
The Topological Representation Theorem, however, en-
sures that they always have a representation as a col-
lection of pseudohyperplanes. For d = 2, such a rep-
resentation is a pseudoline arrangement. We refer the
reader to the classical text from Björner, Las Vergnas,
Sturmfels, White, and Ziegler [4] for more background
on oriented matroids and chirotopes.

We say that two sets of points have the same or-
der type whenever there exists a bijection between them
such that the chirotope is preserved. By extracting the
purely combinatorial features of a set of points, oriented
matroids and order types are useful tools in discrete and
computational geometry. In computational geometry, it
is the case for instance that the chirotope of a point set
is sufficient to compute its convex hull, and therefore
provides a simple query-based computation model for
this task, in a way that is reminiscent to comparison-
based sorting. Knuth explored such a model and several
generalizations in his book Axioms and Hulls [19]. As
for discrete geometry, Eppstein’s recent book on for-
bidden configurations [9] contains a thorough, unified
treatment of major results in geometry of planar point
sets through the lens of monotone properties of chiro-
topes. The Order Type Database from Aichholzer et al.
contains all equivalence classes of chirotopes realized by
sets of up to 10 points in the plane [3].

Algebraic universality and bit complexity. It is not
clear, however, how much information is contained in
a chirotope. For d = 2, it is known that a chiro-
tope can be encoded using O(n2) bits [14, 25, 11, 12].
Recently, it has even been shown that chirotopes in-
duced by sets of n points in Rd could be stored us-
ing O(nd(log log n)2/ log n) bits, in such a way that the
orientation of every (d + 1)-tuple can be recovered in
O(log n/ log log n) time on a word RAM [6].

These representations, however, are distinct from the
natural representation of a set of points by d-tuples of
coordinates. The reason is that such a representation
can have exponential bitsize: for every n there exists
a chirotope of a set of n points in the plane, every ge-
ometric realization of which requires coordinates that
are doubly exponential in n [15]. This is only one con-
sequence of a more general phenomenon, known as alge-
braic universality of rank-three oriented matroids, and
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proved by Mnëv [21, 22] and Richter-Gebert [23]. In a
nutshell, it states that for any semialgebraic set A, there
exists an oriented matroid whose realization space is sta-
bly equivalent, in particular homotopic, to A. Algebraic
universality holds for other discrete geometric structures
such as unit disk graphs [20, 16], 4-dimensional poly-
topes [24], simplicial polytopes [1], and d-dimensional
Delaunay triangulations [2].

It is likely, however, that this worst-case exponential
coordinate bitsize is irrelevant for “typical” point sets,
or for point sets occurring in applications. It is there-
fore natural to wonder what is the required coordinate
bitsize for chirotopes of random point sets. The model
we will assume here is that of a uniform distribution on
a fixed compact, convex domain.

Related works. The question of random order types
has first been tackled by Bokowski, Richter-Gebert, and
Schindler [5]. They attribute the question of estimating
the probability of an order type to Goodman and Pol-
lack, and investigate it under the assumption of a uni-
form distribution on the Grassmannian. They discuss
the problem of finding an efficient random generator on
the Grassmann manifold from a generator for the unit
interval. They also perform experiments supporting the
conjecture that the maximum probability is reached by
the oriented matroid corresponding to the cyclic poly-
tope.

Recently, Fabila-Monroy and Huemer [10] proved that
with high probability, a uniform sample of points in the
plane can be rounded to a n3+ε × n3+ε grid without
altering its chirotope. Even more recently, Devillers,
Duchon, Glisse, and Goaoc [7] investigated the num-
ber of bits that need to be read from the coordinates
of random points to know their order type, and ob-
tain the same result in a slightly more general setting.
They also raise the question of whether uniform samples
yield a vanishing fraction of order types. The difficulty
of sampling order types uniformly was also discussed
by Goaoc, Hubard, de Joannis de Verclos, Sereni, and
Volec [13].

Another closely related line of work is that of random
alignment and shape distribution of triangles [18, 17].
Probabilistic analyses supporting the idea that near-
alignment of points occur naturally in random sets were
applied in particular to alignments of quasars [8], and
debunking pseudoscientific claims on mysterious align-
ments between archaeological sites in Great Britain [26].
It is known from these works, for instance, that for a
uniform random sample of n points in the unit square,
the expected number of triples contained in a slab of
width w is proportional to wn3. Hence unless the width
is chosen to be at most proportional to n−3, the sample
contains near-aligned points, whose orientation is likely
to be flipped by a rounding procedure.

0 e1

e2

0
e1

e2

Figure 1: The regions defined in Lemma 1 for d = 2.
No line can intersect all the three Ri or all the three Si
regions simultaneously.

Our contribution. We generalize the result of Fabila-
Monroy and Huemer [10] and Devillers et al. [7] to d-
dimensional point sets. We prove that in a uniform
sample of n points in Rd, points can be rounded to a
nd+1+ε × . . . × nd+1+ε grid without altering their chi-
rotope. We believe that the proof is simpler than the
previous ones, even in the case d = 2.

2 Chirotopes

We begin with a simple observation on the structure of
cells in an arrangement of d+ 1 hyperplanes in Rd.

Lemma 1 Let P := {p0, . . . , pd} be a set of d+1 points
in general position in Rd. Let H be the hyperplane
arrangement generated by all the hyperplanes passing
through d points of P . Let

• R1, . . . , Rd+1 be the unbounded cells of H that do
not contain a facet of conv(P ) in their boundary;
and

• S1, . . . , Sd+1 be the unbounded cells of H that do
contain a facet of conv(P ) in their boundary.

Then there is no hyperplane that simultaneously inter-
sects all the Si or all the Ri.

Proof. By doing an affine transformation we may as-
sume that p0 = 0 and pi is the vector with 1 in its i-th
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coordinate and 0 in all other coordinates. Note that the
Ri and Si are defined by

Ri := {x ∈ Rd : xj < 0 ∀j ∈ [d] \ {i} ∧
∑

j∈[d]
xj > 1},

Rd+1 := {x ∈ Rd : xj < 0 ∀j ∈ [d]}

and

Si := {x ∈ Rd :

xi < 0 ∧ xj > 0 ∀j ∈ [d] \ {i} ∧
∑

j∈[d]
xj < 1},

Sd+1 := {x ∈ Rd : xj > 0 ∀j ∈ [d] ∧
∑

j∈[d]
xj > 1}

For d = 2, the observation is direct and illustrated on
Figure 1. For d > 2, we proceed by induction and sup-
pose that the result holds for d − 1. Consider a hy-
perplane h intersecting the regions R1, R2, . . . , Rd. In
both cases, if h intersects Rd+1, then it must intersect
Rd+1 ∩ h′, where h′ is one of the hyperplanes of equa-
tion xj = 0 for j ∈ [d]. The intersection of the whole
arrangement with h′ yields a similar situation in dimen-
sion d− 1, for which the statement holds by induction.
Therefore, h cannot intersect Rd+1. The proof for the
Si is similar. �

We now give a sufficient condition for two order tuples
to have the same orientation after a perturbation.

Lemma 2 Consider two ordered (d + 1)-tuples P :=
(p1, p2, . . . , pd+1) and Q := (q1, q2, . . . , qd+1) of points
in Rd. For every 1 ≤ i ≤ d+ 1, let fi be the hyperplane
passing through the facet of conv(P ) opposite to pi;

Suppose that for every 1 ≤ i ≤ d+1 the following two
conditions hold.

1) pi and qi are on the same open halfspace bounded
by fi; and

2) the distances from qi to fi and from pi to fi are
both larger than the distance from qj to fi, for all
j 6= i.

Then P and Q have the same orientation.

Proof. By 1) and 2), for every 1 ≤ i ≤ d+1 there exists
a hyperplane hi parallel to fi that separates pi and qi
from the other qj (j 6= i). Let H be the hyperplane
arrangement generated by the hi. Note that for every
1 ≤ i ≤ d + 1, pi and qi lie in the same cell of H.
Since the hyperplanes hi are parallel to the facets of
conv(P ), H can be of one of two types, depending on
whether the unique bounded cell of H has the same
or the opposite orientation as conv(P ), see Figure 2.
Let C1, . . . , Cd+1 be the cells of H containing pi and qi,
respectively. Note that the Ci are either the Ri or the

p3
p1

p2

p3
p1

p2

Figure 2: The hyperplanes hi in Lemma 2.

Si defined in Lemma 1. In both cases no hyperplane
can intersect all the Ci simultaneously. For every 1 ≤
i ≤ d+ 1, let f ′i be the hyperplane passing through the
qj different from qi. Note, f ′i intersects all the C ′j with
j 6= i. Thus, f ′i does not intersect Ci, and pi and qi are
on the same open halfspace defined by fi. Therefore, P
and Q have the same orientation. �

We now prove our main result by showing that if S
is a random point set and S′ is obtained by rounding S
on a sufficiently dense grid, then the conditions of the
lemma hold for every pair composed of a d-simplex in
S and its corresponding rounded version in S′.

Theorem 3 Let S be a uniform sample of n points in
the d-dimensional unit ball. Then for every ε > 0, with
probability at least 1 − O

(
1
nε

)
, the points of S can be

rounded to a grid of step size 1/(nd+1+ε) without chang-
ing their chirotope.

Proof. Let M := nd+1+ε. Let S′ be the image of S
after rounding each point to its nearest neighbor on a
grid of step size 1/M . Consider a (d+1)-tuple of points
P := (p1, . . . , pd+1) in S and the corresponding (d+ 1)-
tuple of rounded points Q := (q1, . . . , qd+1) in S′. As
in Lemma 2, let fi be the hyperplane passing through
the facet of conv(P ) opposite to pi. We prove that the
conditions of Lemma 2 hold with high probability. By
definition, for any given j, the absolute difference be-
tween pj and qj is at most

√
d/M . Thus the conditions

of Lemma 2 hold if the distance from pi to fi is at least
2
√
d/M . Let Bd be the unit d-dimensional ball. The

d − 1-volume of the intersection of Bd and the hyper-
plane containing fi is at most vol(Bd − 1). Thus, the
probability that for a given 1 ≤ i ≤ d + 1 the dis-
tance from pi to fi is less or equal to 2

√
d/M is at most
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(2
√
d/M)vol(Bd−1)/vol(Bd). We have that

2
√
d

M
· vol(Bd−1)

vol(Bd)
=

2
√
d√

πM
· Γ(d2 + 1)

Γ(d−12 + 1)

<
2
√
d√

πM
· Γ(d2 + 1)

Γ(d2 )

=
d3/2√
πM

.

We apply the union bound over all such bad events.
There are (d + 1)

(
n
d+1

)
such events to consider. Thus,

the probability that no (d+ 1)-tuple has a different ori-
entation as the corresponding (d + 1)-tuple in S′ is at
least

1−
(

n

d+ 1

)
(d+ 1)d3/2√

πM
= 1−O

(
1

nε

)
.

�

Note that we considered the uniform distribution on the
unit ball for convenience. The same analysis holds for
any fixed convex body, where the probability of a bad
event happening depends on the discrepancies in the
distributions of the projections in different directions.
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Lotharingien de Combinatoire, pages 211–225,
1995.

[24] Jürgen Richter-Gebert. Realization Spaces of Poly-
topes. Lecture Notes in Mathematics. Springer
Berlin Heidelberg, 1996.

[25] Ileana Streinu. Clusters of stars. In Proceedings
of the Thirteenth Annual Symposium on Compu-
tational Geometry, Nice, France, June 4-6, 1997,
pages 439–441, 1997.

[26] Tom Williamson and Liz Bellamy. Ley lines in
question. Tadworth, Surrey : World’s Work, 1983.

48



CCCG 2019, Edmonton, Canada, August 8–10, 2019

Coordinatizing Data With Lens Spaces and Persistent Cohomology

Luis Polanco∗ Jose A. Perea †

Abstract

We introduce here a framework to construct coordi-
nates in finite Lens spaces for data with nontrivial 1-
dimensional Zq persistent cohomology, for q > 2 prime.
Said coordinates are defined on an open neighborhood
of the data, yet constructed with only a small subset
of landmarks. We also introduce a dimensionality re-
duction scheme in S2n−1/Zq (Lens-PCA: LPCA), and
demonstrate the efficacy of the pipeline Zq-persistent
cohomology⇒ S2n−1/Zq coordinates⇒ LPCA, for non-
linear (topological) dimensionality reduction.

1 Introduction

One of the main questions in Topological Data Analysis
(TDA) is how to use topological signatures like persis-
tent (co)homology [11] to infer spaces parametrizing a
given data set [3, 1, 4]. This is relevant in nonlinear
dimensionality reduction since the presence of nontriv-
ial topology—e.g., loops, voids, non-orientability, tor-
sion, etc—can prevent accurate descriptions with low-
dimensional Euclidean coordinates.

Here we seek to address this problem motivated by
two facts. The first: If G is a topological abelian group,
then one can associate to it a contractible space, EG,
equipped with a free right G-action. For instance, if
G = Z, then R is a model for EZ, with right Z-
action R × Z 3 (r, n) 7! r + n ∈ R. The quotient
BG := EG/G is called the classifying space of G [8]. In
particular BZ ' S1, BZ2 ' RP∞, BS1 ' CP∞ and
BZq ' S∞/Zq; here ' denotes homotopy equivalence.
The second fact: If B is a topological space and CG is
the sheaf over B (defined in [9]) sending each U ⊂ B
open to the abelian group of continuous maps from U to
G, then Ȟ1(B; CG)—the first Čech cohomology group of
B with coefficients in CG—is in bijective correspondence
with [B , BG]—the set of homotopy classes of continu-
ous maps from B to the classifying space BG. This bi-
jection is a manifestation of the Brown representability
theorem [2], and implies, in so many words, that Čech
cohomology classes can be represented as coordinates
with values in a classifying space (like S1 or S∞/Zq).

∗Department of Computational Mathematics, Science and En-
gineering, Michigan State University, polanco2@msu.edu
†Department of Computational Mathematics, Science and En-

gineering, Department of Mathematics, Michigan State Univer-
sity, joperea@msu.edu

For point cloud data—i.e., for a finite subset X of
an ambient metric space (M,d)—one does not com-
pute Čech cohomology, but rather persistent cohomol-
ogy. Specifically, the persistent cohomology of the
Rips filtration on the data set X (or a subset of land-
marks L). The first main result of this paper contends
that steps one through three below mimic the bijection
Ȟ1(B; CZq

) ∼= [B,S∞/Zq] for B ⊂ M an open neigh-
borhood of X:

1. Let (M,d) be a metric space and let L ⊂ X ⊂ M
be finite. X is the data and L is a set of landmarks.

2. For a prime q > 2 compute PH1(R(L);Zq); the
1-dim Zq-persistent cohomology of the Rips filtra-
tion on L. If the corresponding persistence diagram
dgm(L) has an element (a, b) so that 2a < b, then
let a ≤ ε < b/2 and choose a representative cocy-
cle η ∈ Z1(R2ε(L);Zq) whose cohomology class has
(a, b) as birth-death pair.

3. Let Bε(l) be the open ball in M of radius ε centered
at l ∈ L = {l1, . . . , ln}, and let ϕ = {ϕl}l∈L be a
partition of unity subordinated to B = {Bε(l)}l∈L.
If ζq 6= 1 is a q-th root of unity, then the cocycle
η yields a map f :

⋃B −! Lnq to the Lens space
Lnq = S2n−1/Zq, given in homogeneous coordinates
by the formula

Bε(`j) 3 b , f(b) =
[√

ϕ1(b)ζηj1q : · · · :
√
ϕn(b)ζηjnq

]

where ηjk ∈ Zq is the value of the cocycle η on the
edge {lj , lk} ∈ R2ε(L).

If X ⊂ ⋃B, then f(X) = Y ⊂ Lnq is the represen-
tation of the data—in a potentially high dimensional
Lens space—corresponding to the cocycle η. The second
contribution of this paper is a dimensionality reduction
procedure in Lnq akin to Principal Component Analysis,
called LPCA. This allows us to produce from Y , a fam-
ily of point clouds Pk(Y ) ⊂ Lkq , 1 ≤ k ≤ n, Pn(Y ) = Y ,
minimizing an appropriate notion of distortion. These
are the Lens coordinates of X induced by the cocycle η.

This work, combined with [10, 12], should be seen as
one of the final steps in completing the program of using
the classifying space BG, for G abelian and finitely gen-
erated, to produce coordinates for data with nontrivial
underlying 1st cohomology. Indeed, this follows from
the fact that B(G ⊕ G′) ' BG × BG′, and that if G
is finitely generated and abelian, then it is ismorphic to
Zn⊕Zn1⊕· · ·⊕Znr for unique integers n, n1, . . . , nr ≥ 0.
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2 Preliminaries

2.1 Persistent Cohomology

A family K = {Kα}α∈R of simplicial complexes is called
a filtration if Kα ⊂ Kα′ whenever α ≤ α′. If F is
a field and i ≥ 0 is an integer, then the direct sum
PHi(K;F) :=

⊕
α
Hi(Kα;F) of cohomology groups is

called the i-th dimensional F-persistent cohomol-
ogy of K. A theorem of Crawley-Boevey [5] contends
that if Hi(Kα;F) is finite dimensional for each α, then
the isomorphism type of PHi(K;F)—as a persistence
module—is uniquely determined by a multiset (i.e., a
set whose elements may appear with repetitions)

dgm ⊂ {(α, α′) ∈ [−∞,∞]2 : α ≤ α′}

called the persistence diagram of PHi(K;F). Pairs
(α, α′) with large persistence α′ − α, are indicative of
stable topological features throughout the filtration K.

Persistent cohomology is used in TDA to quantify the
topology underlying a data set. There are two widely
used filtrations associated to a subset X of a metric
space (M,d), the Rips filtration R(X) = {Rα(X)}α
and the Čech filtration Č(X) = {Čα(X)}α. Specifi-
cally, Rα(X) is the set of nonempty finite subsets of X
with diameter less than α, and Čα(X) is the nerve of
the collection Bα of open balls Bα(x) ⊂M of radius α,
centered at x ∈ X. In other words, Čα(X) = N (Bα).
Generally R(X) is more easily computable, but Č(X)
has better theoretical properties (e.g., the Nerve theo-
rem [6, 4G.3]). Their relative weaknesses are amelio-
rated by noticing that

Rα(X) ⊂ N (Bα) ⊂ R2α(X)

for all α, and using both filtrations in analyses: Rips for
computations, and Čech for theoretical inference.

2.2 Lens Spaces

Let q ∈ N and let ζq ∈ C be a primary q-th root of
unity. Fix n ∈ N and let q1, . . . , qn ∈ N be relatively
prime to q. We define the Lens space Lnq (q1, . . . , qn)
as the quotient of S2n−1 ⊂ Cn by the Zq right action

[z1, . . . , zn] · g :=
[
z1ζ

q1g
q , . . . , znζ

qng
q

]

with simplified notation Lnq := Lnq (1, . . . , 1). Notice that
when q = 2 and q1 = · · · = qn = 1, then the right
action described above is the antipodal map of S2n−1,
and therefore Ln2 = RP2n−1. Similarly, the infinite Lens
space L∞q = L∞q (1, 1, . . .) is defined as the quotient of
the infinite unit sphere S∞ ⊂ C∞, by the action of Zq
induced by scalar-vector multiplication by powers of ζq.

2.2.1 A Fundamental domain for L2
q(1, p)

In what follows we describe a convenient model for both
L2
q(1, p) and a fundamental domain thereof. This model

will allow us to provide visualizations in Lens spaces
towards the end of the paper. Let D3 be the set of
points x ∈ R3 with ‖x‖ ≤ 1, and let D+ (D−) be the
upper (lower) hemisphere of ∂D3, including the equator.
Let rp/q : D+ −! D+ be counterclockwise rotation by
2πp/q radians around the z-axis, and let ρ : D+ −! D−
be the reflection ρ(x, y, z) = (x, y,−z). Then, L2

q(1, p)
is homeomorphic to D3/ ∼, where x ∼ y if and only if
x ∈ D+ and y = ρ ◦ rp/q(x).

2.3 Principal Bundles

Let B be a topological space with base point b0 ∈ B.
One of the most transparent methods for producing an
explicit bijection between Ȟ1(B; CZq

) and [B,L∞q ] is via
the theory of Principal bundles. We present a terse
introduction here, but direct the interested reader to [7]
for details. A continuous map π : P −! B is said to
be a fiber bundle with fiber F = π−1(b0) and total
space P , if π is surjective, and every b ∈ B has an
open neighborhood U ⊂ B as well as a homeomorphism
ρU : U × F −! π−1(U), so that π ◦ ρU (x, e) = x for
every (x, e) ∈ U × F .

Let (G,+) be an abelian topological group. A fiber
bundle π : P −! B is said to be a principal G-bundle
over B, if P comes equipped with a free right G-action
P ×G 3 (e, g) 7! e · g ∈ P which is transitive in π−1(b)
for every b ∈ B. Moreover, two principal G-bundles
π : P −! B and π′ : P ′ −! B are isomorphic, if there
exits a homeomorphism Φ : P −! P ′, with π′ ◦ Φ = π
and so that Φ(e·g) = Φ(e)·g for all (e, g) ∈ P×G. Given
an open cover U = {Uj}j∈J of B, a Čech cocycle

η = {ηjk} ∈ Ž1(U ; CG)

is a collection of continuous maps ηjk : Uj∩Uk −! G so
that ηjk(b) + ηkl(b) = ηjl(b) for every b ∈ Uj ∩ Uk ∩ Ul.
Given such a cocycle, one can construct a principal G-
bundle over B with total space

Pη =


⋃

j∈J
Uj × {j} ×G


 / ∼

where (b, j, g) ∼ (b, k, g + ηjk(b)) for every b ∈ Uj ∩ Uk,
and π : Pη −! B sends the class of (b, j, g) to b ∈ B.

Theorem 1 If PrinG(B) denotes the set of isomor-
phism classes of principal G-bundles over B, then

Ȟ1(B; CG) −! PrinG(B)
[η] 7! [Pη]

is a bijection.
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Proof. See 2.4 and 2.5 in [10] �

Now, let us see describe the relation between principal
G-bundles over B, and maps from B to the classifying
space BG. Indeed, let  : EG −! BG = EG/G be
the quotient map. Given h : B −! BG continuous,
the pullback h∗EG is the principal G-bundle over B
with total space {(b, e) ∈ B × EG : h(b) = (e)}, and
projection map (b, e) 7! b. Moreover,

Theorem 2 Let [B,BG] denote the set of homotopy
class of maps from B to the classifying space BG. Then,
the function

[B,BG] −! PrinG(B)
[h] 7! [h∗EG]

is a bijection.

Proof. See [7], Chapter 4: Theorems 12.2 and 12.4. �

In summary, given a principal G-bundle π : P −! B,
or its corresponding Čech cocycle η, there exists a con-
tinuous map h : B −! BG so that h∗EG is isomorphic
to (π, P ), and the choice of h is unique up to homo-
topy. Any such choice is called a classifying map for
π : P −! B.

3 Main Theorem: Explicit Classifying Maps for L∞q

The goal of this section is to show how one can go from
a singular cocycle η ∈ Z1(N (U);Zq) to an explicit map
f :
⋃U −! L∞q . All proofs are included in the Apendix.

Let J = {1, . . . , n}, let U = {Uj}j∈J be an open cover
for B, and let {ϕj}j∈J be a partition of unity dominated
by U . If η = Z1(N (U);Zq) and ζq is a primitive q-th
root of unity, let fj : Uj × {j} × Zq −! S2n−1 ⊂ Cn be

fj(b, j, g) =
[√

ϕ1(b)ζ(g+ηj1)q , . . . ,
√
ϕn(b)ζ(g+ηjn)q

]

If b ∈ Uj ∩ Uk, then fj(b, j, g) = fk(b, k, g + ηjk) and
we get an induced map Φ : Pη −! S2n−1 ⊂ S∞ taking
the class of (b, j, g) in the quotient Pη to fj(b, j, g).

Proposition 3 Φ is well defined and Zq-equivariant.

Let p : S2n−1 −! Lnq be the quiotient map. Since
Φ : Pη −! S2n−1 ⊂ S∞ is Zq-equivariant, it induces a
map f : B −! Lnq ⊂ L∞q such that p ◦ Φ = f ◦ π. By
construction of π : Pη −! B, f(π([b, j, g])) = f(b) for
any g ∈ Zq. In particular for 0 ∈ Zq

Uj 3 b , f(b) =
[√

ϕ1(b)ζηj1q : · · · :
√
ϕn(b)ζηjnq

]
(1)

Remark 4 The notation [a1 : · · · : an] corresponds to
homogeneous coordinates in S2n−1/Zq. In other words,
[a1 : · · · : an] = {[a1 · α, . . . , an · α] ∈ S2n−1 : α ∈ Zq}.
Theorem 5 The map f classifies the Zq-principal bun-
dle Pη associated to the cocycle η ∈ Z1(N (U);Zq).

4 Lens coordinates for data

Let (M,d) be a metric space and let L ⊂M be a finite
subset. We will use the following notation from now on:
Bε(l) = {y ∈ M : d(y, l) < ε}, Bε = {Bε(l)}l∈L, and
Lε =

⋃Bε. Given a data set X ⊂ M , our goal will
be to choose L ⊂ X, a suitable ε such that X ⊂ Lε,
and a cocycle η ∈ Z1(N (Bε);Zq). Equation (1) yields
a map f : Lε ! L∞q defined for every point in X, but
constructed from a much smaller subset of landmarks.
Next we describe the details of this construction.

4.1 Landmark selection

We select the landmark set L ⊂ X either at random
or through maxmin sampling. The latter proceeds in-
ductively as follows: Fix n ≤ |X|, and let l1 ∈ X be
chosen at random. Given l1, . . . , lj ∈ X for j < n, we
let lj+1 = argmax

x∈X
min{d(x, l1), . . . , d(x, lj)}.

4.2 A Partition of Unity subordinated to Bε
Defining f requires a partition of unity subordinated to
Bε. Since Bε is an open cover composed of metric balls,
then we can provide an explicit construction. Indeed,
for r ∈ R let |r|+ := max{r, 0}, then

ϕl(x) := |ε− d(x, l)|+
/∑

l′∈L
|ε− d(x, l′)|+ (2)

is a partition of unity subordinated to Bε.

4.3 From Rips to Čech to Rips

As we alluded to in the introduction, a persistent coho-
mology calculation is an appropriate vehicle to select a
scale ε and a candidate cocycle η. That said, determin-
ing η ∈ Z1(N (Bε),Zq) would require computing N (Bε)
for all ε, which in general is an expensive procedure.
Instead we will use the homomorphisms

H1(R2ε(L))
i∗ //

ι

22H1(N (Bε)) // H1(Rε(L))

induced by the appropriate inclusions. Indeed, let
η̃ ∈ Z1(R2ε(L);Zq) be such that [η̃] 6∈ ker(ι). This is
where we use the persistent cohomology of R(L). Since
the previous diagram commutes, then [η̃] 6∈ ker(i∗), so
i∗([η̃]) 6= 0 in H1(N (Bε);Zq). We will let [η] = i∗([η̃])
be the class that we use in Theorem 5. However,

Proposition 6 If b ∈ Bε(lj) and 1 ≤ k ≤ n, then

√
ϕk(b)ζ

ηjk
q =

√
ϕk(b)ζ

η̃jk
q .

That is, we can compute Lens coordinates using only the
Rips filtration on the landmark set.
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5 Dimensionality Reduction in Lnq via Principal Lens
Components

Equation (1) gives an explicit formula for the classify-
ing map f : B −! Lnq . By construction, the dimension
of Lnq depends on the number n of landmarks selected,
which in general can be large. The main goal of this
section is to construct a dimensionality reduction pro-
cedure in Lnq to address this shortcoming. To this end,
we define the distance dL : Lnq × Lnq −! [0,∞) as

dL([x], [y]) := dH(x · Zq , y · Zq) (3)

where dH id the Hausdorff distance for subsets of S2n−1.
We will now describe a notion of projection in Lnq

onto lower-dimensional Lens spaces. Indeed, let u ∈
S2n−1. Since ζkqw ∈ spanC(u)⊥ for any k ∈ Zq and

w ∈ spanC(u)⊥, then

Ln−1q (u) := (spanC(u)⊥ ∩ S2n−1)/Zq

is isometric to Ln−1q . Let P⊥u (v) = v − 〈v, u〉Cu for
v ∈ Cn, and if v /∈ spanC(u), then we let

Pu([v]) :=
[
P⊥u (v)

/
‖P⊥u (v)‖

]
∈ Ln−1q (u)

It readily follows that Pu is well defined, and that

Lemma 7 For u ∈ S2n−1 and v /∈ spanC(u), we have

dL([v],Pu([v])) = d
(
v , P⊥u (v)

/
‖P⊥u (v)‖

)

where d is the distance on S2n−1. Furthermore, Pu([v])
is the point in Ln−1q (u) closest to [v] with respect to dL.

This last result suggests that a PCA-like approach
is possible for dimensionality reduction in Lens spaces.
Specifically, for Y = {[y1], . . . , [yN ]} ⊂ Lnq , the goal is
to find u ∈ S2n−1 such that Ln−1q (u) is the best (n−1)-
Lens space approximation to Y , then project Y onto
Ln−1q (u) using Pu, and repeat the process iteratively
reducing the dimension by 1 each time. At each stage,
the appropriate constrained optimization problem is

u∗ = argmin
u∈Cn,‖u‖=1

N∑

j=1

dL([yj ],Pu([yi]))
2

= argmin
u∈Cn,‖u‖=1

N∑

j=1

(π
2
− arccos(|〈yi, u〉|)

)2

which can be linearized using the Taylor series expan-
sion of arccos(θ) around 0. Indeed, |π2 −arccos(θ)| ≈ |θ|
to third order, and thus

u∗ ≈ argmin
u∈Cn,‖u‖=1

N∑

j=1

|〈yi, u〉|2.

This approximation is a linear least square problem
whose solution is given by the eigenvector corresponding
to the smallest eigenvalue of the covariance matrix

Cov (y1, . . . , yN ) =

[
| |
y1 ··· yN
| |

] [− y1 −
...

− yN −

]
.

Moreover, for any α1, . . . , αN ∈ S1 ⊂ C we have that
Cov (α1y1, . . . , αNyN ) = Cov (y1, . . . , yN ), so Cov(Y ) is
well defined for Y ⊂ Lnq .

5.1 Inductive construction of LPCA

Let vn = LastLensComp(Y ) be the eigenvector of
Cov(Y ) corresponding to the smallest eigenvalue. As-
sume that we have constructed vk+1, . . . , vn ∈ S2n−1

for 1 < k < n, and let {u1, . . . , uk} be an orthonormal
basis for spanC(vk+1, . . . , vn)⊥. Let Uk ∈ Cn×k be the

matrix with columns u1, . . . , uk, and let U†k be its con-
jugate transpose. We define the k-th Lens Principal
component of Y as the vector

vk := Uk · LastLensComp

(
U†ky1

‖U†ky1‖
, . . . ,

U†kyN

‖U†kyN‖

)

This inductive procedure yields a collection
[v2], . . . , [vn] ∈ Lnq , and we let v1 ∈ S2n−1 be

such that spanC{v1} = spanC{v2, . . . , vn}⊥. Finally

LPCA(Y ) := {[v1], . . . , [vn]}
are the Lens Principal Components of Y . Let Vk ∈
Cn×k be the n-by-k matrix with columns v1, . . . , vk, and

let Pk(Y ) ⊂ Lkq be the set of classes
[
V †k yj
‖V †k yj‖

]
, 1 ≤ j ≤

N . The point clouds Pk(Y ), k = 1, . . . , n, are the Lens
Principal Coordinates of Y .

5.2 Choosing a target dimension.

The variance recovered by the first k Lens Principal
Components [v1], . . . , [vk] ∈ Lnq is defined as

vark(Y ) :=
1

N

k∑

l=2

N∑

j=1

dL

([
V †l yj

‖V †l yj‖

]
, Ll−1q (el−1)

)2

where Vl is the n-by-l matrix with columns v1, . . . , vl,
1 < l ≤ k, and el−1 ∈ Cl is the vector [0, . . . , 0, 1, 0].

Therefore, the percentage of cumulative variance
p.var(k) := vark(Y )

/
varn(Y ), can be interpreted as the

portion of total variance of Y along LPCA(Y ), explained
by the first k components.

Thus we can select the target dimension as the small-
est k for which p.vark(Y ) is greater than a predeter-
mined value. In other words, we select the dimension
that recovers a significant portion of the total vari-
ance. Another possible guideline to choose the tar-
get dimension is as the minimum value of k for which
p.var(k)− p.var(k + 1) < γ for a small γ > 0.
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5.3 Independence of the cocycle representative.

Let η ∈ Z1(N (Bε);Zq) be such that [η] 6= 0 in
H1(N (Bε);Zq), and let η′ = η + δ0(α) with α ∈
C0(N (Bε);Zq). If b ∈ Uj , then

fη′(b) = [
√
φ1(b)ζηj1+α1

q : · · · :
√
φn(b)ζηjn+αn

q ]

If Zα is the square diagonal matrix with entries
ζα1
q , ζα2

q , . . . , ζαn
q , then fη′(b) = Zα · f(b). Moreover,

after taking classes in Lnq , this implies that fη′(X) =

Zα · f(X). Since Cov(Zα · f(X)) = ZαCov(f(X))Z†α
and Zα is orthonormal, then if v is an eigenvector of
Cov(f(X)) with eigenvalue σ, we also have that Zαv is
an eigenvector of Cov(Zα · f(X)) with the same eigen-
value. Therefore

LastLensComp(fη′(X)) = ZαLastLensComp(f(X)).

Since each component in LPCA is obtained in
the same manner, we have that LPCA(fη′(X)) =
ZαLPCA(f(X)). Thus, the lens coordinates from two co-
homologous cocycles η and η + δ0(α) (i.e., representing
the same cohomology class) only differ by the isometry
of Lnq induced by the linear map Zα.

6 Examples

6.1 The Circle S1

Let S1 ⊂ C be the unit circle, and let X a random
sample around S1, with 10, 000 points and Gaussian
noise in the normal direction. L ⊂ X is a landmark set
with 10 points obtained as described in Section 4.1.

Figure 1: Left: Sample X, in black landmark set L ⊂
X. Right: PHi(R(L);Z3) for i = 0, 1, 2.

Let a be the cohomological death of the most persis-
tent class PH1(R(L);Zq). For ε := a + 10−5 and η =
i∗(η′) ∈ Z1(N (Bε);Zq) we define the map f : Bε ! L10

3

as in Equation (1).
After computing LPCA for f(X) ⊂ L10

3 and the per-
centage of cumulative variance p.varY (k) we obtain the
row in Table 1 with label S1 (see Figure 7 for more
details). We see that dimension 1 recovers ∼ 60% of
the variance. Moreover, Figure 2 shows P2(f(X)) ⊂ L2

3

Dim. (n) 1 2 3 4 5
S1 0.62 0.75 0.81 0.86 0.89
M(Z3, 1) 0.56 0.7 0.76 0.8 0.83
L2
3 0.47 0.62 0.67 0.71 0.73

Table 1: Percentage of recovered variance in Ln3 .

Figure 2: Visualization P2(f(X)) ⊂ L2
3.

in the fundamental domain described in Section 2.2.1
trough the map in Equation (4).

One key aspect of LC (Lens coordinates) is that it
is designed to highlight the cohomology class η used on
Equation (1). This is easily observed in this example;
we selected the most persistent class in PH1(R(L);Z3)
and as a consequence in Figure 2 we see how this class
is preserved while all the information in the normal di-
rection is lost in the process.

6.2 The Moore space M(Z3, 1).

Let G be an abelian group and n ∈ N. The Moore space
M(G,n) is a CW-complex such that Hn(M(G,n),Z) =
G and H̃i(M(G,n),Z) = 0 for all i 6= n. A well known
construction for M(Z3, 1) can be found in [6]. Equa-
tion (5) defines a metric on M(Z3, 1).

Figure 3: Left: X ⊂M(Z3, 1) with landmarks in black.
Right: PHi(R(L);Z3) for i = 0, 1.

Figure 3, on the left, shows a sample X ⊂ M(Z3, 1)
with |X| = 15, 000 and 70 landmarks. The landmarks
were obtained by minmax sampling after feeding the
algorithm with an initial set of 10 point on the boundary
on the disc. Figure 4 shows the persistent cohomology
of R(L) with coefficients in Z2 and Z3 side-by-side.
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Figure 4: PHi(R(L);F) for i = 0, 1 and F = Z2,Z3.

We compute f : M(Z3, 1) −! L70
3 analogously to the

previous example and obtain a point cloud f(X) ⊂ L70
3 .

The profile of recovered variance is shown in Table 1.
Dimension 2 provides a low dimensional representation
of f(X) inside L2

3 with 70% of recovered variance (Fig-
ure 8).

Figure 5: Visualization of the resulting P2(f(X)) ⊂ L2
3.

Since f classifies the principal Z3-bundle Pη over
M(Z3, 1), then f must be homotopic to the inclusion
of M(Zq, 1) in L∞q . Figure 5 shows X ⊂ M(Z3, 1)
mapped by f in L2

3. Notice the identifications on X
are handled by the identification on S1 × {0} ⊂ D3

from the fundamental domain on Section 2.2.1. See
https://youtu.be/_Ic730_xFkw for a more complete
visualization.

6.3 The Lens space L2
3 = S3/Z3.

We use the metric defined in Equation (3) on L2
3 and

randomly sample 15, 000 points to create X ⊂ L2
3. Fig-

ure 6(left) shows the sample set using the fundamental
domain from section 2.2.1.

Figure 6: Left: X ⊂ L2
3. Right: Lens coordinates.

We can use PHi(R(X);Z2) and PHi(R(X);Z3) to
verify that the sampled metric space has the expected
topological features. Figure 10 contains the correspond-
ing persistent diagrams.

Just as in the previous examples define f : L2
3 ! L∞3

using the most persistent class in PH1(R(L);Z3). The
homotopy class of f must be the same as that of the
inclusion L2

3 ⊂ L∞3 , since f classifies the Z3-principal
bundle Pη. Thus we expect L2

3 to be preserved up to
homotopy under LPCA. Figure 6 offers a side and top
view of P2(f(X)) ⊂ L2

3. Here we clearly see how the
original data set X is transformed while preserving the
identifications on the boundary of the fundamental do-
main. Finally in Table 1 we show the variance profile
for the dimensionality reduction problem. We see that
for dimension 4 we have recovered more than 70% of the
total variance as seen in Table 1 and Figure 9.

6.4 Isomap dimensionality reduction

We conclude this section by providing evidence that
Lens coordinates (LC) preserve topological features
when compared to other dimensionality reduction al-
gorithms. For this purpose we use Isomap ([13]) as our
point of comparison.

The Isomap algorithm consist of 3 main steps. The
first step determines neighborhoods of each point us-
ing k-th nearest neighbors. The second step estimates
the geodesic distances between all pairs of points using
shortest distance path, and the final step applies classi-
cal MDS to the matrix of graph distances.

Let dgm be a persistent diagram. Define per1 to be
the largest persistence of an element in dgm, and let per2
be the second largest persistence of an element dgm.

per1/per2 Z2 Z3

Isomap 1.0105 1.0105
M(Zq, 1)

LC 1.7171 3.6789
Isomap 1.0080 1.0080

L2
3 LC 1.1592 2.8072

Table 2: In green we highlight the fraction that indicates
which method better identifies the topological features.

For both M(Z3, 1) and L2
3 it is clear that the Isomap

projection fails to preserve the difference between the
cohomology groups with coefficients in Z2 and Z3. On
the other hand the LC projections maintains this differ-
ence in both examples (see Table 4 for more details).
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Appendix

Proof. [of Proposition 3] Take [b, j, g] ∈ Pη and con-
sider a different representative of the class. Namely,
an element (b, k, g + ηjk) such that b ∈ Uj ∩ Uk.
By definition of Φ, we have Φ([b, j, g]) = fj(b, j, g)
and Φ([b, k, g + ηjk]) = fk(b, k, g + ηjk). And since
fj(b, j, g) = fk(b, k, g + ηjk), we have that

Φ([b, j, g]) = Φ([b, k, g + ηjk]),

which shows that Φ is well defined.
To see that Φ is Zq-equivariant, take m ∈ Zq for any

m = 0, . . . , q − 1 and compute

Φ([b, j, g]) ·m
=
[√

ϕ1(b)ζ(g+m+ηj1)
q , . . . ,

√
ϕn(b)ζ(g+m+ηjn)

q

]

= fj(b, j, g +m) = Φ([b, j, g +m])

= Φ([b, j, g] ·m).

�
Proof. [of Theorem 5] First we need to see that f is
well defined. Let b ∈ Uj ∩ Uk, therefore

p(Φ([b, j, 0])) =
[√

ϕ1(b)ζηj1q : · · · :
√
ϕn(b)ζηjnq

]

= p(Φ([b, k, 0)).

This shows that f(b) is independent of the open set
containing b.

Hence (Φ, f) : (Pη, π,B) ! (S2n−1, π, Lnq ) is a mor-
phism of principal Zq-bundles, and by [[7], Chapter 4:
Theorem 4.2] we conclude that Pη and f∗(S2n−1) are
isomorphic principal Zq-bundles over B. �
Proof. [of Proposition 6] First of all, R2ε(L)(0) =
N (Bε)(0) = L. If b 6∈ Bε(lk), then ϕk(b) = 0 and
therefore the equality holds. If on the other hand
b ∈ Bε(lk)∩Bε(lj), then {j, k} ∈ N (Bε)(1) ⊂ R2ε(L)(1).
In which case, by definition of i∗, we have η̃jk = ηjk. �
Proposition 8 Let [x], [y] ∈ Lnq , then

dL([x], [y]) = d(x, y · Zq) = min
g∈Zq

d(x, y · g).

Proof. For x, y ∈ Cn let 〈x, y〉R := real(〈x, y〉C). By
definition of Hausdorff distance, we have that

dL([x], [y]) = max

{
max
g∈Zq

min
h∈Zq

arccos(〈x · g, y · h〉R) ,

max
h∈Zq

min
g∈Zq

arccos(〈x · g, y · h〉R)

}
.

Notice that

〈x · g, y · h〉R = real
(〈
ζgq x, ζ

h
q y
〉
C

)

= real
(〈
x, ζ(h−g)q y

〉
C

)

= 〈x, y · (h− g)〉R
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And since Zq is Abelian, then

max
h∈Zq

min
g∈Zq

arccos(〈x · g, y · h〉R)

= max
h∈Zq

min
g∈Zq

arccos(〈x · (g − h), y〉R)

= max
h∈Zq

min
g∈Zq

arccos(〈x · (−h), y · (−g)〉R)

= max
h′∈Zq

min
g′∈Zq

arccos(〈x · h′, y · g′〉R).

Thus

dL([x], [y]) = max
g∈Zq

min
h∈Zq

arccos(〈x · g, y · h〉R).

Furthermore dL([x], [y]) = max
g∈Zq

d(x · g, y · Zq) =

max
g∈Zq

d(x, y · (−g)Zq). Since y ·
(
(−g)Zq

)
= y · Zq for

any g ∈ Zq, we obtain dL([x], [y]) = max
g∈Zq

d(x, y · Zq) =

d(x, y · Zq) = min
h∈Zq

d(x, y · h). �

Proof. [of Lemma 7] From Theorem 8 we know that

dL([v], P⊥u ([v])) = min
g∈Zq

d(v, P⊥u ([v]) · g)

= min
g∈Zq

d

(
v,

P⊥u (v)

‖P⊥u (v)‖ · g
)
.

Let g∗ := argmin
g∈Zq

d
(
v,

P⊥u (v)
‖P⊥u (v)‖ · g

)
, so we have

dL([v], P⊥u ([v])) = arccos

(〈
v,

P⊥u (v)

‖P⊥u (v)‖ · g
∗
〉

R

)
.

Notice that the argument of the arccos can be simpli-
fied as follows

〈
v,

P⊥u (v)

‖P⊥u (v)‖ · g
∗
〉

R
=

〈
〈v, u〉Cu+ P⊥u (v),

P⊥u (v)

‖P⊥u (v)‖ · g
∗
〉

R

=

〈
〈v, u〉Cu,

P⊥u (v)

‖P⊥u (v)‖ · g
∗
〉

R

+

〈
P⊥u (v),

P⊥u (v)

‖P⊥u (v)‖ · g
∗
〉

R
.

since u and P⊥u (v) are orthogonal in Cn then they are
also orthogonal in R2n, making the then the firs sum-
mand on the right hand side equal to zero. Additionally
since arccos as a real valued function is monotonically
decreasing we have

g∗ = argmax
g∈Zq

1

‖P⊥u (v)‖
〈
P⊥u (v), P⊥u (v) · g

〉
R .

Using the fact that the action of Zq is an isometry
(and therefore an operator of norm one) as well as the

Cauchy-Schwartz inequality we obtain

〈
P⊥u (v), P⊥u (v) · g

〉
R

‖P⊥u (v)‖ ≤
∣∣∣∣

1

‖P⊥u (v)‖
〈
P⊥u (v), P⊥u (v) · g

〉
R

∣∣∣∣

≤ 1

‖P⊥u (v)‖‖P
⊥
u (v)‖‖P⊥u (v) · g‖

= ‖P⊥u (v) · g‖ = ‖P⊥u (v)‖.

And the equality holds whenever g = e ∈ Zq, so we
must have g∗ = e.

Let [w] ∈ Ln−1q (u), so w ∈ span⊥C (u) which implies
that for any h ∈ Zq

〈u,w·h〉C =
∑

k

uk(ζhq wk) = ζ−hq
∑

k

ukwk = ζ−hq 〈u,w〉 = 0.

In other words w · h ∈ span⊥C (u) for any h ∈ Zq.
Thus by the Cauchy-Schwartz inequality

〈v, w · h〉R = 〈〈v, u〉Cu+ P⊥u (v), w · h〉R = 〈P⊥u (v), w · h〉R
≤ |〈P⊥u (v), w · h〉R| ≤ ‖P⊥u (v)‖‖w · h‖
= ‖P⊥u (v)‖‖w‖ = ‖P⊥u (v)‖,

since the action of Zq is an isometry and w ∈ S2n−1.
Finally since arccos is decreasing

dL([v], P⊥u ([v])) = arccos(‖P⊥u (v)‖) ≤ arccos(〈v, w ·h〉R)

for all h ∈ Zq, thus dL([v], P⊥u ([v])) ≤ dL([v], [w]). �

Visualization map for L2
3. Given v1, . . . , vn ∈ S2n−1

representatives for the classes in LPCA(Y ). We want
to visualize P2(Y ) ⊂ L2

3 in the fundamental domain
described in Section 2.2.1. Let

P2(Y ) =
{[
〈yi, v1〉C, 〈yi, v2〉C

]
∈ S3 ⊂ C2 : [yi] ∈ Y

}

and define G : P2(Y ) −! S3 ⊂ C2 to be

G(z, w) :=

(
ζ−k3 z,

(
arg(w)− π

3

)√
1− |z|2

)
(4)

where arg(w) ∈
[
0, 2π3

)
, and k an integer such that

arg(z) = k
2π

3
+ θ,

where θ is the remainder after division by 2π
3 .

Metric on the Moore space M(Z3, 1). For
x, y ∈ C with |x|, |y| ≤ 1, we let

d(x, y) =





√
|〈x, y〉R| if |x| , |w| < 1

min
ζ∈Z3

√
|〈x, ζy〉R| if |x| = 1 or |w| = 1

min
ζ∈Z3

arccos(|〈x, ζy〉R|) if |x| = 1 and |w| = 1

.

(5)
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Profiles of recovered variance.

Recovered variance of LPCA on S1.

Figure 7: Profile of recovered variance on S1.

Recovered variance of LPCA on M(Z3, 1).

Figure 8: Profile of recovered variance on M(Z3, 1).

Recovered variance of LPCA on L2
3.

Figure 9: Profile of recovered variance on L2
3.

Figure 10: PHi(R(L);Z3) for i = 0, 1. PHi(R(L);Z2)
for i = 0, 1.
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Coefficients Z2 Coefficients Z3

Isomap

LC

Table 3: Persistent homology of the Isomap vs. LPCA for M(Z3, 1) into a 4 dimensional space.

Coefficients Z2 Coefficients Z3

Isomap

LC

Table 4: Persistent homology of the Isomap vs. LPCA for L2
3 into a 4 dimensional space.
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Computing Feasible Trajectories for an Articulated Probe
in Three Dimensions

Ovidiu Daescu∗ Ka Yaw Teo∗

Abstract

An articulated probe is modeled as two line segments
ab and bc connected at point b. Line segment ab can
be arbitrarily long, while bc is of a given length r. The
input consists of a set of n disjoint triangular obstacles
in R3 and a target point t in the free space, all enclosed
by a large sphere S centered at t. Initially, the probe is
located outside S and assumes an unarticulated configu-
ration, in which line segments ab and bc are collinear and
b ∈ ac. The goal is to find a feasible (obstacle avoiding)
probe trajectory to reach t, with the condition that the
probe is constrained by the following sequence of moves
– a straight-line insertion of the unarticulated probe into
S, possibly followed by a rotation of bc at b for at most
π/2 radians, so that c coincides with t.

We prove that if there exists a feasible probe trajec-
tory, then a set of extremal feasible trajectories must
be present. Through careful case analysis, we show
that these extremal trajectories can be represented by
O(n4) combinatorial events. We present a solution ap-
proach that enumerates and verifies these combinato-
rial events for feasibility in overall O(n4+ε) time using
O(n4+ε) space, for any constant ε > 0. The enumera-
tion algorithm is highly parallel, considering that each
combinatorial event can be generated and verified for
feasibility independently of the others. In the process
of deriving our solution, we design the first data struc-
ture for addressing a special instance of circular sector
emptiness queries among polyhedral obstacles in three
dimensional space, and provide a simplified data struc-
ture for the corresponding emptiness query problem in
two dimensions.

1 Introduction

We address the three-dimensional (3D) version of the ar-
ticulated probe trajectory planning problem introduced
in [4]. An articulated probe is modeled as two line seg-
ments ab and bc joined at point b. The length of line
segment ab can be arbitrarily large, while line segment
bc has a fixed length r. Line segment bc may rotate at
point b. A 3D workspace contains a set P of n interior

∗Department of Computer Science, University of
Texas at Dallas, Richardson, TX, USA. {ovidiu.daescu,
ka.teo}@utdallas.edu

disjoint triangular obstacles and a target point t in the
free space, all within a large sphere S centered at t (see
Figure 1).

Figure 1: Articulated probe trajectory in 3D. After in-
serting line segment abc into sphere S, in order to reach
target point t, line segment bc may be required to rotate
from its intermediate position (dashed line segment) to
the final position (solid line segment).

The probe is said to have an unarticulated configura-
tion if line segments ab and bc are collinear, and b ∈ ac.
Otherwise, the probe has an articulated configuration
– that is, bc has been rotated at b, and bc is no longer
collinear with ab.

The probe begins in an unarticulated configuration
outside sphere S. The unarticulated probe, represented
by straight line segment abc, is then inserted along a
straight line into sphere S. After completing the inser-
tion, line segment bc may be rotated at point b up to
π/2 radians in order to reach t. Hence, the final config-
uration of the probe could be either unarticulated or ar-
ticulated. The intermediate configuration of the probe
is the unarticulated configuration after the insertion but
before the rotation.

A feasible probe trajectory consists of an initial inser-
tion of straight line segment abc into sphere S, possibly
followed by a rotation of line segment bc at point b, such
that point c ends at target point t, while avoiding the
obstacles in the process of insertion and rotation.

The objective of the problem is to determine a feasible
probe trajectory, if one exists.

As illustrated in Figure 1, a feasible probe trajectory

59



31st Canadian Conference on Computational Geometry, 2019

is planar – that is, its motion always lies in a plane Π
passing through point t. Since line segment bc may only
rotate as far as π/2 radians at point b, for any feasible
probe trajectory, point b is the first intersection between
segment ab and the sphere C of radius r centered at t.
When line segment bc rotates about point b, the area
swept by bc is a sector σ of a circle D in plane Π (i.e.,
a portion of a disk enclosed by two radii and a circular
arc), where D is of radius r and centered at a point on
sphere C (specifically, a point b on the intersection of
C and Π). Circular sector σ always has an endpoint of
one of its bounding radii located at t.

Motivation

Besides its pointed relevance in robotics, the outlined
problem arises particularly from planning for minimally
invasive surgeries. In fact, surgical instruments that can
be modeled by our simple articulated probe are already
in clinical use (e.g., da Vinci EndoWrist by Intuitive
Surgical), given their enhanced capability in reaching
remote targets while circumventing surrounding critical
structures [13]. In our problem setting, a human body
cavity can be viewed as (a subset of) workspace S, and
any critical organ/tissue can be represented by using
a triangle mesh. Despite its importance and relevance,
the problem has never been investigated in three dimen-
sions from a theoretical viewpoint, and only a handful
of results in two dimensions have been reported [3, 4, 5].

Related work

Daescu, Fox, and Teo [4] originally proposed the afore-
mentioned trajectory planning problem in two dimen-
sions (2D), and they presented an O(n2 log n)-time,
O(n log n)-space algorithm for finding a feasible trajec-
tory amidst n line segment obstacles. The algorithm
was based on computing extremal trajectories that are
tangent to one or two obstacle vertices. This algorith-
mic approach was later extended to finding a feasible
trajectory of a given clearance δ from the obstacles, for
any δ > 0, in O(n2 log n) time using O(n2) space [3]. In
addition, Daescu and Teo [5] showed that the feasible
solution space for the two-dimensional trajectory plan-
ning problem can be characterized by a simple-curve
arrangement of complexity O(k), and the arrangement
can be constructed in O(n log n+k) time using O(n+k)
space, where k = O(n2) is the number of vertices in the
arrangement.

Results and contributions

We describe an algorithm that computes a feasible
probe trajectory in 3D, if one exists, in O(n4+ε) time
using O(n4+ε) space, for any constant ε > 0. First,

we prove that if there exists a feasible probe trajec-
tory, then some extremal feasible trajectories must be
present. An extremal trajectory is characterized by its
intersections or tangencies with a combination of ob-
stacle edges, vertices, and/or surfaces. Through care-
ful case analysis, we show that these extremal trajecto-
ries can be represented by O(n4) combinatorial events.
Our algorithm is based on enumerating and verifying
these combinatorial events for feasibility. As an alter-
native, an O(n5)-time algorithm with O(n)-space usage
is achievable by performing a simple O(n)-check on each
of the O(n4) events.

While deriving our solution approach, we develop the
first data structure for solving a special case of the cir-
cular sector emptiness query problem in 3D, where the
query circular sector has a fixed radius r and an end-
point of its arc located at fixed point t. We present a
data structure of size O(n4+ε) for answering a query of
the sort in O(log n) time. When mapped to the plane,
this result yields a new data structure for solving the
corresponding circular sector emptiness query problem
in 2D. Our new R2 query data structure simplifies the
two-part approach formerly proposed in [4] while main-
taining the same time and space complexity. Sharir and
Shaul [12] proposed a solution based on semialgebraic
range searching for circular cap (larger than a semidisk)
emptiness queries in 2D. These circular sector emptiness
queries, in 2D and 3D, are considered to be of indepen-
dent interest. To the best of the authors’ knowledge,
there has been no published data structure for general
circular sector emptiness queries in 3D or even 2D.

2 Extremal feasible trajectories

In this section, we prove that if there exists a feasible
probe trajectory, then a set of extremal feasible trajec-
tories must also be present.

Let ` denote a line segment of the probe. In addition,
let σ and γ denote a circular sector (i.e., area swept by
bc, as previously described) and its arc, respectively.

Let τ be a triangular obstacle of P in R3, and let e
denote en edge of τ . Without loss of generality, assume
that τ is not co-planar with t, and ` is not parallel to e.
` may intersect e at an endpoint of e, an interior point
of e, or none. An endpoint of e is a support vertex of `
if ` intersects the endpoint of e. e is a support edge of `
if ` intersects e at an interior point. Thus, a support of
` is either a support vertex or a support edge.

Suppose, without loss of generality, that σ and e lie
in different planes. σ is said to be supported by e if
σ intersects an endpoint of e. γ is supported by e if γ
intersects an interior point of e. If γ is tangent to the
surface of τ , then the surface is a support surface of γ.
For an illustration of the various types of supports just
described, see Figure 2.
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Figure 2: Support vertex, edge, and surface. The end-
point of edge e1 is a support vertex of line segment `.
Edge e2 is a support edge of `. The endpoint of e3 is
a support vertex of circular sector σ. Edge e4 supports
circular arc γ at an interior point. Triangle τ is a sup-
port surface of γ.

A line segment is extremal (or isolated) with respect
to a set of support vertices and edges if the line seg-
ment cannot be moved continuously while maintaining
its intersections with these vertices and edges. Analo-
gously, a probe trajectory is isolated by a set of sup-
ports if the trajectory cannot be altered without losing
any of its supports. Note that the term “isolated” has
the same meaning as “extremal,” and they will be used
interchangeably hereafter.

Lemma 1 Assume that a feasible unarticulated tra-
jectory exists – that is, the unarticulated probe can be
inserted into S to reach t while avoiding the obstacles
(i.e., t can see to infinity without obstruction). Then,
there exists an extremal feasible unarticulated trajectory,
in which the probe is isolated by either one support ver-
tex or two support edges.

Lemma 2 Assume that a feasible articulated trajec-
tory exists – that is, the unarticulated probe can be in-
serted into S, and a subsequent rotation of bc at b can
be performed to reach t, all while avoiding the obstacles.
Then, there exists either

i) an extremal feasible unarticulated trajectory or

ii) an extremal feasible trajectory such that the probe
assumes an articulated final configuration, and the
trajectory is isolated with respect to at most four
supports (edges, vertices, surfaces, or a combina-
tion of the three).

The existence of extremal feasible probe trajectories
can be proven by using a series of perturbation argu-
ments. The full proofs of Lemmas 1 and 2 are given in
Appendices A and B, respectively.

3 Finding and validating extremal trajectories

Based on Lemmas 1 and 2, we can compute the set of
extremal probe trajectories and verify them for feasi-
bility. The algorithms and data structures required are
detailed next.

Unarticulated trajectories

Let V and E denote the set of vertices and edges of
the triangles of P , respectively. We compute a set R of
rays, each of which i) originates at point t, ii) is either
passing through a vertex of V or isolated with respect to
two support edges of E, and iii) does not intersect any
triangle of P in its interior. Each ray of R represents an
extremal feasible unarticulated trajectory. Set R can be
obtained by computing the visibility polyhedron from
point t in O(n2) time using O(n2) space [9]. In fact,
this approach yields all feasible unarticulated solutions,
since the visibility polyhedron gives all unbounded rays
from t to infinity (i.e., feasible unarticulated trajecto-
ries).

Lemma 3 The set of all feasible unarticulated probe
trajectories can be found in O(n2) time using O(n2)
space.

Articulated trajectories

We at first compute the set of extremal articulated tra-
jectories, which are characterized by O(n4) combinato-
rial events (see Lemma 2). These extremal articulated
trajectories can be enumerated in O(n4) time either ge-
ometrically or algebraically (see Appendix C).

An extremal articulated trajectory is deemed feasible
if and only if i) segment ab and ii) circular sector σ do
not intersect with any triangular obstacle in its interior.
Checking for these scenarios can be reduced to the fol-
lowing two query problems – i) ray shooting query and
ii) circular sector emptiness query.

Ray shooting queries

A ray shooting query (among n interior disjoint trian-
gles) can be performed to determine whether a query
segment ab intersects with any triangular obstacle in its
interior (i.e., whether a query segment stabs through
the interior of an obstacle triangle). According to de
Berg et al. [6] and Pellegrini [10], such a query can be
answered in O(log n) time using O(n4+ε) preprocessing
time and space, for any constant ε > 0. Alternatively,
by using the data structure proposed by Agarwal and
Matousek [2], which provides a trade-off between space
and time, a ray shooting query (amidst n triangles) can
be answered in O(n1+ε/m1/4) time using O(m) storage
and O(m1+ε) preprocessing time, for any n ≤ m ≤ n4.
By employing this fairly complex data structure, given
that we have O(n4) queries in our case, when m = n, we
obtain O(n3/4+ε) time per query and O(n19/4+ε) total
time.

Circular sector emptiness queries

In this section, we address a special instance of the
circular sector emptiness query problem in 3D.
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Given a set P of n triangles in R3, preprocess it so
that, for a query circular sector σ with a fixed radius r
and an endpoint of its arc located at fixed point t, one
can quickly determine whether σ intersects P .

Let Π be a plane passing through point t. We can
parameterize Π by using two variables (I,Ω) (see Figure
3, where Π0 is the plane with (I = 0,Ω = 0)).

Figure 3: Characterization of ρs as function of θ in Π.

Let CΠ
′ be the circle in Π with radius

√
2r and the

center at t. Let τ be a triangle that intersects Π in a
line segment s. Observe that a query circular sector σ
in Π, as described above, can only intersect with τ if s
lies inside CΠ

′.
Let CΠ denote the circle of radius r centered at t in

Π. For any point b ∈ CΠ, let θ ∈ [0, 2π) be the angle
of tb relative to the x-axis of Π (called the x′-axis, as
depicted in Figure 3). Let bc′ denote the farthest radius
from tb (with respect to the circle of radius r centered
at b in Π) before the minor circular sector bounded by
radii tb and bc′ intersects with s. Let ρs be the angle
of bc′ with respect to tb. Recall that segment bc of the
probe, after the insertion of the probe has completed,
may only rotate up to π/2 radians in either direction in
plane Π. Thus, ρs ∈ [0, π/2]. Here we consider ρs to be
the clockwise angle from tb in plane Π. The other case
can be handled symmetrically.

We fix plane Π (i.e., I and Ω) and proceed to charac-
terize ρs as a function of θ. Two different cases are ex-
amined separately, depending on whether line segment
s lies 1) inside CΠ or 2) outside CΠ and inside CΠ

′.

Case 1: s lies inside CΠ. For the sake of brevity, the
quarter-circular sector associated with a point b (i.e., the
maximum possible area swept by segment bc to reach
point t), where the angle of tb relative to the x′-axis is
θ, is henceforth referred to as the quarter-circular sector
associated with θ.

Let φs,1, φs,2, and φs,3 be defined as follows (see Fig-
ure 4(A)). φs,1 is the smallest angle θ at which the cir-
cular arc of the quarter-circular sector associated with θ
intersects with line segment s at one of its endpoints or
an interior point. φs,2 is the smallest angle θ at which
segment bt of the quarter-circular sector associated with
θ intersects with line segment s at one of its endpoints.
φs,3 is the largest angle θ at which segment bt of the
quarter-circular sector associated with θ intersects with
line segment s at one of its endpoints. In other words,
as θ varies from 0 to 2π, φs,1 and φs,3 are the angles θ at
which the quarter-circular sector associated with θ first
and last intersects with line segment s, respectively.

For a line segment s lying inside CΠ, as shown in
Figure 4, we are only concerned with computing ρs for
θ ∈ [φs,1, φs,2], given that θ ∈ [φs,2, φs,3] is infeasible
due to intersection of bt with s, and ρs = π/2 for θ ∈
[0, φs,1] ∪ [φs,3, 2π).

For θ ∈ [φs,1, φs,2], ρs(θ) can be represented by a
piecewise continuous curve, which consists of at most
two pieces, corresponding to two intervals [φs,1, αs] and
[αs, φs,2], where αs is the angle θ of the intersection
point between CΠ and the supporting line of s. Note
that, if φs,1 ≤ αs, then the curve of ρs(θ) has two pieces;
otherwise, ρs(θ) is composed of one single piece.

For any θ ∈ [φs,1, αs], as depicted in Figure 4(B),
ρs(θ) is given by the angle between segments bt and bc′,
where c′ is the intersection point between line segment
s and the circle DΠ of radius r centered at b. If no
intersection occurs between line segment s and circle
DΠ, then ρs(θ) is given by the angle between segments bt
and bc′, where bc′ intersects an endpoint of line segment
s at an interior point of bc′.

Similarly, for any θ ∈ [αs, φs,2], ρs(θ) is the angle
between segments bt and bc′, where bc′ intersects an
endpoint of line segment s at an interior point of bc′ (see
Figure 4(D)). Observe that ρs(θ) = 0 when θ = φs,2. A
crude plot of function ρs(θ) is shown in Figure 5.

Case 2: s lies outside CΠ and inside CΠ
′. The

analysis is similar to Case 1 and thus omitted.

Each of the curves ρs(θ) just described (for θ ∈
[φs,1, φs,2]) is partially defined, continuous, and mono-
tone over θ. Specifically, ρs(θ) is monotonically decreas-
ing (resp. increasing) with respect to θ over the range of
[φs,1, φs,2] in Case 1 (resp. Case 2). In fact, the curves
behave like pseudo-line segments, since any two curves
can only intersect at most once.

Observe that ρs(θ) is an inverse trigonometric func-
tion. Nonetheless, we can easily define an algebraic
function fs = sin(ρs/2) in terms of variables xb and
yb (i.e., the x- and y-coordinates of b ∈ CΠ). Since
ρs is partially defined, continuous, and monotone over
θ ∈ [φs,1, φs,2], so is function fs (see Appendix D for
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Figure 4: (A) Characterizing ρs(θ) for θ ∈ [φs,1, φs,2] in Case 1. Illustrations of ρs(θ) for (B) φs,1 < θ < αs, (C)
θ = αs, and (D) αs < θ < φs,2, respectively.

Figure 5: Illustration of function ρs(θ) in Case 1.

details).
At this point, we are in position to claim a new unified

data structure for solving the circular sector emptiness
query problem in 2D. This R2 data structure simplifies
the two-step approach described in [4] (which consists
of a circular arc intersection query and a circular sector
emptiness query) while having the same time and space
complexity.

Specifically, we construct two lower envelopes V1 and
V2 of the piecewise algebraic curves fs for all given line
segments s ∈ P as follows. V1 is the lower envelope
of the curves fs for yb ≥ 0 (i.e., 0 ≤ θ ≤ π), whereas
V2 is for yb < 0 (i.e., π < θ < 2π). Note that V1

and V2 are computed as functions of xb only, given that
yb = +(r2–xb

2)1/2 for yb ≥ 0, and yb = −(r2–xb
2)1/2

for yb < 0.
Since each pair of curves fs intersect in at most one

point, the size of the lower envelope is bounded by the
third-order Davenport-Schinzel sequence, whose length
is at most O(nα(n)), where α(n) is the inverse Acker-
mann function. The lower envelope can be computed in
O(n log n) time [7, 11].

Given a query circular sector σ, let bσ be the apex of
σ. If ybσ ≥ 0, then xbσ is looked up in V1 by using a
binary search, which takes O(log n) time; otherwise, xbσ
is looked up in V2. Let ρ be the acute angle between the
two bounding radii of σ. If sin(ρ/2) is less than fs(xb)
for all line segments s ∈ P , then σ does not intersect P .
Hence, we have the following result.

Theorem 4 A set P of n line segments in R2 can be
preprocessed in O(n log n) time into a data structure of
size O(nα(n)) so that, for a query circular sector σ with
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a fixed radius r and a fixed arc endpoint t, one can de-
termine if σ intersects P in O(log n) time.

Remarks. Notice that we do not actually need the
function description of the lower envelope; it suffices
to have an implicit representation, specifically the ver-
tices of the lower envelope and the segments that define
various pieces of the lower envelope. Generally, what
is required to compute the lower envelope representa-
tion (of a given set of curves) includes i) the number of
times each pair of curves intersect, ii) the ability to com-
pute the intersection points between two given curves,
and iii) the ability to determine whether one curve lies
above or below another to the left and right of their
intersection.

Recall that each pair of curves fs only intersect
in at most one point. The intersection between any
two curves fsi and fsj (induced by segments si and
sj , respectively) can be determined algebraically in
O(1) time, given that the intersection corresponds
to the angle θ at which bc′ is supported by both si
and sj . We can also decide in constant time which
of the two curves fi and fj , to the left and right of
their intersection, lies above/below the intersection
point (see Appendix E). At query time, given a
circular sector σ (and its associated xb), we can easily
determine if σ intersects any line segment in P , without
having to know the equation for the curve fs defining
the lower envelope at xb, as follows. We retrieve the
segment s that induces the curve fs defining the lower
envelope at xb, and check if bc of σ intersects s. If
bc of σ does not intersect s, then σ does not intersect P .

We now continue to derive our result for circular sec-
tor emptiness queries in 3D. For each triangle τ ∈ P ,
we define a trivariate function ρτ (I,Ω, θ), so that ρs(θ)
is characterized with respect to all planes (I,Ω). As
with the two-dimensional case, ρτ (I,Ω, θ) is an inverse
trigonometric function, based on which we can define
an algebraic function fτ (of constant degree) in terms of
four variables (see Appendix F). Since xb

2 +yb
2 +zb

2 =
r2, we can construct two lower envelopes V1 and V2 of
the piecewise algebraic functions fτ for all given trian-
gles τ ∈ P , such that V1 is the lower envelope of fτ for
zb ≥ 0, and V2 is for zb < 0. As a result, V1 and V2 are
functions of only three variables.

For constructing the lower envelope of the trivariate
piecewise algebraic functions (of constant description
complexity) just described, the best-known performance
bounds are given by Koltun [8] and Agarwal et al. [1].
Specifically, according to Koltun [8], we can compute,
deterministically, the lower envelope in O(n4+ε) time
and store it in a data structure of size O(n4+ε) and
query time O(log n), for any ε > 0. On the other hand,
Agarwal et al. [1] showed that the lower envelope can be

constructed in randomized expected time O(n3+ε) and
stored in an O(n3+ε)-size data structure with a query
time of O(log2 n). Thus, we obtain the following result.

Theorem 5 For any constant ε > 0, a set P of n tri-
angles in R3 can be preprocessed in O(n4+ε) time into a
data structure of size O(n4+ε) so that, for a query circu-
lar sector σ with a fixed radius r and an endpoint of its
arc located at t, one can determine whether σ intersects
P in O(log n) time.

Given that O(n4) queries are to be processed in the
worst case, the following result is obtained.

Lemma 6 A feasible articulated probe trajectory, if one
exists, can be determined in O(n4+ε) time using O(n4+ε)
space, for any constant ε > 0.

Since the space/time complexity of finding an ex-
tremal feasible articulated trajectory (Lemma 6) is dom-
inant over that of the case of unarticulated trajectory
(Lemma 3), the final result can be stated as follows.

Theorem 7 One can determine if a feasible trajectory
exists, and if so, report (at least) one such trajectory
in O(n4+ε) time using O(n4+ε) space, for any constant
ε > 0.

As an alternative, an O(n5)-time algorithm with lin-
ear space usage is achievable by performing a simple
O(n)-check on each of the O(n4) extremal trajectories.
The proposed enumeration algorithm is easy to imple-
ment and could be quite fast in practice, since the enu-
meration stops once a feasible solution is found.

4 Conclusion

We have presented efficient data structures and algo-
rithms for solving a trajectory planning problem involv-
ing a simple articulated probe in 3D space. In partic-
ular, we have shown that a feasible probe trajectory,
among n triangular obstacles, can be found in O(n4+ε)
time, for any constant ε > 0. In the process, we have
solved a special case of the circular sector emptiness
query problem in 3D and simplified the corresponding
data structure in 2D. We leave open the following ques-
tions: 1) Since our approach is enumerative, can we
speed up the process of finding one feasible solution? 2)
Is it possible to extend the current algorithm to find-
ing feasible probe trajectories of a given (or maximum)
clearance?
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Appendices

A Proof of Lemma 1

Let T be a feasible probe trajectory such that its final con-
figuration is unarticulated. Specifically, in the final configu-
ration of the probe, abc is a straight line segment, and point
c coincides with t.

Let Π be an arbitrary plane passing through t and con-
taining line segment abc. Assume that plane Π intersects at
least one triangular obstacle. Observe that such an arbitrary
plane Π always exists; otherwise, workspace S must be free
of obstacles. Let T ′ be the trajectory resulting from rotating
T about t in plane Π until T intersects an obstacle edge at
either i) an endpoint or ii) an interior point.

If the intersection occurs at an endpoint v of the obstacle
edge, then we have a feasible trajectory T ′ that is isolated
by a support vertex v (since t and v define a unique line).

On the other hand, suppose that T ′ intersects the obsta-
cle edge at an interior point. Let e1 denote the intersecting
obstacle edge, and Ψ be the unique plane containing e1 and
t. When T ′ is rotated about t in plane Ψ until T ′ intersects
an endpoint of e1 or some obstacle edge e2, a new feasible
trajectory T ′′ is obtained. If T ′′ intersects e1 or e2 at an end-
point, then T ′′ is isolated with respect to a support vertex.
If T ′′ intersects e2 at an interior point, then T ′′ is isolated
with respect to two support edges (i.e., e1 and e2).

B Proof of Lemma 2

Let T denote a feasible probe trajectory such that its final
configuration is articulated. Namely, in the final configura-
tion of the probe, ab and bc are not collinear, and point c
coincides with t.

Let Π be the unique plane containing ab and t. Since the
whole trajectory of the probe is planar (i.e., in plane Π),
without loss of generality, assume that bc of T is rotated
clockwise about b to reach t in plane Π. Hereafter, for ease
of discussion, bc and bt (of an articulated trajectory) stand
for line segment bc of the probe in its intermediate and final
configurations, respectively.

A feasible trajectory T ′ can be obtained by rotating ab of
T about b in clockwise direction in plane Π until either ab
and bt become collinear or ab intersects an obstacle edge e1

outside C. In the former case, T ′ has an unarticulated final
configuration, and by directly applying Lemma 1, we obtain
an extremal feasible unarticulated trajectory as a result. In
the latter case, let T ′′ be a trajectory resulting from rotating
bt of T ′ about t counter-clockwise in plane Π while keeping
ab intersecting e1 until either 1) bt or 2) ab intersects some
obstacle edge e2. T ′′ is a feasible trajectory, and the proof
is given in the Appendix of [4].

Case 1: bt intersects e2 (inside C). Let p1 be the inter-
section point between ab and e1. Let e2

′ be the projection
of e2 onto the surface of sphere C from center t. Notice that
e2
′ is a circular arc on C, and point b of trajectory T ′′ must

lie on e2
′ as long as bt intersects e2 (see Figure 6).

Let σbct denote the minor circular sector (with a central
angle ≤ 90◦) bounded by radii bc and bt, and let γct be the
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Figure 6: Illustration for Case 1.

circular arc of σbct. Let point b of T ′′ be translated along e2
′

in the direction such that the obtuse angle ∠abt increases,
while keeping ab intersecting e1 at p1, until a) bt, b) bc, c)
ab, d) σbct, or e) γct intersects with an obstacle edge e3, f)
γct is tangent to the surface of some obstacle triangle, g) bt
intersects with an endpoint of e2, or h) ab becomes collinear
with bt. Let T ′′′ denote the resulting trajectory, as depicted
in Figure 6. Since T ′′′ is obtained by simply perturbing T ′′

until the trajectory comes into contact with an obstacle (or
∠abt reaches 180◦), T ′′′ is feasible.

Case 1(a): bt intersects e3. Note that two generic line
segments and a point induce an incident line in 3D space.
Since t is fixed and bt intersects two obstacle edges e2 and
e3, bt is isolated (and thus point b is fixed).

Let Ψ be the unique plane containing e1 and b. As il-
lustrated in Figure 7 Case 1(a), let T ′′′′ be the trajectory
obtained from rotating abc of T ′′′ around b in plane Ψ in the
direction such that the obtuse angle ∠abt increases until i)
bc, ii) ab, iii) σbct, or iv) γct intersects with some obstacle
edge e4, v) γct is tangent to the surface of an obstacle tri-
angle, vi) ab intersects an endpoint of e1, or vii) ab becomes
collinear with bt. Obviously, given that T ′′′′ is derived from
T ′′′ through a straightforward perturbation, T ′′′′ is feasible.
Note that the detailed analyses for Cases 1(a)(i)–(vii) (as
well as similar others in the cases that follow) are omitted
due to their similarity to their parent cases.

Case 1(b): bc intersects e3. Note that ab intersects e1,
and bc intersects e3. Let P (e1, e3) be the set of points q
for which there exists a line segment starting at e1, passing
through q, and ending at e3. Let I be the intersection of
P (e1, e3), C, and e2

′ (I is indicated, in Figure 7 Case 1(b), as
the portion of the blue dashed line lying in the green shaded
area). I is a circular arc on C. An isolated feasible trajectory
can be obtained by translating point b of T ′′′ along I in the
direction such that the obtuse angle ∠abt increases until i)
bt, bc, ab, σbct, or γct intersects with some obstacle edge e4,
ii) γct is tangent to the surface of an obstacle triangle, iii)
bt, bc, or ab reaches an endpoint of its currently intersecting
obstacle edge, or iv) ab becomes collinear with bt.

Case 1(c): ab intersects e3. Notice that ab intersects
two edges e1 and e3. Assume, without loss of generality,

Figure 7: Illustrations for Cases 1(a)–(d).

that e1 and e3 are intersected by ab in the way depicted in
Figure 7 Case 1(c). Let P (e1, e3) be the set of points q for
which there exists a ray starting at e1, passing through e3,
and then through q. Let I be the intersection of P (e1, e3),
C, and e2

′. I is a circular arc on C. An isolated feasible
trajectory can be obtained by moving point b of T ′′′ along I
in the direction that increases the obtuse angle ∠abt until i)
bt, bc, ab, σbct, or γct intersects with an obstacle edge e4, ii)
γct is tangent to the surface of an obstacle triangle, iii) bt or
ab reaches an endpoint of its currently intersecting obstacle
edge, or iv) ab becomes collinear with bt.

Case 1(d): σbct intersects e3 (at one of its endpoints).
Observe, as shown in Figure 7 Case 1(d), that T ′′′ can be
made isolated if point b of T ′′′ is further translated along
e′2, while keeping ab intersecting e1 and maintaining the in-
cidence between σbct and the endpoint of e3, until i) bt, bc,
ab, σbct, or γct intersects with some obstacle edge e4, ii) γct
is tangent to the surface of an obstacle triangle, iii) bt or
ab reaches an endpoint of its currently intersecting obsta-
cle edge, or iv) ab becomes collinear with bt. The resulting
trajectory is feasible.

Case 1(e): γct intersects e3. Let D be a sphere of radius
r with center b located on sphere C. Note that D passes
through t. Consider the scenario that D is tangent to an
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obstacle edge e3. When D is rotated around t while main-
taining its tangency to e3, the center b of D translates along
a curve e3

′ on C (see Figure 8).

Figure 8: Illustration for Case 1(e). A top sectional
view along the plane containing e3 and t.

A plane can be defined by using two points on D and the
center b of D. Consider a sphere D with a given center b on
e3
′. D intersects t and is tangent to e3 at a point p. Thus,

we can define a plane Πb containing t, p, and b, for any given
b on e3

′.
Notice that γct is a circular arc on D originating at t,

and γct must be on the circle of intersection between D and
Πb, for some b on e3

′. Since e2
′ and e3

′ intersect at a point
(i.e., point b on C), point b is fixed. As a result, plane Πb

is set, and so is the circle on which γct lies. If Πb does
not contain e1, then abc is isolated. Otherwise, abc can be
rotated about b, while continuing to intersect e1, until either
ab or bc intersects an obstacle edge (or an endpoint of e1).
In the end of either scenario, an extremal feasible trajectory
is obtained.

Case 1(f): γct is tangent to the surface of an obstacle
triangle. The analysis is similar to Case 1(e). Let τ denote
the obstacle triangle to whose surface γct is tangent. As D
is rotated around t while remaining tangent to the surface
of τ , the center b of D moves along a curve κτ on C. Given
that e2

′ and κτ intersect at a point, b is fixed. The same
argument as in Case 1(e) immediately follows.

Case 1(g): bt intersects an endpoint of e2. Given
that t is fixed, bt of T ′′′ is isolated by its intersection with
an endpoint of e2. A similar analysis as in Case 1(a) then
follows.

Case 1(h): bc becomes collinear with bt. In this case,
Lemma 1 is directly applicable, resulting in an extremal fea-
sible unarticulated trajectory.

Case 2: ab intersects e2 (outside C). Using similar
arguments as given in Case 1, we can obtain an isolated
feasible articulated trajectory such that i) ab intersects two
edges, and ii) any of bt, bc, ab, σbct, and γct are supported
by at most two vertices, edges, and/or surfaces.

One may find some overlaps between Cases 1 and 2. On
the whole, an extremal feasible articulated trajectory is char-
acterized by its intersections (or tangencies) with at most

four supports consisting of obstacle endpoints, edges, sur-
faces, or a combination of the three.

C Computing extremal articulated trajectories

Table 1 lists all the distinct cases of isolated articulated tra-
jectories, each of which is indicated by the number of ob-
stacle edges (i.e., support edges) intersected by ab, bc, bt,
and γct, and the number of obstacle endpoints (i.e., support
vertices) incident on the interior of σbct.

Table 1: Extremal articulated trajectories.

Case ab bc bt σbct γct

1* 1 1 1 1

2 1 2 1

3 1 1 2

4 1 1 2

5 1 2 1

6* 2 1 1

7* 2 1 1

8 2 1 1

9 2 2

10 2 2

11 2 2

12 3 1

13 3 1

14* 3 1

15 4

16 1 1 1

17 1 1 1 1

18 1 1 1 1

19 1 2 1

20 2 1 1

21 2 1 1

22* 2 1 1

For conciseness, certain scenarios are omitted from Table
1 given their trivial nature, and they include those involv-
ing the isolation of a feasible articulated trajectory due to
incidence of its segment (i.e., ab, bc, or bt) with obstacle
endpoints (i.e., support vertices). In addition, the cases in
which γct is tangent to the surface of an obstacle triangle are
omitted due to their similarity to those where γct intersects
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an obstacle edge.
Note that the set of extremal articulated trajectories, in

all cases besides those denoted by *, can be found by using a
sequence of simple geometric operations (e.g., computing the
intersection of two line segments or planes). An extremal ar-
ticulated trajectory in each of the five cases designated by *
can be computed by using an algebraic-geometric approach.

All in all, the worst-case running time for computing an
extremal articulated trajectory is O(n4).

D Deriving algebraic function fs based on ρs(θ)

As one shall see, ρs(θ) is indeed an inverse trigonometric
function, but we can define an algebraic function fs as in
the following discussion based on ρs(θ).

Recall that, in Case 1, we are only concerned with char-
acterizing ρs(θ) for θ ∈ [φs,1, φs,2], which consists of at most
two pieces, corresponding to two sub-intervals [φs,1, αs] and
[αs, φs,2]. Let us consider the two sub-intervals individu-
ally. Note that, in the following analysis, θ is represented by
the x- and y-coordinates of b ∈ CΠ (in order to obtain an
algebraic expression).

Figure 9: Case for θ ∈ [φs,1, αs].

Sub-interval 1: θ ∈ [φs,1, αs]. For simplicity, let Π be
the xy-plane (in which line segment s lies). Without loss
of generality, let t be located at the origin. Let xc′ and yc′

denote the x- and y-coordinates of c′, respectively. Observe
that

sin
ρs
2

=

√
xc′2 + yc′2

2r
(1)

Recall that c′ is the intersection point between segment s and
the circle DΠ of radius r centered at b (see Figure 9). The
coordinates of c′ can be expressed in terms of the coordinates
of b in the following manner. Let ` be the supporting line of
s. Line ` can be represented by y = mx+ d, where m is the
slope of `, and d is the y-intercept of `. Circle DΠ can be
formulated as (x–xb)

2 + (y–yb)
2 = r2, where xb and yb are

the x- and y-coordinates of b, respectively. Then, xc′ and
yc′ can be written as

xc′ =
xb + ybm+ dm±

√
δ

1 +m2
(2)

yc′ =
d+ xbm+ ybm

2 ±
√
δ

1 +m2
(3)

where δ = r2(1 +m2)− (yb −mxb − d)2. Let fs = sin(ρs/2)
(i.e., Equation 1). Note that fs ∈ [0,

√
1/2]. Clearly, by

substituting Equations 2 and 3 into Equation 1, fs can be
expressed algebraically as a function of xb and yb, where
b ∈ CΠ and xb

2 + yb
2 = r2.

Figure 10: Case for θ ∈ [αs, φs,2].

Sub-interval 2: θ ∈ [αs, φs,2]. Observe that Equation 1
also holds true in this case. Let p be the intersection point
between s and bc′ (see Figure 10). Note that p is an endpoint
of s. Let xp and yp denote the x- and y-coordinates of p.
Then, xc′ and yc′ can be expressed as

xc′ = xb +

√
r2

1 + (
yp−yb
xp−xb )2

(4)

yc′ = yb +

√
r2

1 + (
yp−xb
yp−yb )2

(5)

As before, if we let fs = sin(ρs/2), then fs can be expressed
algebraically as a function of xb and yb by substituting Equa-
tions 4 and 5 into Equation 1.

A similar derivation of fs can also be performed in Case 2.
Given that ρs is partially defined, continuous, and monotone
over θ ∈ [φs,1, φs,2], function fs = sin(ρs/2) must also be the
same.

E Computing implicit lower envelope

Consider the following approach for computing an implicit
representation of the lower envelope. We only address the
case of computing V1 (0 ≤ θ ≤ π), and the other case of V2

(π < θ < 2π) can be handled symmetrically.
Recall that each pair of curves fs intersect at most once.

Thus, as with computing the lower envelope of a set of n lines
segments using a divide-and-conquer algorithm, we first sort
the curves fs by φs,1 (note that, for a given line segment s,
φs,1 can be computed without knowing fs, since φs,1 corre-
sponds to the smallest angle θ at which the circle of radius
r centered at b ∈ CΠ intersects with an endpoint of s). We
divide the set of curves fs into two equal sets by φs,1, re-
cursively compute the lower envelope of each set, and then
merge the two lower envelopes to obtain the final result. The
intersection of any two curves fsi and fsj (which correspond
to lines segments si and sj , respectively) can be determined
as follows. There are two cases to be considered, depending
on how segment bc′ is supported by segments si and sj .

Case A. Segment bc′ intersects segments i and j at their
endpoints (see Figure 11). Note that the corresponding xb

68



CCCG 2019, Edmonton, Canada, August 8–10, 2019

can be computed algebraically, given that b is the intersec-
tion point between CΠ and bc′. We can also decide in con-
stant time (based on the slope of bc′) which of the two curves
fsi and fsj , to the left and right of their intersection at xb,
lies above/below the intersection point.

Figure 11: Case A.

Case B. Segment bc′ intersects segment si such that c′

coincides with an interior point of si, and intersects segment
sj at its endpoint (see Figure 12).

Figure 12: Case B.

Similar to the previous case, we can compute the corre-
sponding xb algebraically and determine in constant time
which of the two curves fsi and fsj , to the left and right
of their intersection at xb, lies above/below the intersection
point.

Notice that we did not actually compute a full description
of the lower envelope. Instead, for each piece of the lower en-
velope, we store the information about segment s associated
with the curve fs to which the piece of the lower envelope
belongs.

F Deriving algebraic function fτ based on ρτ (I,Ω, θ)

In the following analysis, Cartesian variables are used in
place of I, Ω, and θ, in order to derive an algebraic expression
for fτ .

As with characterizing the univariate function ρs(θ), there
are two cases to be considered, depending on whether a given
triangle τ is located 1) inside sphere C or 2) outside sphere
C and inside sphere C′.

Given the similarity in analysis between the two cases, we
only present the arguments for Case 1. Similar as before, we
are concerned with computing ρτ for two contiguous sub-
intervals of (I,Ω, θ). In one of the sub-intervals, segment
bc′ always intersects the interior of τ at point c′. In the

other sub-interval, segment bc′ intersects an edge of τ . Let
us examine the two sub-intervals individually.

Sub-interval 1: bc′ intersects the interior of τ at c′.
Without loss of generality, let t be located at the origin. Let
xc′ , yc′ , and zc′ denote the x-, y-, and z-coordinates of c′,
respectively. Observe that

fτ = sin
ρτ
2

=

√
xc′2 + yc′2 + zc′2

2r
(6)

Let G be the plane passing through points t and b. Plane G
can be represented as g1x+g2y+g3z+g4 = 0, where g4 = 0
and g3 = (−g1xb−g2yb)/zb. If we define g = g1/g2, then the
expression for G becomes gx+ y+ [(−g1xb− g2yb)/zb]z = 0.
Given that plane G contains c′,

gxc′ + yc′ +

(−g1xb − g2yb
zb

)
zc′ = 0 (7)

Let H be the supporting plane of τ . Plane H can be ex-
pressed as h1x+ h2y + h3z + h4 = 0, where h1, h2, h3, and
h4 are the known parameters determined based on the three
vertices of τ . Since H contains c′,

h1xc′ + h2yc′ + h3zc′ + h4 = 0 (8)

Notice that |bc′| = r. Thus,

(xc′ − xb)2 + (yc′ − yb)2 + (zc′ − zb)2 = r2 (9)

Based on the three Equations 7, 8, and 9, we can obtain
an algebraic expression for xc′ , yc′ , and zc′ , respectively,
in terms of variables g, xb, yb, and zb. By substituting
the resulting algebraic expressions for xc′ , yc′ , and zc′ into
Equation 6, fτ can be expressed algebraically as a func-
tion (of degree one) of g, xb, yb, and zb, where b ∈ C and
xb

2 + yb
2 + zb

2 = r2.

Sub-interval 2: bc′ intersects an edge of τ . Let s
denote the edge of τ intersected by bc′. Segment s can be
expressed in parametric form as

x = (1− λs)xu + λsxv

y = (1− λs)yu + λsyv

z = (1− λs)zu + λszv

where u and v are the two endpoints of s, and 0 ≤ λs ≤ 1.
Let p denote the intersection point between bc′ and s. The
supporting line ` of segment bc′ can be represented as

x = (1− λ`)xb + λ`xp

y = (1− λ`)yb + λ`yp

z = (1− λ`)zb + λ`zp

where λ` ∈ R. Given that p lies in s, and line ` contains c′,

xc′ = (1− λ`)xb + λ`[(1− λs)xu + λsxv] (10)

yc′ = (1− λ`)yb + λ`[(1− λs)yu + λsyv] (11)

zc′ = (1− λ`)zb + λ`[(1− λs)zu + λszv] (12)

Note that Equation 9 still applies in this case. Substitute
Equations 10, 11, and 12 into Equation 9, and solve for λ` in
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respect of variables λs, xb, yb, and zb. Then, by substituting
the resulting expression for λ` into Equations 10, 11, and 12,
we obtain an algebraic expression (of degree one) for xc′ , yc′ ,
and zc′ , respectively, in terms of variables λs, xb, yb, and zb.

At last, by substituting the algebraic expressions for xc′ ,
yc′ , and zc′ into Equation (6), fτ can be expressed alge-
braically as a function of λs, xb, yb, and zb, where b ∈ C and
xb

2 + yb
2 + zb

2 = r2.
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The Lighthouse Problem∗

Navigating by Lighthouses in Geometric Domains

Bengt J. Nilsson† Paweł Żyliński‡

Abstract

We study the computational properties of placing a min-
imum number of lighthouses in different geometric do-
mains and under different notions of visibility, enabling
a vehicle placed anywhere in the domain to navigate to
a given specific target. This problem shares common
elements with the art gallery problem in that the whole
domain must be covered with as few lighthouses as pos-
sible. Our main result is an algorithm that places a
minimum set of strip lighthouses in a simple rectilinear
polygon. These correspond to sliding cameras in art
gallery vernacular.

1 Introduction

We consider a problem lying in the intersection of rout-
ing amongst obstacles and the art gallery problem. Our
problem is that of placing as few landmarks in a do-
main as possible such that a vehicle (being a ship, an
airplane or a drone) can safely navigate the domain to
reach a specified target. It is related to the routing prob-
lem since the vehicle should be guaranteed to avoid the
obstacles while following a simple routing protocol to
reach the target. At the same time, the landmarks must
“cover” the whole domain to ensure that the vehicle can
begin to navigate from any point in the domain, thus
connecting our problem to the art gallery problem [18].

Beacon-based direct-visibility routing was used in the
early days of aviation to guide (badly equipped) air-
planes. The airplane would fly in the direction of the
beacon until a beacon closer to the target could be seen
from the plane. The plane would then continue in the
direction of the new beacon, hopping from beacon to
beacon until it reached the target [19]. Minimizing the
number of beacons to place in a domain was therefore
important to make beacon-based direct-visibility rout-
ing practically feasible. Herein, we consider the two-
dimensional variant of this problem and to emphasize
this, we use the concepts of lighthouses and ships rather
than beacons and airplanes or drones.

∗The authors were supported by the grants 2018-04001
(Swedish Research Council) and 2015/17/B/ST6/01887 (National
Science Centre, Poland).

†Malmö University, Sweden, email bengt.nilsson.TS@mau.se
‡University of Gdańsk, Poland, email zylinski@inf.ug.edu.pl

Our navigation protocol for the ships is very sim-
ple but places certain restrictions on the placement of
the lighthouses in the domains, sometimes making our
placement problem computationally easier than the cor-
responding art gallery problem. Each lighthouse has
an associated identifying number that is transmitted
through the lighthouse signal. Thus, each ship can
identify the lighthouse it is moving towards. Our stan-
dard navigation protocol specifies that the ship should
move towards the lighthouse with the smallest identi-
fying number that it has currently seen. The target
always has identifying number 0 while the other light-
houses should have successively larger numbers as we
move away from the target in the domain.

The Lighthouse Problem (LP)
Given a domain and a target t in the domain, deter-
mine the minimum number of lighthouses, together
with their locations and identifying numbers, en-
suring that a ship starting from any position in the
domain can travel to t with the standard naviga-
tion protocol: move towards the lighthouse with
the smallest identifying number that is visible.

We can thus identify models of lighthouse problems
by specifying different domain, lighthouse, and visibility
types. We consider two general variants in this paper,
defined by the domain type: in Section 2, we consider
the lighthouse problem in grid domains, while in Sec-
tion 3 — in rectilinear polygons, in both cases with strip
lighthouses that define the lighthouse type and the visi-
bility (the SLP problem for short). A strip lighthouse is
an axis-aligned line segment l that can guide/attract/is
visible to a point p in the domain, if the perpendicu-
lar projection of p onto l is not exterior to the domain.
Finally, we also give some basic results for edge light-
houses in rectilinear polygons and for laser lighthouses
in grids. A laser is a point that can illuminate in exactly
one of the four compass directions.

Background. Our lighthouse problem is a variant of
the art gallery problem, originally posed by Klee in 1973
as the question of determining the minimum number of
guards sufficient to see every point of the interior of
a simple polygon; for more details, see O’Rourke [18],
Shermer [20], Urrutia [21] — combined with the concept
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Figure 1: An example of a grid.

of cooperative guards [13, 15, 22] in which visibility-
based connectivity between guards is required. We state
this crucial property more formally.

Property 1 If L is a solution to LP in some domain,
then the visibility graph of L (under the visibility model
considered) is connected.

The visibility model we consider, immediately relates
our lighthouse problem to the Minimum Sliding Cam-
eras (MSC) problem introduced by Katz and Morgen-
stern [14] and then studied in [3, 4, 5, 6, 7, 8, 9, 12]. For
that problem, combinatorial lower and upper bounds on
the minimum number of sliding cameras are provided
in [5, 12] and it is shown that the MSC problem is NP-
hard in polygons with holes [5, 8] but admits a PTAS in
simple polygons [3] — but so far NP-hardness in simple
polygons still remains an open problem, although there
exist linear-time exact algorithms with some additional
assumptions either on the input polygon or the solution
itself [4, 12].

For this visibility model, we may always assume that
the strip lighthouses are maximal (within the domain)
and furthermore, Property 1 translates to the fact that
the union of strip lighthouses that together allow to nav-
igate within the domain is a connected set.

2 Navigating in Grids

A grid is an arrangement of distinct vertical and hor-
izontal closed line segments in the plane, where every
two collinear line segments are disjoint and their union is
connected; the grid can be thought of as a polygon with
holes, representing a region of intersecting very thin cor-
ridors, see Figure 1 for an example. So a strip lighthouse
in a grid is a subsegment of a grid segment and visibility
is considered to be perpendicular to its direction along
the grid segments intersecting that subsegment. Recall
that a strip lighthouse is always assumed to be maximal
and therefore we may identify it with the correspond-
ing grid segment. Also, we assume that the target is a
complete grid segment, to avoid issues with objects on
that grid segment but not on the target.

Observe that for any feasible solution to the LP prob-
lem in a grid G, any grid segment must be intersected
by at least one lighthouse, so strip lighthouses must con-
stitute a complete cover of G. Since the union of strip

lighthouses that together allow to navigate within G is
a connected set, it follows from [15] that the LP prob-
lem in G can be solved by reduction to the minimum
cooperative mobile guard set problem in the grid ob-
tained from G by adding a new grid segment intersect-
ing only the target segment (to force that target segment
to be included in the optimal solution; identifying num-
ber may be then assigned in a greedy DFS-like manner,
starting with 0 for the target segment). On the other
hand, the minimum cooperative mobile guard set prob-
lem in G can be solved by reduction to the LP problem
in that grid (by taking the best solution over those re-
sulting from checking each of the grid segments as a pos-
sible candidate for the target segment). Consequently,
as the problem of finding a minimum connected mobile
guard set is NP-hard [15], we obtain the following result.

Corollary 2 The SLP problem in grids is NP-hard.

Furthermore, since there is one-to-one correspon-
dence between a minimum cooperative mobile guard set
in a grid G and the minimum dominating set of the in-
tersection graph of G, and Guha and Khuller [11] pro-
posed an O(log ∆)-approximation algorithm for com-
puting the minimum connected dominating set of a
graph, where ∆ is the maximum degree of that graph,
and proved a lower bound of Ω(log ∆) even for bipartite
graphs, we may conclude the following corollary.

Corollary 3 The SLP problem in grids can be approx-
imated with an O(log ∆) approximation ratio, where ∆
is the maximum number of intersections on a grid seg-
ment.

3 Navigating in Rectilinear Polygons

Our main result of this section is a quadratic time algo-
rithm for computing an optimum set of strip lighthouses
in a simple rectilinear polygon. The input to the algo-
rithm is a rectilinear polygon P and a specified target
edge t of P.

We first observe that the target t must be considered
to be a strip lighthouse and so included in the opti-
mum set of strip lighthouses for P, with the identify-
ing number 0. Following this observation, consider the
histogram partition H of P with t as the base, see Fig-
ure 2(a), for which the dual graph T is a tree rooted at
the histogram having t as its base, and with the win-
dows of a histogram recursively acting as the bases for
the relevant histograms corresponding to child nodes
in T [16]. Recall that a histogram is a rectilinear x- or
y-monotone polygon with one boundary chain being a
line segment (called the base). Now, for each histogram
h in H, we associate the base direction of h to be the
direction towards its base, denoted bh, and for a set L
of strip lighthouses in P, we define the canonical set
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(a)

target edge t

(b)

target edge e

Figure 2: (a) Partition into histograms, starting from
the target edge t. (b) An optimal solution (red) to the
LP problem and the relevant canonical one (green).

with respect to L as follows. First, we modify the set L
by recursively considering each histogram h in H cor-
responding to a leaf in T . For every strip lighthouse l
intersecting h and being parallel to bh (assuming l to
be maximal), we move l continuously in the base direc-
tion as far as possible while not decreasing the visibility
region of l. If h contains several such lighthouses, the
movement is done for each lighthouse in sequence in
the order of decreasing distance to the base bh. Once
this process has been completed for each lighthouse in h
parallel to bh, we remove any lighthouses that coincide,
thus reducing the size of the canonical set. Next, we
remove the corresponding node from T and repeat the
process until all histograms of H have been considered;
see Figure 2(b) for an example. Observe that any strip
lighthouse in a canonical set intersecting a histogram
and being parallel to the base, is not completely con-
tained in the histogram.

Our idea is then to associate a canonical feasible set
of strip lighthouses in P with a set Sh of pairs of 0/1-
valued intervals on the base bh of each histogram h that
a maximal strip lighthouse orthogonal to bh can inter-
sect. For convenience, we identify the first interval in
an interval pair as blue and the second one as red, re-
spectively, using Bh and Rh to denote them when no
confusion arise; an interval denoted Ih could be either
blue or red.

For the purpose of defining the set Sh, we start with
a few definitions. Consider two histograms h and h′, h
being a child of h′ in T , and assume for the definition
that the base direction of h is down and the base di-
rection of h′ is left; see Figure 3. When we henceforth
define objects in histograms, we will always make this
assumption, thereby avoiding having to define each ob-
ject also for the other seven possible cases. Let Ih be
an interval lying on the base bh (which is a window of
h′). We first project the endpoint of Ih that is closest
to the base bh′ vertically onto the opposite horizontal
edge of h′ — this gives us two endpoints of a vertical
line segment in h′. Next, we project this line segment
horizontally onto the base bh′ — this gives us the in-
terval Ih′ . Following this sequence of two projections,

Ih

h′Ih′

h

Figure 3: Illustrating the propagation of intervals.

vh(a)

h

{
ph qh} = Sh

h′
ph1

qh1

(b)

Sh =
{ }

Figure 4: Defining the histogram intervals.

we say that Ih propagates from h to Ih′ in h′ in one
step, which is denoted by Ih′ = pr(Ih). An interval can
thus be propagated using a sequence of one-step prop-
agations from a histogram to any ancestral histogram
in T ; again see Figure 3. Finally, we need to define
some special points in a histogram h; see Figure 4(a).
First, the point qh is the rightmost point of bh. Next,
we follow the boundary of h from qh in counterclockwise
order along the xy-monotone staircase until the end of
that staircase at vertex vh is encountered (the vertex vh
is a convex vertex with the adjacent vertical edge below
vh and the adjacent horizontal edge to the right of vh)
— projecting a point vertically from vh onto bh defines
the point ph.

Thereby, the encoding Sh is defined recursively as fol-
lows (see Figure 4(b)):

Sh =
{(

pr(Bh̄), pr(Rh̄)
)
|(Bh̄, Rh̄)∈Sh̄, ∀h̄ ∈Th

}
∪ Ph, (1)

where Th denotes the set of all child histograms of h
in T , and Ph = ∅ if there exists a pair (Bh̄, Rh̄) ∈ Sh̄ for
some h̄ ∈ Th such that pr(Rh̄) ∩ [ph, qh] ̸= ∅, and Ph ={
[ph, qh], [qh, qh]

}
otherwise. All but [qh, qh] intervals

in Sh are then valued 1, while the interval [qh, qh], if it
belongs to Sh, is valued 0.

The set Sh can be computed in linear time, given Sh̄

for all child histograms h̄ of h in T , by a pass over the
boundary and using a stack data structure. Thus, the
sets Sh for each h in T can be computed in quadratic
time.

Now, given the encoding Sh, we define a realization
Γh of Sh to be a set of intervals such that Γh contains at
most one interval from each interval pair in Sh. Each
such realization Γh can be associated with the minimum
canonical set L(Γh) of strip lighthouses such that each
1-valued interval in Γh is intersected by a lighthouse in
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(b)

dominating

(a)

matching

Ih

Iĥ

I
h̄

I′
h

Iĥ I
h̄

I′
h Ih

Figure 5: Illustrating domination and matching.

L(Γh). Clearly, the number of possible realizations of
Sh is at most 3|Sh|. Note that all realizations do not
necessarily correspond to parts of solutions to the SLP
problem in P.

Before we present the crucial recursive formula for
the size of L(Γh), we need to introduce additional defi-
nitions. Let Ih and I ′

h be two intervals on bh such that
Ih = pr(I

h̄
) and I ′

h = pr(Iĥ) for some h̄, ĥ ∈ Th; see
Figure 5(a). We say that Ih dominates I ′

h if the subhis-
togram of h formed by cutting along the line segment
with one endpoint at the lower endpoint of Iĥ and the
other endpoint by its horizontal projection in h contains
I
h̄
. If Ih is not dominated by any interval in a realiza-

tion Γh, we call Ih a master for Γh. Next, we say that Ih
and I ′

h match if there is a point on I
h̄

whose horizontal
projection in h lies on Iĥ; see Figure 5(b).

Now, let VΓh denote the number of master intervals
among the intervals in Γh and let MΓh denote the num-
ber of distinctly matched intervals in Γh, i.e., any in-
terval is matched to at most one other interval. It is
clear that VΓh corresponds to the number of vertical
strip lighthouses required in the realization Γh, while
MΓh corresponds to the number of horizontal strip light-
houses that traverse h going from one child histogram
of h to another. We thereby set

s(Γh) =





0 if h is a leaf and Γh = {[qh, qh]}
1 if h is a leaf and Γh = {[ph, qh]}
VΓh − MΓh +

∑
h̄∈Th

s(Γh̄) otherwise,

which allows us to state the following lemma.

Lemma 4 For every histogram h, there is a realization
Γh from Sh such that L(Γh) ∪ {bh} is a solution to the
SLP problem in Ph and s(Γh) = |L(Γh)|, where Ph is
the subpolygon of P consisting of the histograms in T
rooted at h.

Proof. Consider an optimal canonical solution L∗
h to

the LP problem in Ph. We prove that L∗
h has a corre-

sponding realization Γ∗
h of Sh inductively in a bottom

up fashion. We consider each subhistogram hi in Th

separately.
If hi is a leaf histogram in Th, then L∗

h either has
a lighthouse that intersects [phi

, qhi
] or there is a light-

house in L∗
h in the ancestor histogram of hi for which the

projection onto bhi
intersects qhi

, otherwise not all of hi

is seen by L∗
h; see Figure 6 illustrating both these cases.

Rh1
Bh2

h

h1,1
qh1,1

Rh

h1
h2

Figure 6: Illustrating the proof of Lemma 4. The green
segments are the strip lighthouses in L(Γh).

Both these intervals Bhi = [phi , qhi ] and Rhi = [qhi , qhi ]
are paired in Sh by construction and only one of them
is used by L∗

h.
If hi is an internal histogram in Th, then consider

those histograms hj that are children of hi in Thi . By
induction, any (maximal) lighthouse in L∗

h intersect the
bases of hj in at most one interval per pair lying in
Shj

and furthermore these lighthouses intersect hi be-
tween two (vertical) boundary edges (assuming hi has
our standard orientation). These two boundary edges
define a (horizontal) interval and since L∗

h is a solution
to the SLP problem in Ph, it must have a lighthouse
intersecting this interval. The interval is propagated
from an interval in hj and is therefore in an pair in Sh.
The other interval from that pair is not propagated by
induction, concluding the proof. □

The above lemma has the following immediate corol-
lary.

Corollary 5 There is a realization Γht
from Sht

such
that L(Γht

) ∪ {t} is a solution to the SLP problem in
P and s(Γht) = |L(Γht)|, where ht is the root histogram
in T .

Clearly, an brute-force implementation of the above
approach results in an exponential time algorithm for
computing a solution to the SLP problem in a rectilin-
ear polygon. However, in the following, we show that
an “optimal” representation — and so an optimal set of
strip lighthouses as well — can be (re-)constructed re-
cursively, in a more efficient way, using some additional
data when constructing the relevant sets Sh of interval
pairs.

For a given histogram h, let Γ∗
h be an optimal feasible

realization of Sh, i.e., a realization such that:
• L(Γ∗

h) has the smallest number of strip lighthouses
among the realizations obtainable from Sh,

• the union of these lighthouses is a connected set,
• the whole of Ph is covered.

It follows from Lemma 4 that L(Γ∗
h) ∪ {bh} constitutes

an optimal solution to the SLP problem in Ph. Note
that L(Γ∗

h) is canonical in the sense defined above.

Lemma 6 For every histogram h, there is an optimal
feasible realization Γ∗

h using only red intervals matched
if possible, except when
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(a)

pr(Rh̄)

h Bĥ
Rh̄

pr(Bh̄)

(b)

h
BĥBh̄

Figure 7: Illustrating the proof of Lemma 6. The green
segments are the strip lighthouses.

• a red and a blue interval (but not the corresponding
red intervals) match, or

• two blue intervals match (but not the corresponding
red or red/blue intervals do), at least one of which
is a master,

in which cases these matched intervals are used.

Proof. We sketch an inductive proof maintaining the
following invariant: the realization Γ∗

h induces as few
strip lighthouses as possible and additionally the used
intervals are as large as possible.

If h is a leaf, the invariant holds trivially. On the
other hand, if h is not a leaf, we assume without loss
of generality, that considering intervals from two child
histograms h̄ and ĥ in Th, then pr(Rh̄) ⊂ pr(Bh̄) and
pr(Rĥ) ⊂ pr(Bĥ). We have four main cases.

1. The used interval Ih comes from the pair Ph, see
Equality (1).
The argument holds trivially by the same consid-
eration as for leaf histograms.

2. The used intervals pr(Rh̄) and pr(Rĥ) match with
Rh̄ in Γ∗

h̄
and Rĥ in Γ∗

ĥ
.

Assume Γ∗
h does not contain both pr(Rh̄) and

pr(Rĥ), then at least one of their corresponding
blue intervals is used and by replacing it with the
red interval, the size of the solution can be reduced
by one contradicting optimality.

3. The used intervals pr(Rh̄) and pr(Bĥ) match with
Rh̄ in Γ∗

h̄
and Rĥ in Γ∗

ĥ
.

We can assume that the red interval pr(Rĥ) in the
same pair as pr(Bĥ) does not match pr(Rh̄) (other-
wise an optimal realization would have picked those
two intervals, see Case 2). Assume Γ∗

h does not
contain both of pr(Rh̄) and pr(Bĥ). If Γ∗

h contains
pr(Rh̄) and pr(Rĥ) (not matching), it will use as
many strip lighthouses but since pr(Rĥ) is a subin-
terval of pr(Bĥ), it violates the invariant; see Fig-
ure 7(a).

4. The used intervals pr(Bh̄) and pr(Bĥ) match and
at least one of pr(Rh̄) and pr(Rĥ) is a master with
Rh̄ in Γ∗

h̄
and Rĥ in Γ∗

ĥ
.

We can assume that the interval pr(Rh̄) does not
match pr(Bĥ) and that pr(Bh̄) does not match
pr(Rĥ) (otherwise an optimal realization would
have picked one of those two pairs of matching
intervals, see Case 3). Assume Γ∗

h contains both
pr(Rh̄) and pr(Rĥ), then h must contain two hori-
zontal strip lighthouses (assuming the standard ori-
entation of h), one intersecting each of Rh̄ and Rĥ,
and two vertical strip lighthouses, one intersecting
each of the horizontal ones. However, this solu-
tion violates the invariant since it can be replaced
by one horizontal strip lighthouse intersecting both
Bh̄ and Bĥ, since pr(Bh̄) and pr(Bĥ) match, and
one vertical strip lighthouse in h intersecting the
horizontal one. The size of the solution remains
the same but the interval pr(Bh̄) = pr(Bĥ) con-
tains each of pr(Rh̄) and pr(Rĥ); see Figure 7(b).

Enumerating the remaining possibilities, it follows that
in these cases the invariant holds by always selecting
and propagating the red intervals. □

The algorithm makes passes over the boundary of the
histogram and computes, given Sh̄ for each child his-
togram h̄, a maximal set of unique red/red matching
intervals, given these, a maximal set of unique red/blue
matching intervals, and given these, a maximal set of
unique blue/blue matching intervals where at least one
is a master. After the matching intervals have been es-
tablished the algorithm selects the remaining red ones
for an optimal solution.

It is easy to verify that the running time of the above
algorithm is quadratic (with respect to the number of
vertices of the input polygon P).

Theorem 7 A solution to the SLP problem for a simple
rectilinear polygon P and a target edge t can be computed
in quadratic time.

For rectilinear polygons with holes, a simple modifica-
tion of the NP-hardness proof for optimally guarding a
rectilinear polygon with holes [8], adding a target notch
in a corner of the construction shows the result.

Theorem 8 The SLP problem in rectilinear polygons
with holes is NP-hard.

3.1 Edge Lighthouses

Another natural model is to assume that an edge light-
house sees all points of the histogram with this edge as
its base. Unfortunately, our standard navigation pro-
tocol can get stuck in this model and therefore another
navigation protocol is needed: If stuck at a lighthouse
with the identifying number l, then move towards the
lighthouse with the maximum number you see until you
see a lighthouse with an identifying number smaller than
l (and then continue with the standard protocol until you
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either reach the target or get stuck again). This modifi-
cation is sufficient (for the existence of a solution), since
by taking all edges as lighthouses and labelling them
consecutively along the boundary (with 0 at the target,
and then increasingly in counterclockwise manner), we
obtain a feasible solution.

4 Laser Lighthouses in Grids

In grids, a natural counterpart of (directed) edge light-
houses in rectilinear polygons, are laser lighthouses.
Specifically, a laser lighthouse is a point which can illu-
minate only towards one of the forth directions: North,
East, South or West. We begin with two simple but
crucial observations.

Observation 1 For any grid, n is a lower bound.

Observation 2 Putting a laser not at the endpoint of
a segment results in two lasers associated with this seg-
ment, so in order to have only n lasers, each segment
must have at least one endpoint being an intersection
point and all of the lasers must be located at some of
these intersection end-points.

Taking into account the above two remarks, one can
easily observe that 2n is an upper bound. The idea is
to place two lasers on each grid segment, starting from
the (at most) two segments that the target is located
at (and so, at most four lasers in total), in opposite
direction, and continue with each new, so far uncov-
ered segment intersecting some covered one, by placing
another two lasers, at the intersection point, in the di-
rections alternative to the intersected already covered
segment. Therefore, we have a simple linear-time 2-
approximation algorithm.

In general, the problem is polynomially tractable; re-
call that by Observation 1, each segment must be as-
signed at least one laser. The idea of our algorithm
is as follows. For a grid G = VG ∪ HG, where VG

(HG, resp.) is the set of all vertical (horizontal, resp.)
line segments of G, we first construct the weighted di-
rected bipartite intersection graph GG, with the bipar-
tition (VG,HG) [17], where the weight w(a) of an arc
a = (x, y), corresponding to the intersection of line seg-
ments x and y, is set to 1 if x has an endpoint on y,
and 2 otherwise. (The graph GG can be constructed in
O(n log n+m) time, where m = O(n2) is the number of
intersection points of grid segments of G [2].) Then we
modify the graph GGby adding the new vertex t that
corresponds to the target point t, and by adding at most
two arcs (z, t), depending on the location of t on a line
segment z, with the weight of (z, t) equal to 1 if t is
located at the endpoint of z, and 2 otherwise.

Let DG be the resulting digraph from the above mod-
ification of GG. One can that observe that any arbores-

cence Tt of DG with the root t corresponds to a fea-
sible laser assignment in G with the number of used
lasers equal to the cost of Tt, and vice versa. Therefore,
there is one-to-one correspondence between any arbores-
cence of DG with the root at t and an optimal solution
to the Lighthouse Problem in G. Consequently, since
the problem of computing a minimum spanning tree
of a weighted digraph can be solved in O(n log n + m)
time [10], where n and m are the number of vertices and
edges of the input graph, respectively, we immediately
obtain the following result.

Theorem 9 The Laser Lighthouse Problem in grids
can be solved in O(n log n + k) time, where n is the
number of grid segments of the input grid while k is the
number of their intersection points.
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An Optimal Algorithm for Maintaining Connectivity of Wireless Network on
a Line

Shimin Li∗ Zhongjiang Yan† Jingru Zhang‡

Abstract

A problem of generating a connected graph by moving
the points on a line is studied in this paper. Given n
points on a line L and a positive value r, if the distance
of two points is not larger than r, these two points are
connected by an edge in the generated graph G. The
goal of this problem is to move n points along the line
such that the graph G is connected and the maximum
moving distance of the points is minimized. We propose
a linear-time algorithm to solve this problem based on
the greedy technique in this paper.

1 Introduction

We consider the problem of maintaining the connectiv-
ity of the network by moving points in it along a line
in this paper. In this problem, we are given a set of n
points that represent wireless sensors or other devices
with the same communication radius r on a line L. If
the distance between any pair of points is equal to or
smaller than r, then they can communicate with each
other through wireless connection directly. The connec-
tion between any pair of points can be represented by
a graph G, in which each point is a vertex and there
exists an edge connecting two vertices if the distance of
those two points is no more than r. The goal of our
problem is to move all the n points along L such that
the graph G of n points is connected and the maximum
movement of these points is minimized.

One application of the algorithm of this problem is
the connectivity maintenance of the 1-D vehicular ad
hoc network [13]. In a vehicular ad hoc network, each
vehicle is a node in the ad hoc network constructed by
all the vehicles on the road. If the distance of two ve-
hicles is equal to or less than the wireless communica-
tion radius r, then these two vehicles can communicate
with each other through wireless connection directly. To
guarantee the transmission of information between ve-
hicles on accidents or road conditions, it is necessary

∗Department of Computer Science, Winona State University,
shimin.li@winona.edu

†School of Electronics and Information, Northwestern Poly-
technical University, zhjyan@nwpu.edu.cn

‡Department of Computer Science, University of Texas-Rio
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to keep the ad hoc network connected so that all the
vehicles can send and receive the information.

The algorithm can also be used to maintain the con-
nectivity of a wireless sensor network. In a wireless sen-
sor network, a sensor can communicate with another
one directly if the distance between these two sensors is
at most r. Through the wireless ad hoc network built
upon the connecting of sensors, the data collected by
all the sensors can be transmitted to the server. In this
situation, the connectivity is critical to gather the data
from all the sensors. Further, our algorithm can also
be used to generate a continuous coverage on a line by
moving the wireless sensors, where the r is the sensing
radius of sensor. Because of the generality of this prob-
lem, it must have a large number of applications arising
from a variety of fields.

1.1 Previous Work

This problem arises from the mobile wireless network
connectivity problem [5] where the vertices(sensors)
move in random directions, there is an edge connecting
two vertices if their distance is no more than a given
value, the target is to maintain the graph connectivity.
Dı́az et al. provide an analytical model for the con-
nectivity of dynamic random geometric graphs which
is used for mobile wireless networks [5]. In the model,
the vehicles move in random directions, and if the dis-
tance between a pair of mobiles is not greater than
a given value, there exists an edge connecting them.
A similar connectivity model for wireless ad hoc net-
works with communication constraints is also presented
in [1, 7]. The relationship between the node degree and
k-connectivity of wireless multihop network is also re-
searched by Bettstetter [2].

Cheng et al. solve the mobile ad hoc network con-
nectivity problem by deploying relay nodes to the net-
work [3]. Biconnectivity of the wireless network is also
considered with the application of connected mobile
robots [4]. In general, k-connectivity problem with
unreliable network links is considered and solved by
Zhao [14]. The coverage problems of wireless sensor net-
work attracted quite a lot of attention from researchers
and in some situations it is necessary to maintain the
connectivity of the wireless network [6, 8, 9, 10, 11].
Specifically, the probability of a static wireless ad hoc
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network being biconnected is presented by Tian et
al. [12].

1.2 Our Approaches

We solve this problem by using a greedy technique which
adds the points to the connected graph G one by one
from left to right. During the process of this greedy algo-
rithm, the positions of the added points are computed
and updated without moving any point explicitly. At
last, we just need to move each point to its final posi-
tion found by our greedy algorithm to obtain an optimal
solution to the problem. In the following, we say moving
the point instead of moving the position of the point for
simplicity. Without loss of generality, let the line L be
the x-axis with the origin at the position of the leftmost
point. Suppose all the n points p1, p2, . . . , pn are in the
increasing order of their x-coordinates.

Initially, the graph G consists of only p1 and the max-
imum moving distance of points dmax = 0 since it is not
necessary to move p1. Then the following n − 1 points
are added to G one by one from left to right. Dur-
ing this process, the connectivity of G is maintained by
moving the points close enough along L when it is nec-
essary. Consider the general case where the connected
G consists of points p1, p2, . . . , pi. To add the next point
pi+1 into G and keep its connectivity, we have to move
pi+1 leftwards if the distance between pi and pi+1 is
larger than r. Further, to minimize the maximum mov-
ing distance, it is necessary to move points of G and
pi+1 towards each other if pi+1 is very far away from
the current location of pi. It seems like that we have
to move each point of G rightwards or leftwards in the
worst case and update the maximum moving distance
each time, which leads us to an O(n2) algorithm. To
obtain a linear-time algorithm, we maintain several se-
quences of points of G each satisfying several properties
such that the points in a sequence can be shifted to-
gether. By maintaining the sequences of points of G,
we are able to achieve a linear-time algorithm for this
problem. Further, in each iteration, we obtain an opti-
mal solution to the problem with the considered points
so far. Therefore, if the input points are already sorted,
our algorithm is an online algorithm for this problem.

The rest of the paper is organized as follows. Section
2 shows the description of our algorithm. In detail, we
present the general case of adding the next point on L
to the connected graph G in Section 2.2 after present-
ing the initial case in Section 2.1. Then the process of
merging two sequences is introduced in Section 2.3. In
Section 3, we prove the correctness of our algorithm and
analyze the running time at last.

2 The Algorithm Description

Let P = {p1, p2, . . . , pn} be the set of n points on the x-
axis. Suppose all the n points on the x-axis are already
sorted (break the tie arbitrarily) and the first point is
at the origin. Let xi be the initial position of pi, so we
have x1 = 0 ≤ x2 ≤ . . . ≤ xn. Before the introduction
to our algorithm, we first present a key observation on
the order preserving property.

Observation 1 There must exist an optimal solution
where all the points keep the same order as that in the
input.

Proof. Suppose we have an optimal solution OPT with
a different order of points. In OPT , there exists at least
one pair of points pi and pj satisfy xi ≤ xj and x′

j ≤ x′
i.

Let us prove that we can obtain another solution OPT ′

by swapping pi and pj without increasing the maximum
movement of all the points in OPT . Based on the order
of the four positions, we have four cases to consider.

1. Case x′
j ≤ x′

i ≤ xi ≤ xj or x′
j ≤ xi ≤ x′

i ≤ xj . In
this case, we must have |x′

jxi| ≤ |x′
jxj | and |x′

ixj | ≤
|x′

jxj |.

2. Case xi ≤ x′
j ≤ x′

i ≤ xj . In this case, we have
|xix

′
j | ≤ |xix

′
i| and |x′

ixj | ≤ |x′
jxj |.

3. Case x′
j ≤ xi ≤ xj ≤ x′

i. This case is symmetric
to the above case, so we have |x′

jxi| ≤ |x′
jxj | and

|xjx
′
i| ≤ |xix

′
i|.

4. Case xi ≤ xj ≤ x′
j ≤ x′

i or xi ≤ x′
j ≤ xj ≤ x′

i.
This case is symmetric to the first case, so we have
|xix

′
j | ≤ |xix

′
i| and |xjx

′
i| ≤ |xix

′
i|.

To sum up, among all the above four cases, we can al-
ways swap the positions of pi and pj in the OPT and
obtain another optimal solution OPT ′. All the pairs
of points with different orders can be eliminated by this
swapping process and the maximum movement does not
increase. By swapping a pair of points with different
order without increasing dmax, we can obtain another
optimal solution with the order of points in the input.
Therefore, this observation holds. �

By Observation 1, the order preserving property holds
in this problem, which means that we can find an opti-
mal solution to the problem without changing the order
of the points in the input. Thus, suppose all the points
are indexed from left to right on L, then each point pi

has a unique index i and holds that index in the opti-
mal solution. In the following sections, we always use
the index i to denote the i-th point on L for 1 ≤ i ≤ n.

To avoid moving the points one by one along the line
L, we maintain a group of sequences of points with some
properties. Denote by Sj the j-th sequence from left to
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L

Sj−1

x′
rj−1

︸ ︷︷ ︸
. . .

Sj

x′
rj

x′
lj

︸ ︷︷ ︸
. . .

Figure 1: Illustrating the sequence Sj of points.

right. Let lj(resp., rj) be the index of the leftmost(resp.,
rightmost) point of sequence Sj , respectively. See Fig. 1
for an example of a sequence. Specially, if pi is the only
point in Sj , then we have lj = rj = i. Denote by
Cj the number of points in sequence Sj . Denote by
d(l, j)(resp., d(r, j)) the index of the point which moved
the maximum distance towards left (resp., right) along
L in Sj . Let Dj be the maximum moving distance of
points in sequence Sj . All the sequences are stored in
a stack T with all the above parameters. Let m be the
number of sequences in stack T . The properties of the
sequences are in the following.

1. In sequence Sj , the distance between any pair of
adjacent points is exactly r.

2. There exist at least a pair of points in Sj that move
Dj towards each other.

3. For any pair of adjacent sequences in stack T , say
Sj and Sj+1, it is true that |rj lj+1| < r for 1 ≤ j <
m.

During the process of our algorithm, we add the points
to the connected graph G one by one. After processing
each newly added point, the properties mentioned above
still hold. Once all the n points were processed, the
n positions of these points are found. Then we move
each point to its position computed by our algorithm to
obtain an optimal solution to the problem. Now let us
present the initial case of adding the first point into G.

2.1 The Initial Case

Initially, let G be a graph with only one vertex p1 and
set the position of it at its original position, i.e., let x′

1 =
x1 = 0. Thus, the moving distance of p1 satisfies d1 =
|x1x

′
1| = 0 at the beginning. Initialize the maximum

moving distance of points by dmax = d1 = 0, because
p1 is the only point processed by our algorithm so far.
There is only one sequence S1 with only one point p1 in
it after the process of adding the first point to G. Thus,
we have l1 = r1 = 1 and C1 = 1 hold at the beginning
of our algorithm. The p1 in S1 is not moved at all, so
we have D1 = 0. Push the sequence S1 to the stack T .
Obviously, the graph G is a connected graph, since it
consists of only one vertex currently. Now we finish the
process of the first point in the input. In the following,
we will present how the general case is handled.

xi xi+1

x′
i x′

i+1

L

Figure 2: Illustrating the first subcase of the general case where
|x′

ixi+1| < r.

2.2 The General Case

Suppose we just processed the point pi on the line L in
the input, now we are considering the next point pi+1.
Before the processing of the point pi+1, we assume the
following loop invariants hold. It is apparent that the
loop invariants hold in the initial case.

1. The stack T contains m ≥ 1 sequences,
{S1, S2, . . . , Sm}.

2. The maximum moving distances of points in these
sequences are D1, D2, . . ., and Dm, respectively.

3. All the sequences hold all the three properties we
mentioned above.

4. The graph G consisting of the points in
{p1, p2, . . . , pi} is connected.

All invariants are true for the processed i points, so we
are done if there is no more points on L in the input.

Now suppose there is another point pi+1 in the in-
put to the right side of pi. We will show how to move
points in a greedy way such that the maximum moving
distance increases as small as possible and the graph G
is still connected. Let us present the process of adding
the next point pi+1 to the connected graph G.

Denote by x′
i the new position of pi after the move-

ment, then based on the distance between x′
i and xi+1,

we have three different cases to consider.
The Case |x′

ixi+1| < r: In this case, we do not need
to move any point because the distance between x′

i and
xi+1 is small enough to keep the connectivity of the
graph G. See Fig. 2 for an example of this case. Add
the point pi+1 to the graph G at its original position, i.e.,
x′

i+1 = xi+1. Then create a new sequence Sm+1 contain-
ing the point pi+1 only, because we have |x′

ix
′
i+1| < r.

There is only one point pi+1 in sequence Sm+1, so we
have Cm+1 = 1 and lm+1 = rm+1 = i+1. Because we do
not move the position of pi+1, initialize the other vari-
ables of the sequence Sm+1 by d(l, m+1) = d(r, m+1) =
i + 1 and Dm+1 = 0. At last, push Sm+1 into the stack
T and increase m by 1.
The Case r ≤ |x′

ixi+1| ≤ r + Dm: We move the point
pi+1 to x′

i + r in this case to maintain the connectivity
of the graph G without increasing dmax, the maximum
moving distance of points. See Fig. 3 for an example
of this case. The moving distance of pi+1 is di+1 =
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xi xi+1

x′
i x′

i+1

L

Figure 3: Illustrating the second subcase of the general case
where r ≤ |x′

ixi+1| ≤ r + Dm.

xi xi+1

x′
i x′

i+1

L

xi xi+1

x′
i x′

i+1

L

a

b

Figure 4: Illustrating the third subcase of the general case where
|x′

ixi+1| > r + Dm.

|x′
ixi+1| − r and it holds that di+1 ≤ Dm, because we

have di+1 = |x′
ixi+1|−r ≤ Dm in this case. Add pi+1 to

the last sequence Sm by setting rm = i+1 and increasing
Cm by 1. Now we have done the process of this case.

The Case |x′
ixi+1| > r+Dm: It is not enough to move

pi+1 leftwards only to restore the connectivity of G with-
out increasing dmax in this case, because the moving dis-
tance of pi+1 would be larger than Dm. Hence, we have
to move points in sequence Sm and pi+1 towards each
other such that |x′

ix
′
i+1| = r and the maximum moving

distance of the points in {pi+1} ∪ Sm is minimized. See
Fig. 4 for an example of this case. In the following, we
will show how to handle this more complicated case.

Since the distance between any adjacent pair of points
is exactly r in Sm, we can shift the points in Sm alto-
gether. Note that once the sequence Sm is shifted right-
wards, the distance between the leftmost point in Sm

and the rightmost point of Sm−1 might be larger than r.
For this reason, we need to check the value of |x′

rm−1
x′

lm
|

and shift sequences Sm−1 and Sm if |x′
rm−1

x′
lm

| > r.
Further, once we move Sm−1 and Sm towards each other
such that |x′

rm−1
x′

lm
| = r, then these two sequences

would be merged into one sequence. Thus, we continue
to check the distance between the last two sequences in
T , i.e., |x′

rm−1
x′

lm
|, until we find that the distance is not

larger than r or there is only one sequence in T . During
this process, the maximum moving distance dmax might
increase.

Let us consider the process of moving Sm and pi+1

first. In this case, we move pi+1 from xi+1 to xi+1 −
Dm − |x′

ixi+1|−r−Dm

2 and then shift all the points in Sm

rightwards by
|x′

ixi+1|−r−Dm

2 . Now the distance between

x′
i and x′

i+1 is r, so add the point pi+1 to Sm by updat-
ing the values of rm as rm = i+1 and increasing Cm by
1. Increase Dm, the maximum moving distance of the

points in Sm, to Dm +
|x′

ixi+1|−r−Dm

2 , since the maxi-
mum moving distance of pd(r,m) was increased after the
shifting of Sm. If we have Dm > dmax after the in-
creasing, then update the value of dmax to Dm. Now we
added the point pi+1 to the last sequence Sm.

Because the sequence Sm was shifted rightwards dur-
ing the above process, this might cause the distance
between prm−1

and plm larger than r. If |x′
rm−1

x′
lm

| ≤ r
still holds after the rightward shifting of Sm, then we
have finished the process of the point pi+1. In the other
case, we have to shift the last two sequences towards
each other and merge them into one sequence until
|x′

rm−1
x′

lm
| ≤ r or m = 1 is true. If neither of the above

two conditions is true, we keep merging the last two se-
quences in T . The process of merging two sequences will
be shown in Section 2.3. Let us present the processing
result of this case first. If we have |x′

rm−1
x′

lm
| ≤ r, then

the last two sequences are connected, so the graph G is
also connected. If we have m = 1, then there is only
one sequence in the stack T . By the properties of the
sequence, the distance between any adjacent points in
that sequence is exactly r, so G is obviously connected.
Now we are done with the point pi+1 and the connec-
tivity of G is maintained.

2.3 Merging Two Sequences

If m > 1 and |x′
rm−1

x′
lm

| > r, then we merge the last
two sequences, Sm−1 and Sm, by shifting them towards
each other until |x′

rm−1
x′

lm
| = r. Note that the maxi-

mum moving distances of points in Sm−1 and Sm are
Dm−1 and Dm, respectively. To minimize the maximum
moving distance of points in the merged sequence, we
have to move these two sequences based on the values of
Dm−1 and Dm. Intuitively, to minimize the maximum
moving distance in the merged sequence, we always
move the sequence with the smaller maximum moving
distance by a relatively longer distance, so the maxi-
mum moving distances to the opposite directions are
always the same in the merged sequence. The moving
distances of Sm−1 and Sm can be computed in constant
time by the following formulas. Based on the values
of Dm−1, Dm, and |x′

rm−1
x′

lm
|, we have three different

cases to consider.

1. |x′
rm−1

x′
lm

| − r ≤ Dm−1 − Dm

In this case, we just move Sm leftwards such that
|x′

rm−1
x′

lm
| = r, then the sequences Sm−1 and Sm

are merged into one sequence, Sm−1. Because
Sm−1 is not moved at all during this process, the
merging process stops here. Once Sm−1 and Sm

are merged, we update rm−1 by rm−1 = rm and
increase Cm−1 by Cm. At last, decrease m by 1,
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because of the decrement of the count of sequences
in stack T .

2. |Dm−1 − Dm| < |x′
rm−1

x′
lm

| − r

In this case, we move Sm−1 and Sm towards each
other such that |x′

rm−1
x′

lm
| = r. The points in these

two sequences will be shifted together as we are
moving two points. The moving distances of these
two sequences can be computed by the following
formulas,





∆m−1 =
|x′

rm−1
x′

lm
|−r−Dm−1+Dm

2 ,

∆m =
|x′

rm−1
x′

lm
|−r+Dm−1−Dm

2 .

Where ∆m−1 and ∆m are the shifting distances of
Sm−1 and Sm, respectively.

Note that after the shifting of Sm−1 and Sm by
these two distances towards each other, the maxi-
mum moving distances of the points in these two
sequences are the same but to opposite directions.
Therefore, the maximum moving distance of points
is minimized after the merging process. At last,
we update the values of some variables to maintain
the properties and status of all the sequences. Re-
call that Dm−1 is the maximum moving distance
of points in sequence Sm−1. Update Dm−1 by
Dm−1 = Dm−1 + ∆m−1, since we increased the
maximum moving distance of points in Sm−1. The
current maximum moving distance of points is also
updated by dmax = max {Dm−1, dmax}. Recall that
d(l, m − 1) is the index of the point which moved
Dm−1 leftward in Sm−1. Let d(l, m− 1) be d(l, m),
because pd(l,m) moves the maximum distance left-
wards in the new sequence Sm−1 obtained by merg-
ing Sm−1 and Sm. Once the two sequences are
merged into one, we increase the count of points in
Sm−1 by Cm−1 = Cm−1 + Cm.

Notice that, in this case, we shift Sm−1 rightwards,
then it is necessary to check the distance between
x′

rm−2
and x′

lm−1
. If |x′

rm−2
x′

lm−1
| < r, then we stop

the merging process and continue to process the
next point if there exists. In case |x′

rm−2
x′

lm−1
| ≥ r,

we need to keep merging the last two sequences to
maintain the connectivity of G. In the same way,
the merge process will continue until the last two
sequences are connected or there exists only one
sequence in the stack T . At last, update m to the
number of sequences in stack T .

3. |x′
rm−1

x′
lm

| − r ≤ Dm − Dm−1

In this case, we move Sm−1 towards Sm such that
|x′

rm−1
x′

lm
| = r. The process is the same as that for

the above case, except that we do not move Sm in
this round of merging process, so the detail of the
process for this case is omitted here.

3 Correctness and Time Analysis

The properties mentioned in Section 2 guarantee the
connectivity of the graph G and the minimized maxi-
mum moving distance after processing a newly added
point. To show the correctness of our algorithm, it is
sufficient to present that those properties mentioned in
Section 2 hold both in the initial case and in the general
case.

For the initial case, we have only one point in the
graph G, and it is obviously that the properties hold in
this case. It is obvious to verify that the loop invariants
hold at the beginning of our algorithm when there exists
only one point in G and its position does not change
during the process of adding it into G. Hence, we have
the following result.

Lemma 1 All the loop invariants and the properties of
sequences hold in the initial case.

Then we consider the general case of adding the next
point pi+1 by following the rules of our algorithms in
Sections 2.2 and 2.3, and based on the processing result,
we have the following Lemma 2.

Lemma 2 The newly added point is either in a new se-
quence Sm+1 or in the last sequence Sm. All the proper-
ties and loop invariants of the sequences hold after the
merging process of all the sequences in T .

By Lemma 2, we know that the result obtained by
our algorithm to the problem is a connected graph G.
Denote by lmax (resp., rmax) the index of the point which
moves the maximum distance dmax towards right (resp.,
left) along L in the result obtained by our algorithm.
Let us present the following Lemma 3, which is helpful
to prove the correctness of our algorithm.

Lemma 3 dmax =
|xlmaxxrmax |−(rmax−lmax)·r

2

Proof. During the process of our algorithm, the maxi-
mum moving distance dmax increases when we join the
next point pi+1 into Sm and when we merge two se-
quences. In either case, the pair of points that move
the maximum distance towards each other must be in
the joined or merged sequence. Thus, plmax

and prmax

must be in one sequence in the result. By the Prop-
erty 1 of the sequences maintained by our algorithm,
we must have that the distance between any adjacent
pair of points is r from plmax

to prmax
. Further, by the

Property 2, these two points move the same distance.
Then the lemma follows. �

Based on Lemma 3, we claim that the output of our
algorithm is optimal.

Lemma 4 The result obtained by our algorithm is an
optimal solution to the problem.
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Proof. By Observation 1, we know that there must ex-
ist an optimal solution in which the order of points is
the same as that in the input. Thus, consider the lower
bound of the moving distance of any pair of points, pi

and pj , to obtain a connected graph of points between pi

and pj without changing their order. To keep two points
pi and pj connected, the largest distance dij between pi

and pj must satisfy dij ≤ (j − i) · r, for 1 ≤ i < j ≤ n,
because there are at most j − i−1 points between them
and the maximum distance between any pair of adjacent

points is at most r. Hence, max1≤i<j≤n

{
|xixj |−(j−i)·r

2

}

is the lower bound of the maximum moving distance of
all the n points to keep their connectivity. Let dopt be
the maximum moving distance in an optimal solution,
we must have the following Equation 1.

dopt ≥ max
1≤i<j≤n

{ |xixj | − (j − i) · r

2

}
(1)

To prove the lemma, we just need to prove that the
maximum moving distance dmax in the result of our al-
gorithm satisfies the following Equation 2.

dmax = max
1≤i<j≤n

{ |xixj | − (j − i) · r

2

}
(2)

By Lemma 3, we must have the following Equation 3.

dmax ≤ max
1≤i<j≤n

{ |xixj | − (j − i) · r

2

}
(3)

Further, by the Equation 1, we also have the following
Equation 4 to keep the connectivity of the graph.

dmax ≥ max
1≤i<j≤n

{ |xixj | − (j − i) · r

2

}
(4)

By comparing the Equation 3 and Equation 4, the Equa-
tion 2 follows. By Equations 1 and 2, it is true that
dmax = dopt. Therefore, the maximum moving distance
of all the points of G is minimized, i.e., our algorithm
finds an optimal solution to the problem. �

For the running time of our algorithm, we have the
following Lemma 5.

Lemma 5 The running time of our greedy algorithm is
O(n).

Proof. All the points on line L are already sorted in the
input and they are processed from left to right. When
we are processing a new point, we move that point sep-
arately at most once, then it is added into a sequence
(either Sm or Sm+1). Obviously, a point is added into
a sequence at most once during the process of our algo-
rithm, so the moving and adding operations of all the
points take O(n) time totally.

The merging of two sequences takes O(1) time, be-
cause we compute their shifting distance and shift all the

points in the sequence together. The length of sequence
Sj can also be calculated in O(1) time by (Cm − 1) · r.
Thus, the merging of two sequences takes O(1) time.
Further, once we merged two sequences, the number of
sequences decreases by 1. There exist at most n se-
quences in T , so the total running time of the merging
process is O(n).

At last, it takes O(n) time to move all the points to
the computed positions by our algorithm. Therefore,
the running time of our algorithm is O(n). �

Based on the above Observations and Lemmas, the
following theorem follows.

Theorem 6 Our algorithm can find the optimal solu-
tion to the connectivity problem in O(n) time.
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Unfolding Polyhedra

Joseph O’Rourke∗

Abstract

Starting with the unsolved “Dürer’s problem” of edge-
unfolding a convex polyhedron to a net, we specialize
and generalize (a) the types of cuts permitted, and
(b) the polyhedra shapes, to highlight both advances
established and which problems remain open.

1 Introduction

Dürer’s problem asks whether every convex polyhe-
dron may be cut along edges and unfolded to a sin-
gle non-overlapping simple polygon in the plane, a
net [DO07] [O’R13]. This is attributed to Dürer be-
cause he drew many such unfoldings ca. 1500, although
the question was not formulated mathematically until
1975 [She75]. It remains open, although there has been
recent (minor) progress [O’R18] [O’R17]. Here we sur-
vey several generalizations and specializations of this
central problem, emphasizing what is settled and what
remains unresolved.

Unfolding the surface of a polyhedron to a single, flat
piece in the plane requires that the cuts form a spanning
tree of the vertices. We classify cuts in four types C:

1. edge-unfold : All cuts are polyhedron edges, as in
Dürer’s problem.

2. anycut-unfold : The cuts may be generalized to any
curve on the surface that form a spanning tree of
the vertices.1

3. edge-unzip: The cut edges form a Hamiltonian path
of the 1-skeleton. This natural specialization was
introduced by Shephard [She75] and explored as
“unzipping” in [DDL+10].2

4. anycut-unzip: The cuts form a simple curve on the
surface that includes every vertex. So a generaliza-
tion (anycut) of a specialization (unzipping).

The second classification we explore varies the shapes
P of the polyhedra:

1. convex polyhedra: All faces convex, all dihedral an-
gles ≤π, as in Dürer’s problem.

∗Smith College, jorourke@smith.edu
1“Anycut” is new terminology, intended to replace the “general

unfoldings” in [DO07].
2“Unzipping” is my slight variation on their “zipper unfold-

ings.”

2. spherical polyhedra: Specializing that all vertices
lie on a sphere [O’R15].3

3. nonconvex polyhedra. A broad generalization, and
where most applications lie.

4. orthogonal polyhedra form an important subclass of
nonconvex polyhedra [BDD+98] [O’R08] [DFO07]
[DDFO17]. All faces meet at right angles.

5. polycubes: Polyhedra built by gluing unit cubes
whole-face to whole-face. Here all cube edges, even
those with dihedral angle π, are available for cut-
ting. So these are potentially easier to edge-unfold
than are orthogonal polyhedra [RALSZ19].

For each class of polyhedra P, and each type of cuts
C, we can ask:

Can every polyhedron in P be C-unfolded to a net?

The status of these 4× 5 = 20 questions is summarized
in Table 1: 7 are unresolved.
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(Specialize) (Generalize) (Gen/Spec)
Shapes Edge-Unf Edge-Unzip Anycut-Unf Anycut-Unzip

Convex Polyh ? 7 3 ?
Spherical ? 7 3 ?

Nonconvex Polyh 7 7 ? 7

Orthogonal 7 7 3 3

Polycubes ? ? 3 3

Table 1: Open Problems: ?=open, 3=proven true, 7=counterexamples.
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Guarantees on Nearest-Neighbor Condensation heuristics∗

Alejandro Flores-Velazco† David Mount‡

Abstract The problem of nearest-neighbor (NN) con-
densation aims to reduce the size of a training set
of a nearest-neighbor classifier while maintaining its
classification accuracy. Although many condensation
techniques have been proposed, few bounds have been
proved on the amount of reduction achieved. In this
paper, we present one of the first theoretical results for
practical NN condensation algorithms. We propose two
condensation algorithms, called RSS and VSS, along
with provable upper-bounds on the size of their selected
subsets. Additionally, we shed light on the selection size
of two other state-of-the-art algorithms, called MSS and
FCNN, and compare them to the new algorithms.

1 Introduction

In machine learning, classification involves a training set
P ⊂ Rd of n labeled points in Euclidean space. The label
l(p) of each point p ∈ P indicates the class to which the
point belongs to, partitioning of P into a finite set of
classes. Given an unlabeled query point q ∈ Rd the goal
of a classifier is to predict q’s label using P .

The nearest-neighbor (NN) rule is among the best-
known classification techniques [6]. It classifies a query
point q with the label of its closest point in P , accord-
ing to some metric. Throughout, we will assume the
Euclidean `2 metric. Despite its simplicity, the NN rule
exhibits good classification accuracy both experimen-
tally and theoretically [13, 4, 5]. However, it’s often
criticized due to its high space and time complexities.
This raises the question of whether it is possible to re-
place P with a significantly smaller subset without af-
fecting the classification accuracy under the NN rule.
This problem is called nearest-neighbor condensation.
In this paper we propose two new NN condensation al-
gorithms and analyze their worst-case performance.

1.1 Preliminaries

For any point p ∈ P , define an enemy of p to be any
point in P of different class than p. The nearest enemy
(NE) of p, denoted ne(p), is the closest such point, and
its distance from p, called the NE distance, is denoted as
dne(p) = d(p, ne(p)). Similarly, denote the NN distance
as dnn(p) = d(p,nn(p)). Define the NE ball of p to be

∗Research supported by NSF grant CCF–1618866.
†University of Maryland, College Park, afloresv@cs.umd.edu
‡University of Maryland, College Park, mount@umd.edu

the ball centered at p with radius dne(p). Let κ denote
the number of distinct NE points of P .

A point p ∈ P is called a border point if it is incident
to an edge of the Delaunay triangulation of P whose
opposite endpoint is an enemy of p. Otherwise, p is
called an internal point. By definition, the border points
of P completely characterize the portion of the Voronoi
diagram that separates Voronoi cells of different classes.
Let k denote the number of border points of P .

1.2 Related work

A subset R ⊆ P is said to be consistent if for all p ∈ P
its nearest neighbor in R is of the same class as p. Intu-
itively, R is consistent if and only if every point of P is
correctly classified using the NN rule over R. Formally,
nearest-neighbor condensation involves finding an (ide-
ally small) consistent subset of P [9].

Other criteria for condensation have been studied in
the literature. One such criterion is known as selectiv-
ity [12]. A subset R ⊆ P is said to be selective if and
only if for all p ∈ P , its nearest neighbor in R is closer
to p than its nearest enemy in P . Clearly selectivity im-
plies consistency, as the NE distance in R of any point
of P is at least its NE distance in P . Note that neither
consistency nor selectivity imply that every query point
of Rd is correctly classified, just those in P .

The strongest criteria, known as Voronoi condensa-
tion, consists of selecting all border points of P [16].
This guarantees the correct classification of any query
point in Rd. In contrast, a consistent subset only guar-
antees correct classification of P . For the case when
P ⊂ R2, an output-sensitive algorithm was proposed [3]
for finding all border points of P inO(n log k) worst-case
time. Unfortunately, it is not known how to generalize
this algorithm to higher dimensions, and a straightfor-
ward approach suffers from the super-linear worst-case
size of the Delaunay triangulation.

In general, it has been shown that the problems
of computing consistent and selective subsets of min-
imum cardinality are both NP-complete [17, 18, 11].
Thus, most research has focused on practical heuris-
tics. For comprehensive surveys, see [14, 15, 10].
CNN (Condensed Nearest-Neighbor) [9] was the first
algorithm proposed for computing consistent subsets.
Even though it has been widely cited in the literature,
CNN suffers from several drawbacks: its running time
is cubic in the worst-case, and the resulting subset is
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(a) Set P (104 pts)
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(b) FCNN (222 pts)
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(c) MSS (272 pts)
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(d) RSS (233 pts)
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(e) VSS (233 pts)

(f) Set P (5300 pts)
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(g) FCNN (1046 pts)

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(h) MSS (1136 pts)
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(i) RSS (1025 pts)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(j) VSS (1027 pts)

Figure 1: Examples of the subsets selected by FCNN, MSS, RSS, and VSS, on two different training sets. Training
set (a) is a set of uniformly distributed points in R2 of two classes: red points lying inside a disk, and blue points
lying outside. Training set (f) is a well-known benchmark from the UCI Machine Learning repository, called Banana,
consisting of points in R2 of two classes, red and blue.

order-dependent, meaning that the result is determined
by the order in which points are considered by the al-
gorithm. Alternatives include FCNN (Fast CNN) [1]
and MSS (Modified Selective Subset) [2], which pro-
duce consistent and selective subsets respectively. Both
algorithms run in O(n2) worst-case time, and are order-
independent. These algorithms are considered the state-
of-the-art for the NN condensation problem, subject to
achieving these properties. While such heuristics have
been extensively studied experimentally [10, 7], theo-
retical results are scarce. Unfortunately, to the best of
our knowledge, no bounds are known for the size of the
subsets generated by any of these heuristics.

More recently, an approximation algorithm called
NET [8] was proposed, along with almost matching
hardness lower bounds for the problem. The idea is to
compute a γ-net of P , with γ equal to the minimum NE
distance in P , implying that the resulting subset is con-
sistent. Unfortunately, while NET has provable worst-
case performance, this approach allows little room for
condensation, and in practice, the resulting subset can
be too large. For example, on the training set in Fig-
ure 1a, NET selects a subset of over 90% of the points,
while other algorithms select only 3% of the points.

1.3 Our contributions

In this paper, we propose two new NN condensation al-
gorithms, called RSS and VSS. We will establish asymp-

totically tight upper-bounds on the sizes of their se-
lected subsets. Moreover, we prove that these algo-
rithms have similar complexity to the popular state-
of-the-art algorithms FCNN and MSS. Additionally, we
also analyze the selection size of FCNN and MSS. To
the best of our knowledge, these represent the first theo-
retical results on practical NN condensation algorithms.
The following is a summary of our contributions.

Algorithm Selection size

RSS O(κ cd−1)
VSS ≤ k

MSS [2] Ω(1/ε) w.r.t. κ and k
FCNN [1] Ω(k)

2 Results on condensation size

One of the most significant shortcomings in research
on practical NN condensation algorithms is the lack of
theoretical results on the sizes of the selected subsets.
Typically, the performance of these heuristics has been
established experimentally.

We establish bounds with respect to the size of two
well-known and structured subsets of points: (a) the set
of all NE points of P of size κ, and (b) the set of border
points of P of size k. Throughout the paper, we refer
equally to the algorithms and their selected subsets.
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2.1 The state-of-the-art

Let’s begin our analysis with a state-of-the-art algo-
rithm for the problem: MSS or Modified Selective Sub-
set (see Algorithm 1). The selection process of the al-
gorithm can be simply described as follows: for every
p ∈ P , MSS selects the point with smaller NE distance
contained inside the NE ball of p.

Clearly, this approach computes a selective subset of
P , which by definition, is order-independent. MSS can
be implemented in O(n2) worst-case time. Unfortu-
nately, the selection criteria of MSS can be too strict,
requiring one particular point to be added for each point
p ∈ P . Note that any point inside the NE ball of p suf-
fices for achieving selectiveness. In practice, this can
lead to much larger subsets than needed.

Algorithm 1: Modified Selective Subset

Input: Initial training set P
Output: Condensed training set MSS ⊆ P

1 Let {pi}ni=1 be the points of P sorted in increasing
order of NE distance dne(pi)

2 MSS← ∅
3 S ← P
4 foreach pi ∈ P , where i = 1 . . . n do
5 add ← false
6 foreach pj ∈ P , where j = i . . . n do
7 if pj ∈ S ∧ d(pj , pi) < dne(pj) then
8 S ← S \ {pj}
9 add ← true

10 if add then
11 MSS← MSS ∪ {pi}

12 return MSS

This intuition is formalized in the following theorem.
Here we show that the subset selected by MSS can select
a subset of unbounded size as a function of κ or k.

Theorem 1 Given 0 < ε < 1, there exists a training
set P ⊂ Rd with a constant number of NE and border
points such that MSS selects Ω(1/ε) points.

Proof. Recall that for each point in P , the MSS algo-
rithm selects the point inside its NE ball with minimum
NE distance. Given a parameter 0 < ε < 1, we con-
struct a training set in d-dimensional Euclidean space,
as illustrated in Figure 2a.

Create two points r1 and r2, and assign them to
the class of red points. Without lost of generality,
the distance between these two points is 1. Let ~u be
the unit vector from r1 to r2, create additional points
bi = r1 + iε

4 ~u for i = {1, 2, . . . , 3/ε}. Assign all bi points
to the class of blue points. The set of all these points
constitute the training set P . It is easy to prove that P

has only 4 NE points and 4 border points, corresponding
to r1, r2, b1 and b3/ε.

(a) Initial training set of collinear points, where both the
number of NE points and the number of border points equal
to 4. That is, κ = k = 4.

(b) Subset of points computed by MSS from the original
training set (fully colored points belong to the subset, while
faded points do not). The size of the subset is Ω(1/ε).

Figure 2: Unbounded example for MSS w.r.t. κ and k.

Let’s discuss which points are added by MSS for each
point in P (see Figure 2b). For points r1 and r2, the
only points inside their NE balls are themselves, so both
r1 and r2 belong to the subset selected by MSS. For
points bi with i ≤ 2/ε, the point with minimum NE
distance contained inside their NE ball is b1, which is
also added to the subset. Now, consider the points bi
with 2/ε < i < 5/2ε. Let j = i − 2/ε, it is easy to
prove that the point with minimum NE distance inside
the NE ball of bi is b2j+1 (see Figure 2b). Therefore,
this implies that the number of points selected by MSS
equals 5/2ε− 2/ε = 1/2ε = Ω(1/ε). �

2.2 A better approach

We propose a new algorithm, called RSS or Relaxed Se-
lective Subset, with the idea relaxing the selection pro-
cess of MSS, while still computing a selective subset.
For a given point p ∈ P , while MSS requires to add the
point with smallest NE distance inside the NE ball of
p, in RSS any point inside the NE ball p suffices.

Algorithm 2: Relaxed Selective Subset

Input: Initial training set P
Output: Condensed training set RSS ⊆ P

1 RSS← ∅
2 Let {pi}ni=1 be the points of P sorted in increasing

order of NE distance dne(pi)
3 foreach pi ∈ P , where i = 1 . . . n do
4 if dnn(pi,RSS) ≥ dne(pi) then
5 RSS← RSS ∪ {pi}

6 return RSS
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The idea is rather simple (see Algorithm 2). Points of
P are examined in increasing order with respect to their
NE distance, and we add any point whose NE ball con-
tains no point previously added by the algorithm. This
tends to select points close to the decision boundary of
P (see Figure 1d), as points far from the boundary are
examined later in the selection process, and are more
likely to already contain points inside their NE ball.

Theorem 2 RSS is order-independent and computes a
selective subset of P in O(n2) worst-case time.

Proof. By construction, every point in P was either
added into RSS, or has a point in RSS inside its NE ball.
Therefore, RSS is selective. The order-independence fol-
lows from the initial sorting step.

Let’s analyze the time complexity of RSS. The ini-
tial step requires O(n2) time for computing the NE dis-
tances of each point in P , plus additional O(n log n)
time for sorting the points according to such distances.
The main loop iterates through each point in P , and
searches their nearest neighbor in the current subset,
incurring into additionalO(n2) time. Finally, the worst-
case time complexity of the algorithm is O(n2). �

Theorem 3 RSS selects at most O(κ (3/π)d−1) points.

Proof. The proof follows by a charging argument on
each NE point of P . Consider a NE point p ∈ P , and
let RSSp be the set of points selected by RSS such that
p is their NE. Let pi, pj ∈ RSSp be two such points, and
without loss of generality say that dne(pi) ≤ dne(pj).
By construction of the algorithm, we also know that
d(pi, pj) ≥ dne(pj). Now, consider the triangle 4ppipj .
Clearly, the side ppi is the larger of such triangle, and
therefore, the angle ∠pippj ≥ π/3. Meaning that the
angle between any two points in RSSp with respect to
p is at least π/3.

By a standard packing argument, this implies that
|RSSp| = O((3/π)d−1). Finally, we obtain that |RSS| =∑

p |RSSp| = κ O((3/π)d−1). �

For constant dimension d, the size of RSS is O(κ).
Therefore, the following result implies that the upper-
bound on RSS is tight up to constant factors. Further-
more, it implies that this is the best upper-bound we
can hope to achieve in terms of κ.

Theorem 4 (Lower-bound) There exists a training
set P ⊂ Rd with κ NE points, for which any consistent
subset contains Ω(κcd−1) points, for some constant c.

Proof. We construct a training set P in d-dimensional
Euclidean space, which contains points of two classes:
red and blue. Consider the following arrangement of
points: create a red point p, and take every point at
distance 1 from p as a blue point. Simply, the points on
the surface of a unit ball centered at p.

Take any consistent subset of this training set, and
consider some point p′ in such subset, and the bisector
between p and p′. The intersection between this bisector
and the unit ball centered at p describes a cap of such
ball of height 1/2. Any point located inside this cap
is closer to p′ than p, and hence, correctly classified.
Clearly, by definition of consistency, all points in the
ball must be covered by at least one cap. By a simple
packing argument, we know such covering needs Ω(cd−1)
points, for some constant c.

So far the training set constructed has only two near-
est enemy points; the red point p, and one blue point
closest to p (assuming general position). Then, we can
repeat this arrangement κ/2 times, using sufficiently
separated center points. This generates a training set P
with a number of NE points equal to κ, for which any
consistent subset has size Ω(κcd−1). �

Different parameters from κ can be used to bound
the selection size of condensation algorithms. Let’s con-
sider k, the number of border points in the training set
P . From the example illustrated in Figure 3, we know
that RSS can select more points than k (see Figure 3b).
Repeating such arrangement forces RSS to select Ω(k)
points. Yet, the question remains, at most, how many
more points than k can this algorithm select?

(a) Point arrangement. (b) RSS selection outlined.

Figure 3: Example where RSS selects k + 1 points.

Lemma 5 The nearest enemy point of any point in P
is a also a border point of P .

Proof. Take any point p ∈ P . Consider the empty
ball of maximum radius, tangent to point ne(p), and
with center in the line segment between p and ne(p).
Being maximal, this ball is tangent to another point
p∗ ∈ P (see Figure 4a). Clearly, p∗ is inside the NE ball
of p, which implies that p and p∗ belong to the same
class, making p∗ and ne(p) enemies. By the empty ball
property, this means that both p∗ and ne(p) are border
points of P . �

From Lemma 5, we know that in Euclidean space,
the number of NE points of P is at most the number of
border points of P . That is, κ ≤ k. While this implies
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(a) (b)

Figure 4: (a) The largest empty ball tangent to ne(p)
and center in p ne(p), is also tangent to some point p∗,
making p∗ and ne(p) border points. (b) Computing the
radius of a ball with center in the line segment between
p and ne(p), and tangent to both ne(p) and p′.

an easy extension of the bound for RSS, now in terms
of k, it is unclear if the other factors can be improved.

Alternatively, this opens another idea for condensa-
tion. In order to prove Lemma 5, we show that there
exist at least one border point inside the NE ball of
any point p ∈ P . Therefore, any algorithm that only
selects such border points, can guarantee to compute
a selective subset of size at most k. Consider then a
modification of RSS, where for each point pi ∈ P , if no
other point lying inside the NE ball of p has been added
yet, instead of adding pi as RSS does, we add a border
point inside NE ball of p. We call this new algorithm
VSS or Voronoi Selective Subset (see Algorithm 3).

Algorithm 3: Voronoi Selective Subset

Input: Initial training set P
Output: Condensed training set VSS ⊆ P

1 VSS← ∅
2 Let {pi}ni=1 be the points of P sorted in increasing

order of NE distance dne(pi)
3 foreach pi ∈ P , where i = 1 . . . n do
4 if dnn(pi,RSS) ≥ dne(pi) then
5 Find a border point that lies inside the NE

ball of pi and add it to VSS

6 return VSS

Theorem 6 VSS computes a selective subset of P of
size at most k in O(n2) worst-case time.

Proof. By construction, for any point in p ∈ P \ VSS
the algorithm selected one border point inside the NE
ball of p. This implies that the resulting subset is selec-
tive, and contains no more than k points.

Now, we describe an efficient implementation of VSS.
Recall that for every point p ∈ P \ VSS, the algorithm

finds a border point inside its NE ball. Without loss of
generality implement VSS to compute the point p∗ that
minimizes the radius of an empty ball tangent to both
ne(p) and p∗, and center in the line segment between
p and ne(p). For any given point p′ inside the NE ball
of p, denote r(p, p′) to be the radius of the ball tangent
to p′ and ne(p) and center in the line segment between
p and ne(p). As illustrated in Figure 4b, let vectors

~u = p−ne(p)
‖p−ne(p)‖ and ~v = p′ − ne(p), the radius of this ball

can be derived from the formula r(p, p′) = ‖~v+r(p, p′)~u‖
as r(p, p′) = ~v·~v

2~u·~v .
As p∗ is defined as the point that minimizes such ra-

dius, a simple scan over the points of P suffices to iden-
tify the corresponding p∗ for any point p ∈ P . There-
fore, this implies that VSS can be computed in O(n2)
worst-case time. �

2.3 What about FCNN?

FCNN or Fast Condensed Nearest-Neighbor is yet ano-
ther popular state-of-the-art algorithm for the NN con-
densation problem. In contrast with MSS, which finds
selective subsets, FCNN selects consistent subsets of P .

Let’s now describe the selection process of FCNN (see
Algorithm 4). Essentially, FCNN maintains a subset of
P , which is updated in each iteration, by adding points
that are incorrectly classified using the current subset.
The iterations stop when all points of P are correctly
classified by the current subset, that is, when FCNN
is consistent. Starting with the centroids of each class,
set S contains some misclassified points from P \FCNN
that will be added in the next iterartion. How does the
algorithm decide which points to include in S? Define
voren(p,FCNN, P ) as the set of enemy points of p in
P , whose NN in FCNN is p, that is, the set {q ∈ P |
l(q) 6= l(p) ∧ ne(q,FCNN) = p}. Then, for each point
p ∈ FCNN, the algorithm selects one representative out
of its corresponding voren(p,FCNN, P ), which is usually
defined as the NN to p.

Algorithm 4: Fast Condensed Nearest-Neighbor

Input: Initial training set P
Output: Condensed training set FCNN ⊆ P

1 FCNN← ∅
2 S ← centroids(P )
3 while S 6= ∅ do
4 FCNN← FCNN ∪ S
5 S ← ∅
6 foreach p ∈ FCNN do
7 S ← S ∪ {rep(p, voren(p,FCNN, P ))}

8 return FCNN

Theorem 7 There exists a training set P ⊂ Rd with k
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(a) Entire arrangement of points.

(b) Middle arrangement.

(c) Side arrangement.

Figure 5: Example of a training set P ⊂ R2 for which FCNN selects Ω(k) points.

border points, for which FCNN selects Ω(k) points.

Proof. Consider the arrangement in Figure 5b (left),
consisting of points of 4 classes. The centroids of the
blue, yellow, and red classes are the only points la-
beled as such. By placing a sufficient number of black
points far at the top of this arrangement, we avoid their
centroid to be any of the three black points in the ar-
rangement. Beginning with the centroids, the first it-
eration of FCNN would have added the points outlined
in Figure 5b (right). Now each of these points have
one black point inside their Voronoi cells, and therefore,
these black points will be the representatives added in
the second iteration. This small example, with k = 5,
shows how to force FCNN to add all the border points
plus two internal points. Out of these two internal black
points, one is the centroid added in the initial step. The
remaining internal black point, however, was added by
the algorithm during the iterative process. This scheme
can be extended to larger values of k, without increasing
the number of classes.

The previous is the first building block of the entire
training set, shown in Figure 5a. To this “middle” ar-
rangement, we append “side” arrangements of points,
as the one illustrated in Figure 5c, which will have sim-
ilar behavior to the middle arrangement. This partic-
ular side arrangement will be appended to the right of
the middle one, such that the distance between the red
points is greater than the distance from the yellow to
the red point. Every time we append a new side ar-
rangement, its blue and red labels are swapped. The
arrangements appended to the left side are simply a
horizontal flip of the right arrangement. Now, the be-
havior of FCNN in such a setup is illustrated with the
arrows in Figure 5a. The extreme point of the previ-
ous arrangement adds the yellow point at the center of
the current arrangement, which then adds the red point
next to the blue point, as is closer than the other red
point. Next, this red point adds the blue point, and the

yellow point adds the remaining red point. Finally, the
Voronoi cells of these points will look as shown in Fig-
ure 5c (right), and in the next iteration, the tree black
points will be added.

After adding side arrangements as needed (same num-
ber of the left and right), it is easy to show that the cen-
troids are still the tree points in the middle arrangement
and the black point at the top (by adding a sufficient
number of black points in the top cluster). This implies
than FCNN will be forced to select Ω(k) points. �

While this example sheds light on the selection behav-
ior of FCNN, an upper-bound is still missing. Based on
the following lemma, we conjecture that FCNN selects
at most O(κ cd−1) points, for some constant c.

Lemma 8 Consider a point p selected by FCNN. Then,
the number of representatives of p selected throughout
the algorithm does not exceed O((3/π)d−1) points.

Proof. This proof follows from similar arguments to
the ones described in the proof of Theorem 3. Con-
sider p1, p2 ∈ FCNN to be two points added to by
the algorithm as representatives of p. Without loss
of generality, p1 was added before p2, implying that
d(p, p1) ≤ d(p, p2). By construction, if p2 was added
as a representative of p, and not of p1, we also know
that d(p, p2) ≤ d(p1, p2). From this, consider the trian-
gle 4pp1p2 and the angle ∠p1pp2. This is the largest
angle of the triangle, meaning that ∠p1pp2 ≥ π/3. Fi-
nally, by a standard packing argument, there are at most
O((3/π)d−1) such points. �

3 Open problems

A few key questions remain unsolved:

• In terms of k, our best upper-bound on the selection
size of RSS is not tight. Can it be improved?
• Is it possible to prove an upper-bound on the selec-

tion size of FCNN in terms of either κ or k?
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A Simple Randomized Algorithm for All Nearest Neighbors

Soroush Ebadian∗ Hamid Zarrabi-Zadeh∗

Abstract

Given a set P of n points in the plane, the all near-
est neighbors problem asks for finding the closest point
in P for each point in the set. The following folklore
algorithm is used for the problem in practice: pick a
line in a random direction, project all points onto the
line, and then search for the nearest neighbor of each
point in a small vicinity of that point on the line. It
is widely believed that the expected number of points
needed to be checked by the algorithm in the vicinity
of each point is O(

√
n) on average. We confirm this

conjecture in affirmative by providing a careful analysis
on the expected number of comparisons made by the
algorithm. We also present a matching lower bound,
showing that our analysis is essentially tight.

1 Introduction

The all nearest neighbors problem considers finding, for
a set P of n points in the plane, the nearest neighbor of
each point in P . This is a fundamental and well-studied
problem in computational geometry, with various appli-
cations, e.g., in statistics, similarity search, and image
processing.

Several O(n log n) time algorithms are available for
the problem. In particular, it is well-known that the
Delaunay triangulation of P contains all edges con-
necting nearest neighbors. (See Figure 1.) Therefore,
one can solve the all nearest neighbors problem in the
plane in O(n log n) time using any of the optimal algo-
rithms available for the Delaunay triangulation [2, 4].
In higher fixed dimensions, one can solve the problem
in O(n log n) time using the algorithms of Clarkson [1]
and Vaidya [6]. Both algorithms make use of spatial
data partitioning trees, such as compressed quad-trees
[5] and R-trees [3].

In this paper, we study an extremely simple random-
ized algorithm for the all nearest neighbors problem that
uses no geometric data structure, and can be imple-
mented in a few lines of code. It basically projects all
the points onto a random line and searches for the near-
est neighbor of each point in a small vicinity of that
point on the line.

∗Department of Computer Engineering, Sharif University of
Technology, Tehran, Iran. Email: ebadian@ce.sharif.edu,
zarrabi@sharif.edu.

Figure 1: An example of the problem. Each point is
connected to its nearest neighbor by an arrow. Dotted
segments show the Delaunay triangulation edges.

The main contribution of this paper is a careful and
tight analysis of the expected runtime of this random-
ized algorithm. More precisely, we show that the ex-
pected number of comparisons made by the algorithm
is O(αn

√
n) in total, where α =

√
log δ + 1, and δ is

the ratio of the largest to smallest pairwise distance be-
tween the points and their nearest neighbors. In prac-
tice, α is upper bounded by a constant. For exam-
ple, when input coordinates are represented by rational
numbers with 64-bit integers, we have δ ≤ 2128, and
hence,

√
log2 δ + 1 is at most 12.

The utter simplicity of the algorithm has made it a
popular choice in cases where a fast implementation is
preferable at the cost of slightly relaxing the optimal
runtime. Due to its simplicity and removing the over-
head of geometric data structures, the algorithm is even
faster in practice compared to the other standard al-
gorithms for the problem, such as Delaunay triangula-
tions, when input data has only a few thousand points.
Moreover, the algorithm finds the nearest neighbor of
each point independently, after an initial step, which
makes it highly flexible for parallel implementation.

2 Preliminaries

Let p and q be two points in the plane. We denote
the Euclidean distance of p and q by ∥pq∥. For a unit
vector u in the plane, we denote by ∥pq∥u the projected
distance between p and q along direction u. In other
words, ∥pq∥u = (p − q) · u = ∥pq∥ cos θ, where θ is the
angle between −→pq and u. Since cos θ ≤ 1, we always have
∥pq∥u ≤ ∥pq∥.
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3 The Algorithm

In this section, we present the folklore randomized algo-
rithm for the all nearest neighbors problem, and prove
its correctness. The algorithm in its entirety is given in
Algorithm 1. It takes as input a set P = {p1, . . . , pn} of
n points in the plane, and returns for each point pi its
nearest neighbor qi in P .

Algorithm 1 All Nearest Neighbors(p1, . . . , pn)

1: pick a random unit vector u
2: for i from 1 to n do
3: di ←∞
4: for pj in increasing order of ∥pipj∥u ≤ di do
5: if ∥pipj∥ < di then
6: di ← ∥pipj∥, qi ← pj

7: return q1, . . . , qn

The algorithm works as follows. After picking a ran-
dom unit vector, the algorithm processes each point pi

by checking the points in P \ {pi} in their increasing
projected distance to pi, while keeping the minimum
Euclidean distance found so far in di. The search for
the nearest neighbor of pi is terminated whenever we
reach a point whose projected distance to pi is more
than di.

An example of the execution of Algorithm 1 for a
point p is illustrated in Figure 2. In this example, points
are numbered in their increasing projected distance to
p. The algorithm stops when it reaches point p5, whose
projected distance to p is more than the best distance
found so far, i.e., ∥pp2∥.

p

p1

p2

p3
p4

p5

u

Figure 2: An example of the execution of Algorithm 1.

To quickly iterate over the points in their increasing
projected distance from a point p, we can perform a
simple preprocess step as follows. We select a line ℓ
in direction u, project each point pi ∈ P to a point p′

i

on ℓ, and sort the projected points along ℓ. Then, in
the main loop for each point pi, we keep two pointers
on ℓ initially set to the points right before and after p′

i

on ℓ, walking in opposite directions. At each step, we
compare the distance of p′

i to the two projected points
specified by the pointers, select whichever is smaller,
and advance the corresponding pointer to the next one.

This way, iterating over each point pj takes O(1) time
in the algorithm.

The correctness of the algorithm is proved in the fol-
lowing lemma.

Lemma 1 For each point pi ∈ P , the algorithm cor-
rectly finds the nearest neighbor of pi.

Proof. Fix a point pi, and let q be the nearest point
of pi in P . Suppose by way of contradiction that the
inner loop of the algorithm terminates on a point pj ,
before reaching q. Thus, ∥pipj∥u < ∥piq∥u. The inner
loop terminates if ∥pipj∥u > di, where di is the distance
between pi and a previously-visited point pk. Therefore,
we have ∥piq∥ ≥ ∥piq∥u > ∥pipj∥u > di = ∥pipk∥, which
contradicts the fact that q is the closest point to pi. □

4 The Analysis

Let P = {p1, . . . , pn} be the set of input points. For 1 ≤
i ≤ n, we denote by di the distance of pi to its nearest
neighbor in P . Let Pi = {pj ∈ P −{pi} : ∥pipj∥u ≤ di}
be the set of points compared by the algorithm during
the search for the nearest neighbor of pi.

Let X be a random variable indicating the total num-
ber of comparisons made by Algorithm 1. We can de-
compose X into n2 indicator variables

Xi,j =

{
1 if pj ∈ Pi,

0 otherwise.

Note that Xi,i = 0 for all i, and X =
∑

1≤i,j≤n Xi,j .

Lemma 2 For all 1 ≤ i, j ≤ n, i ̸= j,

Pr {Xi,j = 1} ≤ di

∥pipj∥
.

Proof. Fix two points pi and pj in P . For all r ≥ di, let
Cr be a circle of radius r centered at pi. Consider a strip
S of width 2di enclosing Cdi

orthogonal to direction u

pi
u

pj

θ

Cdi

Cr

S

Figure 3: An illustration of Lemma 2. The strip S is
shown in gray, and Cr ∩ S is shown by thick arcs.
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(see Figure 3). Note that for all points p ∈ P , we have
p ∈ Pi if and only if p lies in S.

Let A(r) denote the length of Cr ∩ S, for all r ≥ di.
The curvature of the arcs in Cr ∩ S decreases as r is
increased, and hence, A(r) is a decreasing function on
[di,∞). Therefore, for all r ≥ di, A(r) ≤ A(di) = 2πdi.

Since direction u is chosen uniformly at random, the
angle θ between −−→pipj and u is uniformly chosen from
the range [0, 2π). In other words, pj lies uniformly at
random on a circle Cr with r = ∥pipj∥. Therefore, the
event pj lies in S corresponds to the fraction A(r)/2πr
of the points on Cr. Hence,

Pr {Xi,j = 1} =
A(r)

2πr
≤ 2πdi

2πr
=

di

r
,

which completes the proof. □

Let E[X.,j ] =
∑n

i=1 E[Xi,j ]. An upper bound B on
E[X.,j ] yields an upper bound nB on E[X], because
E[X] =

∑n
j=1 E[X.,j ]. The rest of this section focuses

on finding such an upper bound on E[X.,j ].

Lemma 3 For each 1 ≤ j ≤ n, there is a permutation
σ of {1, . . . , n} such that

E[X.,j ] ≤ 3

n∑

i=1

dσi√∑i
k=1 dσk

2
.

Proof. Let pσ1 , . . . , pσn be the points of P ordered in
their increasing distance from pj . Note that pσ1 = pj .
For 1 ≤ i ≤ n, let Ci be a circle of radius dσi

/2 centered
at pσi

. For any pair of points pσi
and pσj

, ∥pσi
pσj
∥ ≥

max{dσi
, dσj
} ≥ (dσi

+ dσj
)/2. Therefore, all Ci’s are

non-overlapping.
Fix an index 2 ≤ i ≤ n. Let ℓ = ∥pσipj∥, and Bi =

{C1, . . . , Ci}. Every circle in Bi has radius at most ℓ/2,
and its center lies within distance ℓ to pj . (See Figure 4.)
Therefore, all circles in Bi fit in a disk C of radius 3

2ℓ
centered at pj . As the circles are non-overlapping, the
area of C must be at least as large as the total area of

the circles in Bi. Therefore, ( 3ℓ
2 )2π ≥ ∑i

k=1(
dσk

2 )2π,

and thus, ℓ = ∥pσi
pj∥ ≥ 1

3

√∑i
k=1 dσk

2. Now,

E[X.,j ] =
n∑

i=1

E[Xi,j ] ≤
∑

i∈[n]−{j}

di

∥pipj∥
(by Lemma 2)

=

n∑

i=2

dσi

∥pσi
pj∥
≤

n∑

i=2

3 · dσi√∑i
k=1 dσk

2
,

which implies the lemma’s statement. □

Based on the upper bound proved in Lemma 3, we define
the following function:

f(a1, . . . , an) =
n∑

i=1

ai√∑i
j=1 aj

2
,

C4

C2

C3

C6

`
pj

C5

C1

Figure 4: A set of non-overlapping circles {C1, . . . , C6}.

where a1, . . . , an is a sequence of real numbers. We
prove some useful properties of f in the next lemmas.

Lemma 4 Let A = {a1, . . . , an} be a set of positive real
numbers, and σ be a permutation of A. Then f(σ) is
maximized if σ is a non-decreasing sequence.

Proof. Suppose by contradiction that f is maximized
by a permutation σ = {σ1, σ2, . . . , σn} which is not non-
decreasing. Then, there exists an index i such that x =
σi > σi+1 = y. Let π = {σ1, . . . , σi+1, σi, . . . , σn} be
the ordering achieved by swapping σi and σi+1. As σ
is an ordering that maximizes f , we have f(σ) ≥ f(π).
Since the two permutations only differ in the i-th and
(i + 1)-th term, by the definition of f , and by setting

s = x2 + y2 +
∑i−1

j=1 σj
2, we have

x√
s− y2

+
y√
s
≥ x√

s
+

y√
s− x2

which yields

x ·
[

1√
s− x2

− 1√
s

]−1

≥ y ·
[

1√
s− y2

− 1√
s

]−1

.

Since function z ·
[

1√
s−z2

− 1√
s

]−1

is decreasing in the

range (0, s), the last inequality implies x ≤ y. But this
contradicts the fact that x > y. □

Lemma 5 For any integer n ≥ 1, and any real number
a ≥ 0,

n∑

i=1

1√
a + i

≤ 2
√

n.

Proof. Since 1√
x

is a decreasing function on (0, +∞),

for any real number b > 1, we have

∫ b

x=b−1

1√
x

>

∫ b

x=b−1

1√
b

=
1√
b
.

Therefore,

n∑

i=1

1√
a + i

≤
∫ a+n

x=a

1√
x

dx = 2(
√

a + n−√a) ≤ 2
√

n,
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where the last inequality follows from the fact that√
x + y ≤ √x +

√
y, for all x, y ≥ 0. □

Lemma 6 Given real numbers a1, . . . , an with 1 ≤ ai ≤
c, for some constant c ≥ 1,

f(a1, . . . , an) ≤ 2b
√

n
√

logb c + 1.

for all b > 1.

Proof. Let âi = b⌊logb ai⌋. Since b > 1 and ai ≥ 1, we
have âi ≤ ai < b · âi. Therefore,

f(a1, . . . , an) =
n∑

i=1

ai√∑i
j=1 aj

2

≤
n∑

i=1

b · âi√∑i
j=1 â2

j

= b · f(â1, . . . , ân).

By Lemma 4, f(â1, . . . , ân) is maximized when â’s are
sorted non-decreasingly. Let si = |{j : ⌊logb aj⌋ = i}|,
for all i ∈ {0, 1, . . . , ⌊logb c⌋}. Then

f(â1, . . . , ân) ≤
⌊logb c⌋∑

i=0

si∑

k=1

bi

√
k · b2i +

∑i−1
j=0 sj · b2j

=

⌊logb c⌋∑

i=0

si∑

k=1

1√
k +

∑i−1
j=0 sj · b2(j−i)

which by Lemma 5 is at most 2
∑⌊logb c⌋

i=0

√
si. This sum

is maximized at equality. Hence, as
∑

si = n, we have

⌊logb c⌋∑

i=0

√
si ≤

⌊logb c⌋∑

i=0

√
n

⌊logb c⌋+ 1
≤ √n ·

√
logb c + 1.

Therefore, f(a1, . . . , an) ≤ 2b
√

n ·
√

logb c + 1. □

Now, we have all the ingredients needed to prove the
main theorem of this section.

Theorem 7 The expected runtime of Algorithm 1 on
a set P of n points is O(n

√
n · √log δ + 1), where δ =

maxi {di} / mini {di} and di = minq∈P\{pi}∥piq∥.

Proof. By Lemma 3, E[X.,j ] is upper bounded by
3f(σ1, . . . , σn) for some permutation σ of {d1, . . . , dn}.
Scaling all variables by a constant does not change
f(σ1, . . . , σn). Therefore, we can assume w.l.o.g. that
1 ≤ σi ≤ δ for all i. By setting b = 2 and c = δ in
Lemma 6, we get

E[X.,j ] ≤ 12
√

n
√

log2 δ + 1.

Therefore, E[X] =
∑n

j=1 E[X.,j ] is upper bounded by

12n
√

n
√

log2 δ + 1, which completes the proof. □

4.1 Lower Bound

In this section, we show that the analysis presented in
Section 4 is essentially tight by providing a lower bound
example on which Algorithm 1 has a matching expected
runtime. Our example is simply formed by the points
of a

√
n × √n square lattice. The nearest neighbor to

each point in this lattice has distance exactly one, and
hence, δ = 1 in this case. The following theorem proves
a lower bound of Ω(n

√
n) on the expected runtime of

the algorithm on this example, which matches the upper
bound of O(n

√
n) proved in the previous section.

Theorem 8 The expected runtime of Algorithm 1 on a√
n×√n square lattice is Ω(n

√
n).

Proof. Let P = {p1, . . . , pn} be the set of points on the
lattice, and let u be the random unit vector chosen by
the algorithm. The nearest neighbor to each point in P
has distance one. Therefore, if X is a random variable
indicating the size of the set {(pi, pj) : ∥pipj∥u ≤ 1},
then E[X] is a lower bound on the expected runtime of
the algorithm.

We first claim that Pr {∥pipj∥u ≤ 1} ≥ 1
π·∥pipj∥ , for

all 1 ≤ i, j ≤ n. Fix two points pi and pj . Let ℓ be a
line in direction u passing through pi, and let p′

j be the
projection of pj onto ℓ. Therefore, pi, pj , and p′

j form a
right triangle. (See Figure 5.) Now, ∥pipj∥u ≤ 1 holds
if and only if

∠pipjp
′
j = arcsin(

∥pip
′
j∥

∥pipj∥
) ≤ arcsin(

1

∥pipj∥
).

As ∠pipjp
′
j is chosen randomly, and arcsin(x) > x for

all 0 < x ≤ 1, we have

Pr {∥pipj∥u ≤ 1} ≥ 1

π
arcsin(

1

∥pipj∥
) >

1

π · ∥pipj∥
.

Every two points in the lattice have distance at most
2
√

n. Therefore, Pr {∥pipj∥u ≤ 1} > 1
2π

√
n
. Thus,

E[X] >
n(n− 1)

2π
√

n
,

and hence, the expected runtime of the algorithm is
Ω(n
√

n). □

pj

pi

p′j,θ1 1

p′j,θ2

p′j,θ3

θ1 θ2
θ3

Figure 5: Projection of pj on different lines specified by
the random vector u.
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5 Conclusions

In this paper, we analyzed an extremely simple random-
ized algorithm for the all nearest neighbors problem.
We proved that the algorithm has O(αn

√
n) expected

runtime, where α is a parameter of the input point set,
usually bounded by a constant in practice.

Our analysis can be extended in a natural way to
the case of general Lp metric, yielding the same ex-
pected runtime. For higher d-dimensional space, we
conjecture that the expected runtime of the algorithm
is O(n2− 1

d poly(α)). We can also extend the algorithm
to report k nearest neighbors of each point. While
our analysis immediately implies an upper bound of
O(kα · n√n) on the expected number of comparisons
made by the algorithm, it is intriguing to obtain a
tighter analysis for this variant of the problem.
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algorithm studied in this paper as an open problem.
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Hardness results on Voronoi, Laguerre and Apollonius diagrams

Kevin Buchin∗ Pedro Machado Manhães de Castro† Olivier Devillers‡ Menelaos Karavelas�

Abstract

We show that converting Apollonius and Laguerre di-
agrams from an already built Delaunay triangulation
of a set of n points in 2D requires at least Ω(n log n)
computation time. We also show that converting an
Apollonius diagram of a set of n weighted points in
2D from a Laguerre diagram and vice-versa requires
at least Ω(n log n) computation time as well. Further-
more, we present a very simple randomized incremental
construction algorithm that takes expected O(n log n)
computation time to build an Apollonius diagram of
non-overlapping circles in 2D.

1 Introduction

Voronoi diagrams in 2D are one of the most classical
objects of computational geometry. Given a set of n
points S = {p1, p2, . . . , pn} in the plane, consider n re-
gions Ri such that Ri contains all the points closer to
pi than any other point pj ∈ S with pi 6= pj . The word
closer here is crucial. If the distance used is the Eu-
clidean distance in the plane (i.e., ‖p− p′‖ for points p
and p′), each region is a convex (possibly unbounded)
polygon and their union is the Voronoi diagram of S;
see Figure 1a. The dual of the Voronoi diagram of S is
the Delaunay triangulation of S.

Now, consider a set of n circles (or weighted points)
Σ = {c1, c2, . . . , cn} in the plane, with ci = (pi, ri) for
i = 1, . . . , n and the regions Ri, for i = 1, . . . , n, de�ned
as above but with the concept of Euclidean distance
replaced by the Power distance between a point and a
circle (i.e., ‖p−p′‖2−r2 for point p′ and circle c = (p, r)).
Then, again, the regions are convex, but their union is
the Laguerre diagram (or Power diagram) of Σ. Here,
input circles may not have a region associated with;1

we call such circles as hidden circles. The dual of the
Laguerre diagram of Σ is the regular triangulation of Σ;
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1The term distance albeit classically used in that case is ac-
tually not the most appropriate, since it can be negative when
points are inside the circle.

see Figure 1b. The dual, as its name suggest, must be
a triangulation. Furthermore, it might not include all
centers of the input circles as vertices, since the �nal
construction might have hidden circles.
Finally, consider the same set of circles Σ above, but

the distance now is the signed Euclidean distance be-
tween a point and a circle (i.e., ‖p− p′‖− r for point p′

and circle c = (p, r)). Then, the regions are no longer
convex and their union is the Apollonius diagram of
Σ; see Figure 1c. Actually, these regions are bounded
by segments of lines or hyperbola. As in the Laguerre
diagram, some input circles may not have a region as-
sociated with, which we call analogously a hidden point.
The dual of the Apollonius diagram of Σ is the Apol-
lonius graph of Σ. Conversely to both structures men-
tioned above, the Apollonius graph may not be a trian-
gulation.
A lower bound of Ω(n log n) in the algebraic compu-

tation tree model of computation [1] is known for build-
ing any of these diagrams for an input set of size n;
this can be proved by a reduction to the problem of
sorting n numbers. Also, optimal algorithms achieving
a computational complexity of O(n log n) for building
any of these three diagrams (or their duals) are well
known [4]. Randomized incremental constructions ob-
taining an expected cost of O(n log n) for Voronoi and
Power diagrams are also computational geometry clas-
sics [5, 3, 2] with very e�cient implementations. How-
ever, the situation is not the same for the construction
of an Apollonius diagram.
There is an optimal algorithm for Apollonius diagram

construction: it is a sweep-line algorithm that has been
proposed in the early days of computational geome-
try [4]. However, this algorithm is complicated, requires
high degree predicates, and is not used in practice. A
provable expected O(n log n) Apollonius diagram ran-
domized incremental construction can be made avail-
able by using an abstract Voronoi diagrams construction
framework [9], but it remains theoretical with no e�-
cient implementation available to the best of our knowl-
edge. The implementation in cgal [6, 7, 8] is based
on randomized incremental construction and more pre-
cisely on a generalization of the Delaunay hierarchy [2].
The Delaunay hierarchy allows a logarithmic time point
location in a Delaunay triangulation (or a Voronoi dia-
gram). Unfortunately, while generalizing the algorithm
to Laguerre or Apollonius diagrams is straightforward,
the proof of complexity requires some special proper-
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(a) Voronoi (b) Laguerre (c) Apollonius

Figure 1: Diagrams and their dual. In red, we have respectively: the Voronoi diagram, the Laguerre diagram
and the Apollonius diagram. In blue we have their dual. Green circles are hidden. For the three �gures above, input
points in (a) are the same as the centers of input circles in (b) and (c). Moreover, the input circles are the same
for (b) and (c). As we can see above these diagrams may have close combinatorial structure, and hence we may ask
whether it is cheap to convert from one to another.

ties of Delaunay triangulation and does not generalize
so easily. Karavelas and Yvinec [7] propose to go from
a site to the next one using a dichotomic search in the
neighbors of the site. This approach yields a provable
expected time complexity ofO(n log2 n) to construct the
Apollonius diagram.

With this in mind, we propose the following random-
ized incremental contruction: computing the Apollonius
diagram of a set of circles with zero radius (i.e., the
Voronoi diagram of the centers), then increasing the
radii of all circles in a random order maintaining the
diagram. In this paper, we prove that such approach
is in expected O(n log n) computational cost for n non-
overlapping circles.

The idea above is appealing because we already have
very e�cient algorithms and software for the computa-
tion of Voronoi diagram. Also, as shown by the simi-
larity between the di�erent diagrams in Figure 1, one
might hope that converting one diagram to another
could be done quickly (i.e., linear in the size of the input
set). Then, the following question arises:

� Is the knowledge of any of the Voronoi, La-
guerre (power), or Apollonius diagrams of any
help to compute any of the two others? �

In this paper, we answer negatively any of the six in-
stances of that question.

2 Lower bounds

In this section, we present the hardness results on
any conversion between the diagrams mentioned above.
More precisely, we show that such a conversion has a
Ω(n log n) computational cost in the algebraic compu-
tation tree model of computation [1]. When more con-
venient, we consider the dual of these structures, re-
spectively: Delaunay triangulation, regular triangula-
tion and Apollonius graph (converting primals to their
duals and vice-versa is of course in Θ(n)).

2.1 Knowing the Voronoi diagram does not help
to compute the Laguerre diagram

Theorem 1 Computing the regular triangulation of a
set of n weighted points knowing the Delaunay triangu-
lation of the unweighted points has Ω(n log n) complexity
lower bound.

Proof. Consider a set of points pi = {(xi, yi)}0≤i<n

with yi > 0. We �rst remark that the Laguerre dia-
gram allows to sort numbers, actually assigning weights
wi = y2

i to points pi (i.e. radius yi) ensure that points
with consecutive x coordinates are neighbors in the
regular triangulation. Actually for a point (x, 0) its
weighted distance to pi is (x− xi)

2 and a moving point
on the x-axis gets as closest site all the sites in the order
of their x-coordinates (see Figure 2). If the Laguerre di-
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Figure 2: Laguerre diagram allows to sort the cen-

ters by x-coordinate. The red x monotone curve is
a subset of the dual: the regular triangulation.

agram is known, the x-order can be retrieved looking for
the x-successor of a site in its neighbors in the regular
triangulation. Since the sum of the degrees of all sites is
less than 6n this operation can be done in linear time.

It is known that having the Delaunay triangulation al-
ready built does not help to sort points by x coordinates
(in the sense that it is still Ω(n log n)). More precisely,
Seidel [10] proposed a construction that, given n num-
bers, presents a set of points having these numbers as
abscissa and their Delaunay triangulation in linear time.
If Delaunay would help to sort vertices by x coordinates
it would contradict the sorting lower bound.

Combining the two constructions, it is possible to sort
n numbers by �rst building Seidel's Delaunay triangu-
lation in linear time, then building the regular triangu-
lation from the Delaunay triangulation with the above
weights and �nally extracting the x-order of the sites. If
the Delaunay to regular transform used o(n log n) com-
putation time, we would get a contradiction on the lower
bound result for sorting. �

2.2 Knowing the Voronoi diagram does not help
to compute the Apollonius diagram

Theorem 2 Computing the Apollonius diagram of a
set of n circles knowing the Delaunay triangulation of
the centers has Ω(n log n) complexity lower bound.

Proof. The construction is almost the same as the one
in the proof of Theorem 1. We use the same cir-
cles and the same moving point on the line x = 0,
the distance from (x, 0) to the weighted points pi is√

(x− xi)2 + yi(yi − 1). The distance to the closest site
is always positive, being zero for all points in turn ac-
cording to their x-order. The rest of the proof is iden-
tical. �

Figure 3: Apollonius diagram allows to sort the

centers by x-coordinate. The lower part of the dual
(in pink) enumerates all points in x-order.

Figure 4: Regular triangulation does not help to

compute Apollonius diagram nor the Voronoi di-

agram. Voronoi diagram in green, Apollonius diagram
in purple, regular triangulation in blue.

2.3 Other lower bounds

Computing Apollonius or Laguerre diagram is not so
much helpful when many points are hidden. For in-
stance, the conversion of either regular or Apollonius to
Delaunay triangulation is hopeless. This is because, for
any set of centers, by adjusting the radii, essentially all
points but one can be hidden, thus the Delaunay would
need to be built from scratch. The hardness results
for converting Apollonius to Regular and vice-versa are
presented in the sequel.

Theorem 3 Computing the Apollonius diagram of a
set of n circles or the Voronoi diagram of their centers
knowing the regular triangulation has Ω(n log n) com-
plexity lower bound.

Proof. As described in Figure 4, consider four big cir-
cles that pass close to the origin, and a set of small cir-
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Figure 5: Apollonius diagram does not help to

compute the regular triangulation nor the De-

launay triangulation. Delaunay triangulation in
blue. Note the big red circle hidden every point inside
it.

cles of same radii centered close to the origin. Radii can
be tuned so that all centers of small circles are hidden in
the regular triangulation while their Voronoi diagram,
up to the convex hull, is present in the Apollonius or
Voronoi diagram. �

Theorem 4 Computing the regular triangulation of a
set of n circles or the Delaunay triangulation of their
centers knowing the Apollonius diagram has Ω(n log n)
complexity lower bound.

Proof. Consider a set of circles with centers pi =
(xi, x

2
i ) for 0 ≤ i < n with xi > 0 and zero radius plus

one circle center at the origin with radius big enough
to contain all pi's. Then the Delaunay and the regu-
lar triangulation are equal and allow to sort the points
by x-coordinate while the Apollonius diagram does not
give any hint since the big circle is the only one with
non empty region (see Figure 5). �

3 Building the Apollonius diagram of non-
overlapping circles quickly

3.1 Static randomized incremental construction

Let AG(Σ) be the Apollonius graph of Σ =
{c1, c2, . . . , ci} and ci = (pi, wi), AGi(Σ) be the
Apollonius graph of {c1, c2, . . . , ci, (pi+1, 0), . . . , (pn, 0)}
and DT (S) be the Delaunay triangulation of S =
{p1, p2, . . . , pn}. The Apollonius graph can be com-
puted as described in Algorithm 1.
First, the Delaunay triangulation of the centers of the

circles is computed, which is equivalent to the Apollo-
nius graph of circles with radius zero. Then the circles
with their true radii are incrementally added in a ran-
dom order updating the Apollonius graph. Notice that
the insertion of a circle hides its center, thus the �nal
result is just the Apollonius graph of the circles. We
obtain the Apollonius diagram by extracting the dual
from the primal.

Data: A set Σ of n circles (or weighted points)
ci = (pi, wi), i = 1 . . . n.

Result: AG(Σ), which is the Apollonius graph
of Σ.

Let S = {pi, i = 1 . . . n};
Build DT (S) the Delaunay Triangulation of S;
Let AG0(Σ) be DT (S);
drop DT (S);
Shu�e indices of circles in Σ;
for i = 1 . . . n do

get AGi(Σ) by inserting ci into AGi−1(Σ)
using pi as hint;

end

return AGn(Σ);
Algorithm 1: Algorithm for building the Apollo-
nius graph of non-overlapping circles.

Theorem 5 Algorithm 1 constructs the Apollonius di-
agram of n disjoint circles in O(n log n) expected time.

Proof. Let doAGi(Σ)(c) the degree of c in AGi(Σ). Con-
sider the diagram at step i, its total complexity is linear,
thus the expected complexity of the cell of the last (the
ith) circle Ei is bounded as follows:

Ei =
1

i

∑

c∈{c1,...,ci}
doAGi(Σ)(c)

≤ 1

i

∑

c∈{c1,...,ci}∪{pi+1,...,pn}
doAGi(Σ)(c)

≤ 6n

i
.

When summing Ei, for i = 1, . . . , n, the total structural
change is O(n log n). �

3.2 Lower bound on the number of structural
changes overall

For usual randomized incremental construction in the
context of Voronoi diagrams of points, the total com-
plexity of the structural change has O(n) size and the
usual expected O(n log n) computation time arises be-
cause of point locations, which is actually the algo-
rithm's bottleneck. In the second part of our algorithm
(when converting from Voronoi to Apollonius), the point
location is avoided, but the size of structural change be-
comes Ω(n log n) since the total size of the diagram is
linear from the beginning of that second part. Figure 6
shows an example where the structural change has ac-
tually Θ(n log n) size.

3.3 Issue with overlapping circles

When a circle is inserted, if its center is not hidden
in the diagram just before the insertion, this center is a
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Figure 6: The number of structural changes is not linear. Going from Voronoi to Apollonius incrementally
may requires Ω(n log n) expected structural changes: the �rst insertion requires Ω(n), the second Ω(n

2 ) expected, and
so on.

perfect hint to locate the circle. The point location part
is completely avoided since a con�ict with the new circle
is known, which is the case for disjoint circles. However,
if the center is already hidden, which can happen when
allowing overlapping circles as input, point location is
still needed.
Consider one big circle, and n small disjoint circles

intersecting the big circle whose centers are inside the
big circle. A typical increase of radius for a small circle
after the insertion of the big circle is problematic. To
avoid point location, we need a good hint to insert the
circle, but its center is hidden and no longer present
in the Apollonius graph and its nearest neighbor is the
big circle and has a high degree in the Apollonius graph.
Thus de�ning an hint allowing fast point location seems
di�cult in such a case.
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A Note on Guarding Staircase Polygons∗

Matt Gibson† Erik Krohn‡ Bengt J. Nilsson§ Matthew Rayford¶ Paweł Żyliński‖

Abstract

We exhibit two linear time approximation algorithms
for guarding rectilinear staircase polygons both having
approximation factor 2. The first algorithm benefits
from its simplicity, whereas the second provides more
insight to the problem.

1 Introduction

The art gallery problem is one of the best known prob-
lems in computational geometry. An instance of the art
gallery problem takes as input a polygon P and seeks
to find a set of points G ⊆ P such that every point p ∈
P is seen by a point in G. We call this set G a guard-
ing set. In the point guarding problem, guards can be
placed anywhere inside of P. The optimization problem
is thus defined as finding the smallest such G.

The art gallery problem has been shown to be NP-
hard and APX-hard for simple polygons [1, 7, 13]. A
constant factor approximation for vertex guarding a
simple polygon has been claimed in [3]. Bonnet and
Miltzow [4] present a polynomial time algorithm for
finding a point guard cover with approximation factor
O(log OPT ) under certain mild restrictions. Achiev-
ing constant ratio approximation for the point guarding
problem in a simple polygon remains elusive and pre-
cious little is known about it [5].

Due to the inherent difficulty in fully understanding
the art gallery problem for simple polygons, there has
been some work done on finding constant factor, polyno-
mial time approximation algorithms for guarding poly-
gons with some additional structure. This has been suc-
cessful for monotone polygons [8, 11] and for guarding
orthogonal polygons with sliding cameras [2, 6]

Our objective is to establish for what polygon classes
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Figure 1: Illustrating staircase polygons.

the guarding problem lies on the borderline between
tractable and intractable. Given the intractability for
monotone polygons [10], we look at an even simpler class
of polygons.

A staircase polygon is a restricted version of a rec-
tilinear polygon. A rectilinear polygon is a polygon
where all interior angles are either 90◦ or 270◦. We
define a staircase polygon to be a rectilinear and xy-
monotone polygon where the “staircase” is only allowed
to go “up” and to the “right.” More formally, let us
call the lowest-leftmost point of the polygon p and the
highest-rightmost point of the polygon q. The edges
of the polygon, as one traverses the boundary clock-
wise (resp., counterclockwise) from p to q, are called
the ceiling (resp., floor). The leftmost ceiling edge is a
vertical edge that goes up out of p. The ceiling will then
alternate between 90◦ turns going right, then left. The
lowest floor edge is a horizontal edge that goes right out
of p. The floor will then alternate between 90◦ turns go-
ing left, then right. The floor and ceiling boundary will
not cross until they meet at q, see Figure 1.

The maximal horizontal and vertical segments inside
P, collinear to the edges of P are called the extensions in
P; see Figure 1. For a convex vertex u of P, the exten-
sion of the horizontal (resp., vertical) edge incident to
u is denoted by he(u) (resp., ve(u)). We sometimes use
he(p) (resp., by ve(p)) when p is a point on a horizontal
(resp. vertical) edge.

1.1 Our Results

We consider point guarding staircase polygons. We will
use G∗ to denote an optimal point guard set for the
staircase polygon P. In Section 2.1, we give a simple
greedy linear time algorithm that guarantees a guard set
of size at most 2|G∗|−1. In Section 2.2, we give another
greedy linear time algorithm that guarantees a guard set
of size at most 2|G∗| but also provides more insight into
the difficulty in providing better approximations for the
problem.
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Figure 2: Constructing the CCCG set.

2 The Algorithms

2.1 The CCCG Algorithm

Let C∗ be a smallest set of guards for the convex corners
of the staircase polygon P, i.e., the smallest set of points
in P that see all the convex vertices of P but are not
required to see anything else in P. It is clear that |C∗| ≤
|G∗|, since G∗ also sees all of the convex vertices of P.
We will show that we can greedily and in linear time
compute a canonical convex corner guard set, a CCCG
set for short, of size |C∗| that sees all the convex corners
of P. We then also show how to extend the CCCG set
to a complete guard cover of P.

Observe first that, given C∗, we can move any guard g
to the nearest vertical extension of the floor to the right
of g, and the nearest horizontal extension of the ceiling
above g. More specifically, let C∗

0 ← C∗, C0 ← ∅, and
P0 ← P. Consider the first convex vertex u1 on the floor
and the first convex vertex ū1 on the ceiling (we let the
lowest leftmost convex vertex be the 0-th convex vertex
on each boundary chain). If these two vertices are not
seen by any single guard in C∗

0 , then pick the lowest
guard g1 in C∗

0 on the vertical extension ve(u1) and
the leftmost guard g2 in C∗

0 on the horizontal extension
he(ū1). Consider the axis-parallel rectangle inside P0

whose diagonal is [g1, g2]. We can then exchange g1 and
g2 by two other guards ḡ1 and ḡ2 placed at the other two
corners of that rectangle without changing the visibility
of the convex vertices of P0; see Figure 2(a). Therefore,
we let C∗

1 ← C∗
0 ∪{ḡ2}\{g1, g2} and let C1 ← C0∪{ḡ1}.

If the two first convex vertices are seen by a single
guard g1 in C∗

0 , then g1 lies on the intersection point of
the vertical and horizontal extensions ve(u1) and he(ū1),
respectively; see Figure 2(b). In this case, we let C∗

1 ←
C∗

0 \ {g1} and let C1 ← C0 ∪ {g1}.
In both cases, we cut P0 vertically and horizontally

along the two extensions ve(u1) and he(ū1), and retain
the upper right portion as P1; see Figure 2(c). Notice
that C∗

1 is a guard set for the convex vertices in P1.
In general, given Pi, C∗

i , and Ci, we repeat the steps
described above to obtain Pi+1, C∗

i+1, and Ci+1, respec-
tively. After |C∗| iterations in total, we finish with the
set Ĉ = C|C∗| (with |Ĉ| = |C∗|). Notice that we have
an ordering of the guards in Ĉ according to the itera-
tion i where the new guard is added to Ci as Ĉ is being
constructed.

Observation 1 We can compute the CCCG set with-

out having C∗ to begin with. It suffices to realize that
given Ci, we can obtain Ci+1 by adding a guard at the
intersection point of the horizontal and vertical exten-
sions collinear with the first two convex corners not yet
seen on the ceiling and the floor.

The resulting CCCG set Ĉ covers the convex vertices
of P, but may have hidden parts in P that are unseen by
the guards in Ĉ; see Figure 3(a). It is clear that at most
|Ĉ|−1 such unguarded parts of P can be introduced by
Ĉ, since any part must lie between two guards gi and
gi+1, 1 ≤ i < |C∗| in the ordering of Ĉ. We prove that
each unseen part can be guarded by a single additional
guard.

Lemma 1 If the region in P between gi and gi+1 is not
seen by the guards in Ĉ, then this region is contained
in a convex quadrilateral and can thus be guarded by a
single guard.

Proof. Consider the point p on the ceiling directly
above gi and the point q on the floor directly to the right
of gi; see Figures 3(b)–(d). The point p lies on the hor-
izontal ceiling edge with the rightmost reflex vertex v̄p

and q lies on the vertical floor edge with the topmost
reflex vertex vq. The two convex vertices ūp and uq

directly above v̄p and vq on the ceiling and floor, re-
spectively, are not seen by gi, and so they must be seen
by gi+1 by construction. Now, each of gi and gi+1 sees
one or two of the reflex vertices v̄p and vq, and if they
see only one each, they must see different ones since at
most one reflex vertex can block the other. This gives
rise to the following three cases.

1. gi and gi+1 both see v̄p and vq.
This means that the triangles △gipv̄p, △giv̄pvq,
and △givqq are seen from gi, and symmetri-
cally, the triangles △gi+1ūpv̄p, △gi+1v̄pvq, and
△gi+1vquq are seen from gi+1. Thus, there is no
unseen part between gi and gi+1; see Figure 3(b).

2. gi sees v̄p.
Hence, gi+1 sees vq and the triangles △gipv̄p,
△giv̄pq, △gi+1ūpvq, and △gi+1vquq are seen by
gi and gi+1. Thus, only the convex quadrilateral
□v̄pqvqūp may contain unseen parts between gi and
gi+1; see Figure 3(c).

3. gi sees vq.
Symmetrically to the previous case, gi+1 sees v̄p

and the triangles △gipvq, △givqq, △gi+1ūpv̄p, and
△gi+1v̄puq are seen by gi and gi+1. Again, only
the convex quadrilateral □v̄ppvquq may contain un-
seen parts between gi and gi+1; see Figure 3(d).

This concludes the proof. □
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ūp

v̄p

vq uq

gi+1

q
gi

(c)

p

gi

gi+1

uq

q
vq

v̄p

ūp
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Figure 3: Illustrating the proof of Lemma 1. Unseen
parts are shown in dark grey.
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u

Figure 4: The fan visibility property and the fan visi-
bility polygons (in pink) of a point p and of a convex
vertex u.

Now, given the CCCG set Ĉ, we consider a set GX of
extra guards in the convex quadrilaterals that contain
unseen parts of P. Let G(1) = Ĉ ∪ GX be the set of
extended canonical convex corner guards.

Theorem 2 The set G(1) of extended canonical convex
corner guards covers all of P and

|G(1)| = |Ĉ|+ |GX | ≤ 2|C∗| − 1 ≤ 2|G∗| − 1.

We note that we can apply the algorithm for con-
structing a partial CCCG set as described above, start-
ing with any pair of convex corners on the floor and
ceiling that see each other in P. We will use this prop-
erty in the next section.

2.2 A Second Algorithm

Any point p can see any point q in a staircase polygon
P, if x(q) ≤ x(p) and y(q) ≥ y(p) or if x(q) ≥ x(p) and
y(q) ≤ y(p), where x(·) and y(·) respectively denote the
x- and y-coordinates of the corresponding points. We
call this the fan visibility property; see Figure 4(a). The
symmetry of visibility implies that for any convex ver-
tex u (except the lowest leftmost vertex or the top right-
most vertex), the visibility polygon of u must contain a
guard in any guard set of P. The visibility polygon of u
resembles a fan in P; see Figure 4(b).

Order the convex vertices of the floor u0, . . . , um,
where u0 is the lowest leftmost vertex and um is the
top rightmost vertex of P. Similarly, order the convex
vertices of the ceiling ū0, . . . , ūm̄, where ū0 = u0 and

g
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ūȷ̄

vj

ūp
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Figure 5: Illustrating the second algorithm.

ūm̄ = um. Our next algorithm iteratively constructs a
first guard using the CCCG algorithm as described in
the previous section. It then places two or three ad-
ditional guards ensuring that the region guarded using
the fan visibility property contains at least two convex
vertices such that their visibility polygons (fans) do not
intersect. The polygon P can then be cut into one part
visible by the (at most four) guards placed so far and
the remaining polygon. In this way, we achieve a 2-
approximation, since any guard set requires two guards
in the fans. We present the algorithm in further detail
below.

We initialize the algorithm with P0 ← P, G
(2)
0 ← ∅,

i ← 0, k ← 1, and k̄ ← 1. Let g be the first guard
obtained by running the CCCG algorithm from the pre-
vious section on Pi. Let p be the upper endpoint of the
vertical extension ve(uk), and let q be the right endpoint
of the horizontal extension he(ūk̄). The point p lies on
a horizontal ceiling edge with rightmost (reflex) vertex
v̄p. Let ūp be the convex vertex directly above v̄p on the
ceiling, if it exists. Similarly, q lies on a vertical floor
edge with topmost (reflex) vertex vq. Let uq be the con-
vex vertex on the floor directly to the right of vq on the
floor, if it exists. (In the last iteration of the algorithm,
either v̄p, vq, or both will be the top rightmost convex
vertex.)

If y(vq) > y(v̄p), then let rp be the right endpoint of
the horizontal extension he(ūp) and let rq be the top
endpoint of the vertical extension ve(q); see Figure 5.
Let g′ be the intersection point between he(ūp) and
ve(q) (which could lie on the vertical floor edge con-
taining q and vq; see Figure 5(b)) and let g′′ be the
intersection point between he(rq) and ve(rp). (If g′ lies
on a vertical floor edge, then g′′ will lie on a horizontal
ceiling edge at rq.)

Let sq be the intersection of he(rq) with the floor,
and let ul be the last convex vertex on the floor before
sq. (Note that ul could potentially coincide with uq.)
Let sp be the intersection of ve(rp) with the ceiling and
let ūȷ̄ be the first convex vertex on the ceiling after sp;
see Figure 5. If x(ul) < x(ūȷ̄), we let G

(2)
i ← G

(2)
i−1 ∪

{g, g′, g′′, sp} and let uj be the topmost convex vertex
on the floor seen by sp; see Figure 5(c). Otherwise,
x(ul) ≥ x(ūȷ̄), we let G

(2)
i ← G

(2)
i−1 ∪ {g, g′, g′′} and

j ← l. By construction, x(uj) ≥ x(ūȷ̄) always holds.
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Let vj be the reflex vertex before uj on the floor. If
x(vj) > x(ūȷ̄), we cut Pi along ve(ūȷ̄) and he(uj) until
the two extensions intersect, as is shown at the top of
Figures 5(a) and (c). If x(vj) ≤ x(ūȷ̄), we cut Pi along
ve(ūȷ̄) until it hits the floor; see the top of Figure 5(b).
In each case, Pi is partitioned into two pieces, Qi con-
taining the guards and Pi+1 lying above and to the right
of rq and rp, respectively; see Figures 5(a)–(c).

If x(vq) < x(v̄p), then the situation is completely sym-
metrical to the one above, with respect to a flip along
the line y = x, and we construct the guards and par-
tition Pi into Qi and Pi+1 in exactly the same way as
before.

If y(vq) ≤ y(v̄p) and x(vq) ≥ x(v̄p), then we proceed
slightly differently. We let rp be the right endpoint of
the horizontal extension he(ūp), as before, but let rq be
the top endpoint of the vertical extension ve(uq). We let
g be the intersection point between he(ūp) and ve(uq)
and then proceed as before to obtain the guards and the
partition of Pi into Qi and Pi+1.

Finally, we increase i by one, set k ← j, k̄ ← ȷ̄, and
repeat the steps described above.

Let M be the index of the last iteration of our al-
gorithm. It may be that PM is starshaped and thus
guardable with a single guard, in which case our algo-
rithm also guards PM with one guard [9, 12]. Otherwise,
PM requires two guards and we will then guard it with
at most four guards as described above. We claim that
the set G(2) ← G

(2)
M is a guard set for P.

Lemma 3 The guards in G(2) see all of P.

Proof. It suffices to prove that for each 1 ≤ i ≤M , the
subpolygon Qi is seen by the relevant guards placed by
the algorithm within Qi.

By construction, g sees the rectangles spanned by uk

and ūk̄ and by p and q, since these rectangles have g at
one corner. By the fan visibility property, g also sees
the regions spanned by g, ūk̄, p and by g, q, uk. The
guard g′ sees the rectangle spanned by ūp and q, for
the first case of the algorithm, the rectangle spanned by
p and uq, for the second case of the algorithm, or the
rectangle spanned by ūp and uq, for the third case of
the algorithm. In each case, the rectangle intersects the
rectangle spanned by p and q (seen by g) so everything
between g and g′ is seen by the guards.

The rectangle spanned by g′ and g′′ is seen by both
these guards and for each of the three cases, the regions
spanned by g′, ūp, sp, g′′ and by g′′, sq, q, g′, in the first
case, the regions spanned by g′, p, sp, g′′ and by g′′, sq,
uq, g′, in the second case, and the regions spanned by
g′, ūp, sp, g′′ and by g′′, sq, uq, g′, in the third case, are
seen by g′ and g′′, by the fan visibility property. Some
of these regions intersect with Pi+1.

The rectangle spanned by sp and sq is seen by g′′ since
the rectangle has g′′ at one corner. This rectangle may
also intersect Pi+1.

p

q
g

uk
(a)

ūk̄

p

q
g

ūk̄

uk

ūp

(b)

p

q
g

uk
(c)

uqūk̄

Figure 6: Illustrating the base case of the proof of
Lemma 4.

Lastly, for the case that the algorithm adds sp as a
guard, this guard sees the region spanned by sp, uj , sq,
g′′. Thus, the placed guards see all of Qi. □

A witness set W is a set of convex vertices (excluding
u0 = ū0 and um = ūm̄) such that no pair of vertices
in W have visibility polygons that intersect. Evidently,
|W | ≤ |G∗| and we have the following lemma.

Lemma 4 There is a witness set W in P such that each
Qi, for 1 ≤ i ≤M − 1, contains at least two vertices in
W and QM contains at least one vertex in W .

Proof. We make a proof by induction on decreasing
index i and show that given the witness vertices in Pi+1

how to choose the witness vertices in Qi, thus giving us
the witness vertices in Pi.

Consider the base case when QM = PM . If QM is a
starshaped staircase polygon, then g sees all of QM and
we can choose one of uk and ūk̄ as the witness for QM ;
see Figure 6(a) for an example.

If QM is not starshaped, then the region above and
to the right of g contains a convex vertex not seen from
g. Let ūp be such a vertex, if it lies on the ceiling, then
we choose ūp and uk as the witnesses. It is clear that
no point in P can see both ūp and uk. Otherwise, uq is
a convex vertex on the floor and we choose uq and ūk̄ as
the two witnesses for QM in this case. Again, no point
in P can see both uq and ūk̄; see Figures 6(b) and (c)
for two examples.

Assume inductively that we have a witness set obey-
ing our criteria in Pi+1. Assume further that the first
convex vertices on the floor and the ceiling in Pi+1 are uj

and ūȷ̄ respectively. Now consider the subpolygon Qi.
We have to consider three cases, depending on which of
the three cases of the algorithm was used to construct
Qi. If the first case was used, then y(vq) > y(v̄p) and
no point in P can see both ūp and either of uj or ūȷ̄.
Furthermore, any point that sees uk cannot see any of
ūp, uj , and ūȷ̄, hence we can use ūp and uk as witnesses
for Qi in this case; see Figures 7(a) and (b).

If the second case was applied, then x(vq) < x(v̄p) and
no point in P can see both uq and either of uj or ūȷ̄.
Furthermore, any point that sees ūk̄ cannot see any of
uq, uj , and ūȷ̄, hence we can use uq and ūk̄ as witnesses
for Qi in this case; see Figures 7(c) and (d).

If the third case was applied, then x(vq) ≥ x(v̄p) and
y(vq) ≤ y(v̄p), then we can in fact use either of the two
cases above and either choose ūp and uk, or uq and ūk̄

as witnesses for Qi.
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Figure 7: Illustrating the inductive case of the proof of
Lemma 4.

Furthermore, in each of the three cases, uj cannot be
seen by any point with y-coordinate smaller than y(uj),
and ūȷ̄ cannot be seen by any point with x-coordinate
smaller than x(ūȷ̄). Thus, specifically no point below or
to the left of g can see any witness in Pi+1 concluding
our proof. □

The set G(2) was constructed by greedily iterating the
same construction M times. Lemma 4 shows that, if the
witness set contains 2(M−1)+1 vertices, then G(2) has
at most 4(M − 1) + 1 guards, otherwise the witness set
contains 2M vertices and G(2) has at most 4M guards.
In either case, |G(2)| ≤ 2|W |.

The discussion above and Lemma 3 prove our main
result.

Theorem 5 The guards in the set G(2) see all of P
and

|G(2)| ≤ 2|W | ≤ 2|G∗|.

3 Conclusions

We have given two 2-approximation algorithms for
guarding staircase polygons. Unfortunately, this does
not answer the complexity status for guarding these
polygons, since constant factor approximations were al-
ready known for monotone polygons [11].

It would be of immense interest to settle the complex-
ity question for guarding staircase polygons, either by
providing a polynomial time algorithm that optimally
solves it or a hardness proof. Short of this, improv-
ing the approximation factor or even giving a PTAS
would help to understand the problem. Staircase poly-
gons, although having very simple structure, exhibit a
surprising amount of intricacy and we feel that fully an-
swering the complexity status for these polygons will be
challenging.
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Attraction-convexity and Normal Visibility

Prosenjit Bose∗ Thomas C. Shermer†

Abstract

Beacon attraction, or simply attraction, is a movement
system whereby a point moves in a free space so as to
always locally minimize its Euclidean distance to an ac-
tivated beacon (also a point). This results in the point
moving directly towards the beacon when it can, and
otherwise sliding along the edge of an obstacle or being
stuck (unable to move). When the point can reach the
activated beacon by this method, we say that the beacon
attracts the point. In this paper, we study attraction-
convex polygons, which are those where every point in
the polygon attracts every other point. We find that
these polygons are a subclass of weakly externally visi-
ble polygons, which are those where every point on the
boundary is visible from some point arbitrarily distant
(or at infinity on the projective plane). We propose a
new class of polygons called normally visible, and show
that this is exactly the class of attraction-convex poly-
gons. This alternative characterization of attraction-
convex polygons leads to a simple linear-time attraction-
convex polygon recognition algorithm. We also give
a Helly-type characterization of inverse-attraction star-
shaped polygons.

1 Background

Beacon attraction has appeared in the literature as a
model of greedy geographical routing in dense sensor
networks [2, 3, 4, 5, 8, 9, 10, 11, 12, 14]. In this applica-
tion, each node of the network has a location, and each
communication packet knows the location of its desti-
nation. Nodes having a packet to deliver will forward
the packet to their neighbor that is the closest (using
Euclidean distance) to the packet’s destination [6, 7].

Another application, closer to the abstract form, is
for a robot that heads towards a “homing signal.” The
robot will follow walls it encounters if, in doing so, it
gets closer to the source of the signal.

Here we study beacon attraction in the abstract set-
ting, considering only simple singly-connected polygons
with interior as our free space. In this setting, the desti-
nation point or signal source is called a beacon, and the

∗Research supported in part by NSERC. School of Computer
Science, Carleton University, jit@scs.carleton.ca
†School of Computing Science, Simon Fraser University ,

shermer@sfu.ca

message or robot is considered to be a point that greed-
ily moves towards the beacon. This results in the point
moving directly towards the beacon when it can, and
otherwise sliding along an edge or being stuck (unable
to move). The point, under this motion, may or may
not reach the beacon—if it does reach the beacon, we
say that the beacon attracts the robot’s starting point
(see Figure 1).

 

 

p 

q 
r 

Figure 1: A beacon at p attracts the point at q but not
the point at r. The paths of the attraction are shown.
Note that q does not attract p.

Given a polygon P , the attraction region A(p) of point
p is the set of all points in P that p attracts, and the
inverse attraction region A−1(p) is the set of all points in
P that p is attracted to. See Figure 2 for an illustration
of these definitions.

The attraction relation between points has the flavor
of a visibility-type relation, with the interesting prop-
erty of asymmetry: if point p attracts point q, then it
does not follow that point q attracts p (as is the case
in Figure 1). In a series of publications, Biro, Gao,
Iwerks, Kostitsyna, and Mitchell have studied various
visibility-type questions for beacon attraction, such as
computing attraction (and inverse-attraction) regions
for points, computing attraction kernels, guarding, and
routing [5, 4, 3].

 

p p 

Figure 2: (a) The attraction region A(p). (b) The in-
verse attraction region A−1(p). Note that, in this in-
stance, A−1(p) is not connected.
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p 

e 

v 

Figure 3: A normally visible polygon, with the normal
from p, the beam from e, and the cone of v.

From a geometric standpoint, visibility, convexity,
and star-shapedness are fundamental concepts. Two
points x and y in a shape (compact set of points) are
called visible if the line segment xy is contained in the
shape. A shape S is called convex if ∀x, y ∈ S x
and y are visible. A shape S is called star-shaped if
∃x ∈ S, ∀y ∈ S x and y are visible. The kernel of
S is the set of all points from which it is star-shaped:
kerS = {x ∈ S | ∀y ∈ S x and y are visible}.

These notions are easily extended to other “visibility-
type” relations R: a shape S is called R-convex if
∀x, y ∈ S xRy, and it is called R-star if ∃x ∈ S ∀y ∈ S
xRy. The R-kernel of S is kerS = {x ∈ S | ∀y ∈ S
xRy}.

Although Biro et al.[5] have studied attraction kernels
and their computation, they did not produce character-
izations of polygons that are attraction-star-shaped or
attraction-convex. In this paper, we address these is-
sues.

To this end, we introduce a new notion of exterior
visibility of a polygon. We call a polygon normally visi-
ble if the normal (exterior perpendicular) to each point
on the boundary hits no point of the interior of the
polygon. This is a specialization of weak exterior visi-
bility: weak exterior visibility only requires a ray from
each boundary point that does not intersect the inte-
rior, whereas normal visibility constrains those rays to
be perpendicular to the polygon boundary. Figure 3
shows a normally-visible polygon and the nonintersect-
ing perpendicular ray for point p.

Another way to conceptualize normally visible poly-
gons is to imagine an ant crawling counterclockwise
around the boundary of the polygon. This ant has an
attached laser that points directly to its right. If the ant
can crawl all the way around the polygon with the laser

 

p 

q

' 

q’ 

Figure 4: The dead points q and q′ of a beacon at point
p.

never hitting the polygon interior, then the polygon is
normally visible.

To simplify thinking about normal visibility, it is use-
ful to consider the beam B(e) of each edge e, and the
cone C(v) of each vertex v. The beam of e is the union
of all normals from points on e, and the cone of v are
the normals that are swept out as the crawling ant con-
tinuously changes heading from one edge to the other
at v. A polygon is normally visible if no beam or cone
hits its interior.

We may dispense with cones by a chain of observa-
tions. First, for the polygon interior to intersect a cone,
the polygon must cross (not simply intersect) one of
the cone’s two bounding rays, as the polygon is a Jor-
dan curve. Next, the bounding rays of the cone are also
bounding rays of the beams of the two adjacent edges.
Thus the polygon crosses a ray in a beam; that ray will
hit an interior point of the polygon. So we conclude
that a polygon is normally visible if no beam hits its
interior.

2 Convex Characterization

Given a polygon P , a point q is called a dead point of
point p if a beacon at p does not move q. A dead point
of p is either a convex vertex or a point q in the interior
of an edge such that pq is perpendicular to the edge (see
Figure 4). In either case, pq is exterior to the polygon
in the neighborhood of q.

When a beacon is activated, all points end up either
at the beacon or at a dead point.

Figure 3 depicts an attraction-convex polygon.

Lemma 1 If a polygon is attraction-convex, then it is
normally visible.

Proof. Suppose this is not the case. Assume P is an
attraction-convex polygon, with q being a point on edge
e of P that is not normally visible. The outside ray r
starting at q perpendicular to e must encounter some
other point q′ on the boundary of P .

Now we note that, in P , q′ does not attract q. (q is a
dead point of q′.) This contradicts the assumption that
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P is attraction-convex. �

Lemma 2 If a polygon is normally visible, then it is
attraction-convex.

Proof. We prove the contrapositive: If a polygon P is
not attraction-convex, then it is not normally visible.

Since P is not attraction-convex, there are points p
and q in P such that p does not attract q. Acting under
attraction from p, the point q will arrive at a dead point
q′ of q, and become stuck there.

If the dead point is on the interior of an edge e of P ,
then the outside ray r from q′ perpendicular to e hits
p. The beam B(e) extends along e to both sides of q′,
which implies that for ε small enough, B(e) contains an
ε- neighborhood of p. Since any ε-neighborhood of p
contains interior points of P , the beam B(e) contains
interior points of P , implying that P is not normally
visible.

If the dead point q′ is a convex vertex of P , then let
e1 and e2 be the edges of P incident on q′. Let r1 be the
outside ray from q′ perpendicular to e1, and r2 be the
outside ray from q′ perpendicular to e2. In order for q′

to be a dead point, p must lie in the closed convex cone
from q′ bounded by r1 and r2.

However, p must be connected to q′ by a path interior
to P except possibly at p and q′. This path cannot reach
q′ directly from the cone, as the polygon is simple. Since
the path cannot go to infinity, as P does not, it must
cross either r1 or r2. So a beam of P contains a point
of the interior p, and P is not normally visible.

As these are the only two possibilities for the dead
point q′, the lemma is proved. �

We thus have:

Theorem 2.1 A polygon is attraction-convex iff it is
normally visible.

Corollary 3 In an attraction-convex polygon, every in-
terior angle is at most 3π/2.

3 Algorithm for recognizing attraction-convex poly-
gons

Before outlining the algorithm to recognize an
attraction-convex polygon, we first introduce some ter-
minology. Let P = v0, v1, . . . , vn−1 be the vertices of a
simple polygon ordered in counterclockwise order. All
indicies are manipulated modulo n. Let CH(P ) be the
convex hull of polygon P . Let vpvq be an edge of the
convex hull. If q is not p + 1, i.e. if vq is not the next
counterclockwise vertex on the boundary of P , we call
edge vpvq a pocket lid and the polygonal chain from
vp, . . . , vq on the boundary of P as the pocket chain. To-
gether, a pocket lid and the corresponding pocket chain

form the boundary of a simple polygon called a pocket
polygon.

Recall that a polygon is normally visible if for every
edge e, B(e) does not intersect the polygon boundary.
This means that for every edge e on a pocket chain, B(e)
intersects only the pocket lid. In fact, if pocket chain
edge e = ab, then B(e) ∩ CH(P ) results in a segment
a′b′ that is a subsegment of the pocket lid (where a′

is the intersection of the normal ray originating from
a with the pocket lid and b′ is the intersection of the
normal ray originating from b with the pocket lid.)

A terrain polygon is a monotone polygon Q that has a
distinguished edge e such that (1) Q is monotone with
respect to the direction of e, and (2) e is one of the
two monotone chains of Q in this direction. We call a
pocket chain Π = vp, . . . , vq a terrain with respect to its
lid vpvq if the corresponding pocket polygon is a terrain
polygon with distinguished edge vpvq. Equivalently, Π
is a terrain with respect to vpvq provided that for ev-
ery vertex vk ∈ Π, the line perpendicular to vpvq going
through vk, denoted by `(vk), intersects Π only at vk
and intersects the lid vpvq at a point v′k. Note that v′k
is the orthongonal projection of vk onto the pocket lid.
Moreover, the sequence v′p, v

′
p+1, . . . , v

′
q−1, v

′
q is a sorted

sequence.

Lemma 4 If a simple polygon P is normally visible,
then every pocket chain of P is a terrain with respect to
its pocket lid.

Proof. For sake of a contradiction, suppose that P
is normally visible and that there is a pocket chain
Π = vp, . . . , vq that is not a terrain with respect to its
pocket lid vpvq. Let Q be the corresponding pocket
polygon. If e ∈ Π, then the interior of the beam B(e),
in a neighborhood of e, is inside Q. Since the beam is
infinite, it must leave Q somewhere. Since P is nor-
mally visible, the beam cannot leave Q via any edge in
Π. Therefore the beam must leave Q via vpvq. This im-
plies that the angle between the normal of the convex
hull edge vpvq and the normal of (any) edge e of Π is
strictly less than π/2.

Without loss of generality, assume that vpvq is on the
X-axis with vp = v′p at the origin, and the polygon
above. If Π were a terrain with respect to vpvq, then
v′p, . . . , v

′
q would be an increasing sequence. (Here we

use v′ as a stand-in for the x-coordinate of v.) Since Π
is not a terrain with respect to vpvq, there must exist a
vertex vk, with k ∈ p+1, . . . , q−1}, such that v′k−1 and
v′k+1 are both greater than v′k or both are less than v′k
in the sequence.

Without loss of generality, assume that both v′k−1 and
v′k+1 are greater than v′k. This implies that either the
angle between the normal of vk−1vk and the normal of
vpvq is at least π/2 or the angle between the normal of
vkvk+1 and the normal of vpvq is at least π/2, which
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// Maintain a stack S of vertices. Initially, S is empty.
// Let k = |S| and let ck refer to the top element of S.
// ck−1 is the element below ck in the stack
ccwScan()

1 push(v0)
2 for i← 1 to n
3 while k 6= 1 and ck−1ckvi is a right turn do
4 pop()
5
6 // Now k = 1 or ck−1ckvi is not a right turn
7 push(vi)
8 if ck−1ckvi+1 is a right turn and

∠ck−1ckvi+1 < π/2 then
9 return false
10 if ck−1ckvi+1 is a left turn and

vi−1vivi+1 is a right turn then
11 return false
12 return true

Figure 5: The counterclockwise scan of the algorithm

is a contradiction since these two angles must both be
strictly less than π/2. �

Our algorithm for recognizing whether a polygon P
is attraction-convex consists of three major steps. The
first step is to compute the convex hull of P . The second
step is to verify that every pocket chain is a terrain with
respect to its lid. The third step consists of running a
specialized scan twice: once counterclockwise and once
clockwise. If either scan returns false then the polygon
is not attraction-convex; if both return true then the
polygon is attraction-convex.

The algorithm for the counterclockwise scan is shown
in Figure 5; the clockwise scan is symmetric. Here, v0 is
the leftmost top vertex of the polygon and vertices are
numbered sequentially in counterclockwise order.

At the end of each for loop iteration, the stack can be
viewed as a left-turning spiral chain starting at v0 and
ending at vi; this chain does not cross the polygonal
chain seen so far (v0, v1, . . . vi). The noncrossing prop-
erty implies that each edge cj−1cj of the spiral chain
is an edge of a (possibly degenerate) closed polygon Qj

whose boundary consists of that edge and the portion
of the boundary of the input polygon from cj to cj+1

(see Figure 6).

Theorem 3.1 The algorithm described above correctly
determines if an input polygon is attraction-convex in
O(n) time.

Proof. The first step can be computed in linear time
with Melkman’s linear time convex hull algorithm [13].
The second step can also be computed in linear time by
simply verifying that for every pocket chain vp, . . . , vq,
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Figure 6: The spiral chain c1, c2, . . . ck maintained in
the stack and the polygons Q1, Q2, . . . Qk−1. Note that
Q2 here is degenerate.

the sequence v′p, . . . , v
′
q appears in the same order. If

some pocket chain is not a terrain with respect to its
lid, then we stop, and Lemma 4 guarantees us that false
is the correct answer.

So suppose the algorithm proceeds to the third step
and then reports false. Without loss of generality, as-
sume that it is the counterclockwise scan that reports
false. If this was reported from line 9 of the algorithm,
then some angle ck−1ckvi+1 is right-turning and acute.
Since we have just pushed vi in line 7, ck = vi. Similar
to the proof of Theorem 3, we take a point p sufficiently
close to ck = vi on vivi+1, and the normal ray r from p
will intersect ck−1ck. If Qk−1 is degenerate, then this is
an intersection q with the polygon boundary. If it is not
degenerate, r enters Qk−1 and must exit Qk−1 at some
point q not on ck−1ck. The point q is an intersection
with the polygon boundary. In either case, the ray r
enters the interior of the polygon directly after it hits
the point q, so this polygon is not normally visible. (Or
attraction-convex, by Theorem 2.1.)

If instead the false was reported in line 11, we will
have a similar situation. If ck−1ckvi+1 is a left turn and
vi−1vivi+1 is a right turn, then the edge vivi+1 lies in
Qk−1 with polygon interior on the side closest to ck−1ck
(see Figure 7). If we let p be a point on the relative inte-
rior of vivi+1, and r be the normal ray from p, then the
ray r will leave Qk−1 at some point other than those on
ck−1ck. Immediately after exiting Qk−1, the ray r en-
counters a point in the interior of P . Thus the polygon
is not normally visible.

In either case, then, the algorithm is correct when it
reports false.

Now suppose the algorithm reports true from both
scans. Consider an arbitrary edge vjvj+1 of the poly-
gon. If vjvj+1 is a convex hull edge, then its beam does
not intersect the polygon interior. Otherwise, vjvj+1 is
an edge in a pocket chain with some pocket lid vpvq.
During the counterclockwise scan, after vj was pushed
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Figure 7: When ck−1ckvi+1 is a left turn and vi−1vivi+1

is a right turn, vivi+1 lies in Qk−1.

on the stack, the stack was a left-spiral chain from v0 to
vj , and the angle ck−1ckvj+1 was at least π/2. The con-
vex hull vertex vp is somewhere on the left-spiral chain.
Because the pocket chain is a terrain with respect to
vpvq, the vertices of the sub chain vp, vp+1, . . . vj−1, vj
all lie to the right of vjv

′
j where v′j is the projection of

vj onto vpvq (see Figure 8). In particular, this means
that this chain, and thus the left-spiral chain from v0,
cannot wind around vjvj+1. A similar argument using
the clockwise scan establishes that the right-spiral chain
from v0 reaches vj+1 without winding around vjvj+1.

 

vj+1 

vq 

vj  

vj’  

vp  

v0  

Figure 8: The subchain vp, vp+1, . . . , vj must lie in the
shaded region.

Refer now to Figure 9. Since the angle ck−1ckvj+1 was
at least π/2, the left-spiral chain from the counterclock-
wise scan may graze the boundary but not the interior
of the beam B(vjvj+1). Furthermore, as the beam gets
farther from vjvj+1, the left-spiral chain diverges from
the beam, and as it doesn’t wind, it cannot later in-
tersect the beam. Similarly, the right-spiral chain from
the clockwise scan may graze but not intersect the inte-
rior of the beam. The polygon P is contained entirely
by the polygon consisting of the left-spiral chain from v0
to vj , the edge vjvj+1, and the right-spiral chain from v0

to vj+1 (backwards). Thus the polygon P may intersect
the boundary but not the interior of B(vjvj+1). Finally,
since both P and the beam are closed, this means that
the beam (including its boundary) does not intersect
the interior of P .

Since we started with an arbitrary edge vjvj+1, and
(given that both scans return true) established that the
beam of that edge does not intersect the polygon inte-
rior, this means that all beams are free from such inter-
sections and the polygon is normally visible.

 

B(vjvj+1) 

vj+1 

vj  

v0  

Figure 9: The left-spiralling chain from v0 to vj , the
edge vjvj+1, and the right-spiralling chain from v0 to
vj+1 enclose P and can touch only the boundary of
B(vjvj+1).

Thus the algorithm is correct when it returns true,
and correct overall. During each of the scans of step
three, each vertex of the polygon is pushed onto the
stack once, and popped at most once, giving linear stack
manipulation. The condition of line 3 is checked once for
each pop (linear time) and once for each time through
the for loop (also linear time). The other conditions are
checked once per iteration of the for loop, giving linear
time for these, and linear time overall. �

4 Geodesic Convexity and Inverse-attraction-star
Shapes

In this section, we highlight a relationship between
geodesic convexity and inverse-attraction. This rela-
tionship allows us to give a Helly-type characterization
of Inverse-attraction star-shaped polygons.

4.1 Geodesic convexity

A set A ⊆ P is called geodesically convex relative to P
if, for all points p, q in A, the shortest path (geodesic)
Π(p, q) between p and q in P is contained in A. We
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will drop the phrase “relative to P” when the set P is
understood.

Geodesic convexity is transitive.

Lemma 5 If R is geodesically convex relative to Q, and
Q is geodesically convex relative to P , then R is geodesi-
cally convex relative to P .

Proof. Consider two points p, q in R. These points
are also in Q and P . Since Q is geodesically convex
relative to P , the shortest path Π(p, q) from p to q in
P is also the shortest path from p to q in Q. Since R
is geodesically convex relative to Q, Π(p, q) is also the
shortest path from p to q in R. �

Lemma 6 Let P1 and P2 be the two (closed) subpoly-
gons of P formed when P is cut by a chord C. Then P1

and P2 are geodesically convex with respect to P .

Proof. We prove this for P1. Let x, y be two points in
P1. We claim the shortest path Π(p, q) from p to q in P
stays in P1. If not, then there is a section of Π(p, q) in
P2 that enters P2 from some point r1 of C, and exits P2

to some point r2 of C. Replacing this section of Π(p, q)
with the straight line segment from r1 to r2 results in a
shorter path, which is a contradiction. �

Lemma 7 Let P ′ be a subpolygon of P produced by re-
peating the operation of cutting off a section of P with
a chord. Then P ′ is geodesically convex with respect to
P .

Proof. This follows directly from Lemmas 6 and 5. �

An et al. [1] established that geodesically-convex sets
in R2 have Helly number 3:

Theorem 4.1 (Geodesic-convexity Helly Theorem)
Let C be a collection of sets all geodesically convex with
respect to some compact base set S in R2. If every
triple of sets in C has an intersection point, then all
sets in C do.

4.2 Inverse-attraction Star-shaped Polygons

Lemma 8 Attraction polygons are geodesically convex.

Proof. As shown by Biro [3, Thm. 3.2.11], the attrac-
tion polygon of a point p in polygon P can be con-
structed by cutting several regions off of P , each region
bounded by a chord (a “split edge”). The result follows
from Lemma 7. �

Theorem 4.2 A polygon P is inverse-attraction star-
shaped iff for every triple of points p, q, and r in P ,
A(p) ∩A(q) ∩A(r) 6= ∅.

Proof. P is inverse-attraction star-shaped if there ex-
ists a point k, called a kernel point, that inverse-attracts
all points in P . This is the same as saying that k is in
A(p) for every p in P .

If P is inverse-attraction star-shaped with kernel
point k, then for every triple of points p, q, r in P , k
is in A(p) ∩A(q) ∩A(r).

On the other hand, if for every triple of points p, q, r
in P , A(p) ∩A(q) ∩A(r) 6= ∅, then the attraction poly-
gons triple-wise intersect. Since attraction polygons are
geodesically convex, we may then invoke the Geodesic-
convexity Helly Theorem to obtain a point k that is in
the intersection of all of the attraction polygons. �

We can simplify the conditions on the previous the-
orem to consider only triples of vertices rather than
triples of points, but first we require an additional type
of convexity, and a result.

A set Q ⊆ P is said to be convex with respect to P if,
for every pair of points p, q in Q, the line segment pq is in
P iff pq is in Q [3]. Biro showed that inverse-attraction
polygons are convex with respect to P .

Theorem 4.3 A polygon P is inverse-attraction star-
shaped iff for every triple of vertices u, v, and w in P ,
A(u) ∩A(v) ∩A(w) 6= ∅.

Proof. If P is inverse attraction star-shaped with ker-
nel point k, then for every triple of vertices u, v, w in P ,
k is in A(u) ∩A(v) ∩A(w).

Suppose now that for every triple of vertices u, v, w in
P , A(u) ∩ A(v) ∩ A(w) 6= ∅. By the geodesic-convexity
Helly theorem, there is a point k in the intersection of
all attraction polygons of vertices. We show that k is
also in the attraction polygon of every point in P .

Consider an arbitrary point p of P . The point p
resides in some triangle uvw of a triangulation of P .
A−1(k) includes u, v, and w. Since u, v, and w are pair-
wise visible, the entire triangle u, v, w is in A−1(k) by
Biro’s convexity relative to P . �

It is an open problem to determine if there are equiv-
alents of Theorems 4.2 and 4.3 for attraction as opposed
to inverse attraction.
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Abstract

We focus on two metric clusterings namely r-gather and
(r, ε)-gather. The objective of r-gather is to minimize
the radius of clustering, such that each cluster has at
least r points. (r, ε)-gather is a version of r-gather with
the extra condition that at most nε points can be left
unclustered (outliers).

MapReduce is a model used for processing big data.
In each round, it distributes data to multiple servers,
then simultaneously processes each server’s data.

We prove a lower bound 2 on the approximation factor
of metric r-gather in the MapReduce model, even if an
optimal algorithm for r-gather exists. Then, we give a
(4+δ)-approximation algorithm for r-gather in MapRe-
duce which runs in O( 1

δ ) rounds. Also, for (r, ε)-gather,
we give a (7 + δ)-approximation algorithm which runs
in O( 1

δ ) MapReduce rounds, for any constant δ > 0.

1 Introduction

Privacy is a fundamental concern in publishing data [7]
or providing input to untrusted programs [20]. One
of the privacy-preservation methods is k-anonymity
[21, 10], where given a table of records, the goal is to
change some attributes of some records such that each
record appears at least k times and the maximum dis-
tance between the modified and the original records
is minimized. Approximation algorithms with factors
O(1) for k = 2, 3 [1] and O(log k) for all k [19] exist.

When records are points in a metric space, the prob-
lem is called r-gather [2]. Aggarwal et al [2] introduced
the problem and gave a 2-approximation algorithm for
this problem and a matching lower bound, assuming
P 6= NP . Ene et al [13] proved the lower bound 1.8 for
Euclidean r-gather. If we allow nε points to be left un-
clustered (outliers), the problem is called (r, ε)-gather
and has a 4-approximation algorithm [2].

r-gather is formally defined in Definition 1.1. In the
rest of the paper, we denote {1, 2, · · · , n} with [n].

Definition 1.1 r-Gather problem clusters n points
p1, · · · , pn in a metric space into a set of clusters cen-
tered at C ⊂ {p1, · · · , pn}, such that each cluster has at

∗Department of Computer Engineering, Sharif Univer-
sity of Technology, Tehran, Iran aghamolaei@ce.sharif.edu,
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least r points. The objective is to minimize the maxi-
mum radius among the clusters (R).

• ∀i ∈ [n],∃c ∈ C, d(pi, c) ≤ R,

• ∀c ∈ C, |{pi : i ∈ [n], d(pi, c) ≤ R}| ≥ r.

Some related problems are k-center with lower bound
(LB k-center) with 3-approximation [4] and Euclidean
[13] algorithms, or both lower and upper bounds [12] (6-
approximation) on the number of points in each cluster.
In these problems, the number of clusters (k) and the
minimum number of points in each cluster (r) are given
and the goal is to minimize the radius (R). So, r-gather
with r = 1, k = n is k-center.

General frameworks for extending α-approximation
sequential algorithms to MapReduce via coresets with
approximation factors 32α [5] and αβ using a β-
approximation at the last step [15] with k-center as sub-
routine exist. Aghamolaei and Ghodsi [3] proved a cov-
ering algorithm can be used as the coreset for k-center.
Any covering with radius less than k-center has a lower
cost than r-gather, so it is a coreset for r-gather. Com-
puting a k-center on a MapReduce coreset for r-gather
extends our results to θ(nk )-balanced k-center (by set-
ting r = n

k ) and LB k-center. Using (r, ε)-gather in-
stead, solves k-center with outliers.

We give O(1)-approximation algorithms for r-gather
and (r, ε)-gather in MapReduce (see Table 1).

Table 1: Summary of results (k ≤ n
p , for p servers).

Conditions Rounds App. Refs
r-gather:
lower bound ≥ k 2 Thm. 1
- 2 16 Alg. 5
- O( 1

δ ) 4 + δ Alg. 4
(r, ε)-gather O( 1

δ ) 7 + δ Alg. 7
LB k-center:
θ(nk )-balanced O(1) 96 [5, 4], p = n

k
- O( 1

δ ) 16 + δ Alg. 4, [17]
- O( 1

δ ) 8 + δ Alg. 4, [15, 14]
θ(nk )-balanced O( 1

δ ) 8 + δ ”, r = n
k

lower bound ≥ k 2 Thm. 1
” (outliers):
- O( 1

δ ) 21 + δ Alg. 7, [15, 9]
- 2 52 [17, 2]
doubling dim. 2 12 + δ [8, 2]
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Computing an r-gather algorithm on a k-center with
outliers, or running a k-center with outliers [9] on (r, ε)-
gather both solve LB k-center with outliers.

2 Preliminaries

2.1 MapReduce

In the MapReduce model [11], data is distributed among
a set of independent servers. A MapReduce algorithm
runs in several rounds. In each round, servers process
their data locally and simultaneously. At the end of each
round, they communicate with each other by sending a
subset of their data to other servers. Two main theoreti-
cal models for MapReduce are MapReduce Class (MRC)
[16] and Massively Parallel Communication (MPC) [6].

In the MPC model, there are p servers, each with
memory m = O( N

p1−γ ) bits of data, where N is the in-

put size and γ ∈ [0, 1] is a parameter of the model. The
complexity of MPC algorithms is measured in the num-
ber of rounds and the communications between servers.

2.2 k-Center

Given a set of points, k-Center chooses k points as cen-
ters, minimizing the maximum distance from each point
to its nearest center. Greedy Min-Max (GMM) [14]
computes a 2-approximation of metric k-center (algo-
rithm 1). Algorithm 2 is a modified GMM that adds
centers until all points are covered with radius R.

Algorithm 1 GMM-k

Input: a set of points S, the number of clusters k
Output: a set of centers T , the cluster sizes {nc}c∈T

1: T = an arbitrary point p ∈ S
2: for i = 2, · · · , k do
3: find a point p ∈ S \T maximizing mint∈T d(p, t)
4: T ← T ∪ {p}
5: end for
6: assign each point to its nearest center from set T
7: nc = the number of points assigned to c
8: return T, {nc}c∈T

Algorithm 2 GMM-R

Input: a set of points S, the radius of clustering R
Output: a set of centers T , the cluster sizes {nc}c∈T

1: dist =∞, T = an arbitrary point p ∈ S
2: while dist ≥ R do
3: find a point p ∈ S \T maximizing mint∈T d(p, t)
4: T ← T ∪ {p}, dist← mint∈T d(p, t)
5: end while
6: assign each point to its nearest center from set T
7: nc = the number of points assigned to c
8: return T, {nc}c∈T

Algorithm 3 is a modification of the 4-approximation
MapReduce k-center algorithm of [18] that keeps the
order of finding centers.

Algorithm 3 Preprocess

Input: point-sets Pi for i ∈ [p], an integer k
Output: k centers

. parallel in all servers, do:
1: Ti = the centers returned by GMM-k (Pi) for i ∈ [p]
. sequentially in the first server, do:

2: (c1, · · · , ck) = the order of finding centers in GMM-
k (∪pi=1Ti)

3: return (c1, · · · , ck)

3 A Lower Bound For r-Gather In MapReduce

Theorem 1 There are no α-approximation r-gather
clusterings in MPC for α < 2 with less than k rounds,
where k is the number of clusters.

Proof. Let G be a graph whose vertices are grouped
into 2k subsets Ai ∈ A for i ∈ [k] and Bi ∈ B for i ∈ [k].
Each subset in A has l ∈ [ r2 , r) points and each subset
Bi ∈ B has at least r

2 points. Points inside each Ai ∈ A
have distance 1 from each other and points in Bi ∈ B
have distance 2. For each pair (Ai, Bi), i ∈ [k], there
is an optimal center in set Ai called oi with distance 1
from all points of Bi. All other edges have weight 2.
So the radius of r-gather is 1 if and only if Ai and Bi,
for i ∈ [k], form clusters Ai ∪ Bi with oi as the center,
see Figure 3. Also, assume all subsets Ai ∈ A are in
the same server and each subset Bi ∈ B is in a different
server, excluding the one containing subsets of A.

Let ALG be an r-gather algorithm. Since for each
i ∈ [k] points of Ai and Bi are not in the same server,
ALG cannot find oi knowing only A. To find oi ∈ Ai,
ALG needs all points of Ai and at least one point of Bi
to be in the same server. Since ALG cannot differentiate
between the points of Bj ∈ B without knowledge of A,
in the worst case, ALG has to send all points of Ai to
all servers to find oi, which takes one MPC round. This
will only give one point oi, if |Ai| = θ(m). So finding
the k optimal points requires at least k rounds. �

1

o1

A1

oi Ai

1

∈ B1

∈ Bi

1

1

1
2

2

i 6= 1

i 6= 1

Figure 1: A lower-bound for r-gather (Theorem 1)
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4 r-Gather in MapReduce

We propose an algorithm (Algorithm 4) for r-gather.
It first finds a lower bound on the optimal radius R
using Bounds(P) subroutine, which computes a 16-
approximation algorithm for r-gather (algorithm 5).

Then it multiplies the lower bound by factor 1 + δ
and tests the resulting radius with an r-gather decider
algorithm Decider(R,P) (algorithm 6) that finds an
r-gather of radius 4R if an r-gather of radius R exists,
otherwise it returns FAIL.

Algorithm 4 r-Gather 4-approximation

Input: P a set of points distributed in servers
Output: clusters

1: UB = Bounds(P ), R = UB
16

2: while R ≤ UB do
3: if Decider(R,P ) returns FAIL then
4: R← (1 + δ)R
5: else
6: return the output of Decider(R,P )
7: end if
8: end while

4.1 r-Gather Bounds

Algorithm 5 finds a O(1)-approximation for r-gather.
Assume k is chosen such that pk2 ≤ m. Preprocess()
is algorithm 3, which keeps the order of centers to guar-
antee |Ti| ≤ k,∀i ∈ [p]

Algorithm 5 Bounds

Input: point-sets Pi for i ∈ [p], a constant k ∈ N
Output: r-gather clusters

1: T = Preprocess({Pi}i∈[p], k + 1)
2: send T to all servers
. parallel in all servers:

3: C = ∅, j = 1
4: for j ∈ [k + 1] do
5: C ← C ∪ {cj}
6: assign points to their nearest center in C
7: n(i, c, j) = the sizes of clusters centered at c ∈ C
8: end for
9: send n(i, c, j) to the first server for i ∈ [p], j = [k +

1], c ∈ T
. sequentially in the first server, do:

10: find the minimum k′ ∈ [k+ 1] such that there exists
a center c ∈ T ,

∑p
i=1 n(i, c, k′) < r

11: return {c1, · · · , ck′−1}

Lemma 2 In algorithm 5, each cluster has at least r
points.

Proof. According to line 10 of the algorithm, k′ is the
first step that the number of points assigned to a center
becomes less than r. So, in step k′ − 1 each center in
{c1, · · · , ck′−1} has at least r points. �

Theorem 3 Algorithm 5 is a 16-approximation for r-
gather.

Proof. Based on Lemma 2, each cluster has at least r
points.

Consider a point s that was reassigned at step k′. Let
ci be the center of the cluster that contained s at step
k′−1. Since points are assigned to their nearest centers,
we have d(cj , s) ≤ d(ci, s), and using triangle inequality
d(ci, cj) ≤ d(ci, s) + d(cj , s). So, d(ci, cj) ≤ 2d(ci, s).

Each point ci ∈ C covers all points of the optimal
cluster containing ci, with radius 2R∗, where R∗ is the
radius of the optimal r-gather of S, i.e. d(ci, s) ≤ 2R∗.
Putting the two previous inequalities together gives the
bound d(ci, cj) ≤ 4R∗.

GMM-k adds the farthest point as a center each time,
so the cluster containing cj has the maximum radius R′

among the clusters. Let ck be the nearest center to
cj , i.e. d(ck, cj) ≤ d(ci, cj) for all i 6= k. Since cj is
assigned to its nearest center, R′ = d(ck, cj). So, we
have R′ ≤ 4R∗.

Algorithm 3 is a 4-approximation for k-Center, soR ≤
4R′, where R is the radius of k-Center from first round.
The last two inequalities yield R ≤ 4R′ ≤ 16R∗. �

In algorithm 5, for each server we send k2 numbers to
the first server, so there are pk2 ≤ m numbers in total.
Assuming pk2 ≤ m, algorithm 5 is in MPC.

4.2 r-Gather Decider

r-Gather decider takes R as input and gives an r-gather
clustering with radius 3R if an r-gather with radius R
exists, otherwise it returns FAIL. Assume the r-gather
bounds algorithm uses the order of adding centers in
GMM-k algorithm.

4.2.1 Cluster Re-assignments via Max. Flow

Two sets of clusters D and S with the number of points
assigned to them, and R an upper bound on the radius
of clustering are given. For each p ∈ D ∪ S, we denote
the number of points assigned to p with np. The goal is
to re-assign the points of set S to the centers of clusters
in D using a flow network.

Definition 4.1 Consider the graph G = (V,E) with
V = {s, t} ∪ D ∪ S and E = Es ∪ Em ∪ Et, where
Es, Em, Et are defined as follows:

• Es = {(s, v, r − nv) | v ∈ D}

• Em = {(u, v, nv) | u ∈ D, v ∈ S, d(u, v) ≤ R}

119



31st Canadian Conference on Computational Geometry, 2019

• Et = {(u, t, nu) | u ∈ S}

and where (u, v, c) denotes an edge from vertex u to ver-
tex v with capacity c.

Let MaxFlow(D,S, {nc}c∈D∪S ,R) be the function
that if the max. flow of G in the flow network of Def-
inition 4.1 is less than

∑
(u,v,c)∈Es c, returns (FAIL, ∅)

and otherwise returns (SUCCESS, {(u, v, c) ∈ Em}).
Figure 2 shows the original clustering, the flow net-

work and the clusters after re-assignment.

Algorithm 6 Decider

Input: point-sets Pi for i ∈ [p], radius R
Output: r-gather clustering or FAIL

. parallel in all servers, do:
1: Ti, {nc}c∈Ti = GMM-R (Pi, R) for i ∈ [p]
2: send Ti for i ∈ [p] to the first server
. sequentially in the first server, do:

3: D = centers with ≥ r points assigned to it
4: S = centers with < r points assigned to it
5: for cs ∈ S do
6: N(cs, R) = centers in radius of R of cs
7: if all centers c ∈ N(cs, 3R) are in S then
8: D ← D ∪ {cs}
9: end if

10: end for
11: (flag, E) = MaxFlow(D,S, {nc}c∈D∪S , 3R)
12: if flag = FAIL then
13: return FAIL
14: end if
15: send E to all servers
16: according to E, assign points to centers in D

. parallel in all servers, do:
17: return centers in set D and their assigned points

4.2.2 Analysis

Lemma 4 In algorithm 6, each cluster has at least r
points.

Proof. In the flow network of definition 4.1, there is an
edge with capacity r − ncd from node s to every center
cd ∈ D . From the definition of MaxFlow(., ., ., .) we
know the max. flow is r|D| −∑c∈D nc, which means cd
is assigned r−ncd new points. Since cd had ncd existing
assigned points, in total it has r assigned points. �

Theorem 5 Algorithm 6 is a 4-approximation decider.

Proof. Let C1, · · · , Ck be an r-gather of radius R for
∪iPi. GMM-R keeps at least one point from each cluster
Ci. For each point p assigned to cs, d(cs, p) ≤ R.

Each point p ∈ Ci covers all the points in Ci with
radius 2R, so either there is a point in D which covers
Ci or there are a set of points in S that cover Ci.

Now, we prove it is possible to reassign points us-
ing radius 3R such that each cluster has at least r
points. Let cd ∈ Ci and cs ∈ Cj , i 6= j be two points
in the output of GMM-R and d(oi, oj) ≤ 2R, where
oi, oj are the centers of Ci, Cj . Assume cs covers points
X ⊂ Cj with radius R, such that the number of points
assigned to cd becomes less than r. Then for all x ∈ X,
d(cd, cs) ≤ d(cd, x) + d(x, cs) ≤ 3R.

Line 8 guarantees there is a center in D for each Ci,
by adding a point of S to D if there are no points of D
with distance 3R from it.

By triangle inequality and the bounds on distances,
d(cd, p) ≤ d(cd, cs) + d(cs, p) ≤ 4R. �

Corollary 6 In theorem 5, for r = 1, radius 3R can be
replaced by 2R which gives a 3-approximation decider.

In algorithm 6, we send k points per server to the first
server, which is pk points in total. Since we assumed
pk2 ≤ m, algorithm 6 runs in the MPC model.

4.3 Analysis

Theorem 7 Algorithm 4 takes O( 1
δ ) rounds in MapRe-

duce and gives a (4 + δ)-approximation for r-gather.

Proof. According to algorithm 4, r-gather 4-
approximation algorithm runs r-gather bounds
once at line 1. By theorem 3, we know r-gather bounds
takes 2 rounds in MapReduce model. In algorithm 4
line 2, each while iteration runs algorithm 6 once. By
theorem 5, we know r-gather decision takes 2 rounds in
the MapReduce model. In line 2 the while statement
iterates at most O( 1

δ ) times, so in total the algorithm
takes O( 1

δ ) rounds in the MapReduce model.

Let R be the greatest radius for which r-gather de-
cider returns FAIL and R∗ be the optimal r-gather ra-
dius. According to theorem 5 and the fact that algo-
rithm 4 checks factors of 1 + δ, R ≤ R∗(1 + δ) and the
algorithm returns a clustering of radius 4R ≤ 4(1+δ)R∗.

By theorems 3 and 5, algorithms 5 and 6 are in the
MPC model. So, algorithm 4 runs in MPC, too. �

5 (r, ε)-Gather in MapReduce

In this section, we provide an algorithm that takes the
optimal radius R as input and finds a (r, ε)-gather clus-
tering of radius 7R if one exists, or returns FAIL oth-
erwise. Also, we give an algorithm for finding a lower
bound and an upper bound on the radius of clustering
(algorithm 8 denoted by (r, ε)-GLB(.)), which we then
use with a 7-approximation algorithm as its decision
subroutine to solve the problem.
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Figure 2: (a) a clustering, (b) the network flow of (a), and (c) a reassignment of points to centers for r = 10

Algorithm 7 (r, ε)-Gather

Input: A set of sets of points P , constants ε > 0, δ > 0
Output: clusters

1: R = (r, ε)−GLB(P )
2: while (r, ε)-Gather Decision(R,S) = FAIL do
3: R← (1 + δ)R
4: end while
5: return the output of algorithm 9

5.1 (r, ε)-Gather Lower-Bound ((r, ε)-GLB)

The inputs are a set of points distributed among a set of
servers and a parameter ε that means at most nε points
can be left unclustered. Assume we choose k such that
pk2 ≤ m, and k is greater than the number of clusters in
the optimal (r, ε)-gather. In the first round of algorithm
9, we use algorithm 3.

Lemma 8 The value returned by algorithm 8 is a lower
bound within a constant factor of the optimal radius of
(r, ε)-gather.

Proof. In line 18 of algorithm 8 the algorithm termi-
nates if the points assigned to the centers in L become
more than nε. Let outlier candidates (set OC) be the
set of centers in L and their assigned points. Since
|OC| > nε, there is a point p ∈ OC that must be clus-
tered. Suppose the nearest center to p is a center called
c, then we have d(c, p) ≤ Rc

2 . Since c ∈ L, we know c
does not have r points within radius of Rc. For each
point q outside the radius Rc around c, by triangle in-
equality, we have d(c, q) ≤ d(c, p) + d(p, q). So we have
Rc ≤ Rc

2 + d(p, q) and Rc
2 ≤ d(p, q). So p does not have

more than r points within radius Rc
2 . We know in any

(r, ε)-gather clustering with radius R′ each point can
cover all points of its cluster with radius 2R′. Since p
must be clustered in the optimal (r, ε)-gather clustering,
the cluster contains p cannot have radius less than Rc

4 .

So we have R∗ ≥ Rc
4 where R∗ is the optimal radius. �

Algorithm 8 (r, ε)-GLB

Input: point-sets Pi for i ∈ [p], constants ε > 0, k ∈ N
Output: lower bound for (r, ε)-gather clustering

1: T = Preprocess({Pi}i∈[p], k)
2: send centers in T to all servers
. parallel in all servers, do:

3: C = ∅
4: for j ∈ [k] do
5: C ← C ∪ {cj}
6: assign each point to its nearest center c ∈ C
7: Rc = the radius of the cluster centered at c
8: n(i, c, R, j) = the number of input points within

distance R of c in server i
9: end for

10: send set C with {n(i, c, Rc, j)} and {n(i, c, Rc2 , j)}
for i ∈ [p], j ∈ [k], c ∈ C to the first server
. sequentially in the first server, do:

11: CT = ∅, L = ∅
12: for j ∈ [k] do
13: n(c,R, j) =

∑p
i=1 n(i, c, R, j) for c ∈ CT

14: CT ← CT ∪ {cj}
15: if n(cj , Rc, j) < r then
16: L← L ∪ {cj}
17: end if
18: if

∑
c∈L n(c, Rc2 , j) > nε then

19: break
20: end if
21: end for
22: R = minc∈CTRc
23: return R

4

5.2 (r, ε)-Gather Decision

The inputs are R, the radius of (r, ε)-gather clustering,
and ε, a parameter which indicates at most nε points
can be left unclustered. (r, ε)-Gather decision algorithm
gives an (r, ε)-gather with radius 7R, if there exists a
(r, ε)-gather clustering with radius R, and returns FAIL
otherwise.
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Algorithm 9 (r, ε)-Gather Decision

Input: point-sets Pi for i ∈ [p], radius R, a constant ε
Output: (r, ε)-Gather clustering or FAIL

. parallel in all servers, do:
1: Ti, {nc}c∈Ti = GMM-R (Pi, R)
2: assign points in Pi to their nearest center in Ti
3: send sets Ti along with {nc}c∈Ti to the first server
. sequentially in the first server, do:

4: for c ∈ ∪pi=1Ti do
5: N(c,R) = centers within radius R of c
6: if

∑
q∈N(c,3R) nq < r then remove c and the

points assigned to c as outliers
7: if the number of outliers exceeds εn then re-

turn FAIL
8: end for
9: D = ∅, S = ∅, U = ∪pi=1Ci

10: for cu ∈ U do
11: NU (c,R) = U ∩N(c,R)
12: n(NU (c,R)) =

∑
t∈NU (c,R) nt

13: if n(NU (cu, 3R)) ≥ r then
14: U ← U \NU (cu, 3R)
15: D ← D ∪ {cu}
16: S ← S ∪ (NU (cu, 3R) \ {cu})
17: end if
18: end for
19: (flag, E) = MaxFlow(D,S, {nc}c∈D∪S , 3R)
20: if flag = FAIL then return FAIL
21: send E to all servers

. parallel in all servers, do:
22: reassign the points of S to D based on E
23: reassign the points assigned to centers in U to their

nearest center in D
24: return centers in set D and their assigned points

Lemma 9 All the clustered points in the optimal (r, ε)-
gather will also be clustered by algorithm 9, for R ≥ R∗,
where R∗ is the optimal radius of (r, ε)-gather.

Proof. Based on line 6 of algorithm 9, centers with less
than r points within radius 3R of themselves are out-
liers. Let c be a center that was removed as an outlier,
and p be a point assigned to c, so p has also been re-
moved as an outlier.

For any point q with d(c, q) ≥ 3R, the triangle in-
equality gives d(c, q) ≤ d(c, p) +d(p, q), and line 1 guar-
antees d(c, p) ≤ R. So, d(p, q) ≥ 2R. This means in
any (r, ε)-gather, points p and q cannot belong to the
same cluster. Since c has less than r points within dis-
tance 3R of itself, no point with distance R from c can
be clustered in the optimal (r, ε)-gather. So, any point
that is clustered by the optimal solution is also clustered
by the algorithm. �

Theorem 10 The approximation factor of (r, ε)-gather
is 7.

Proof. In the flow network of line 19, there are only
edges between dense centers cd ∈ D and sparse centers
cs ∈ S, if d(cd, cs) ≤ 3R. So, cd can only get new points
from points cs ∈ S of distance at most 3R from it. Let
p be a point assigned to cs, with d(cs, p) ≤ R. By
triangle inequality, d(cd, p) ≤ d(cd, cs) + d(cs, p) ≤ 4R.
Therefore, all centers cs ∈ S and their assigned points
can be clustered with radius 4R and with cd as center.

Consider an unclustered center cu ∈ U . If cu has less
than r points with distance at most 3R, it gets removed
at line 6. After lines 13-16, some of the points with
distance 3R of cu must have been assigned to other
centers to make cu an unclustered center. Since the
points assigned to a dense center are marked as sparse,
then there are only sparse centers within distance 3R
of cu. Based on line 23, cu is assigned to its closest
sparse center cs. From line 16, there is a dense cen-
ter with distance at most 3R from cs. By triangle in-
equality, d(cd, cu) ≤ d(cd, cs) + d(cs, cu) ≤ 6R. Let p
be a point assigned to cu, so using triangle inequality,
d(cd, p) ≤ d(cd, cu) + d(cu, p) ≤ 7R. �

We send at most k points per server to the first server,
which is at most pk points in total. So, for pk2 ≤ m,
algorithm 9 follows the memory constraints of MPC.

5.3 Analysis

Theorem 11 Algorithm 7 takes O( 1
δ ) MapReduce

rounds and gives a (7 + δ)-approximation (r, ε)-gather.

Proof. According to line 1, (r, ε)-gather algorithm runs
(r, ε)-GLB once. Algorithms 8 and 9 each take 2 rounds
in the MapReduce model. In line 2, the while loop
iterates at most O( 1

δ log OPT
LB ) times, for LB = (r, ε)-

GLB(P ). So, the total round complexity of the algo-
rithm is O( 1

δ ).
Let R be the maximum radius for which (r, ε)-gather

decision algorithm returns FAIL, and R∗ be the optimal
radius of (r, ε)-gather. By theorem 10, and the fact
that we multiply R by a factor 1 + δ each time, the
approximation factor of the algorithm is 7(1 + δ). �

6 Conclusion and Open Problems

We gave O(1)-approximation algorithms for two min-
imum radius covering problems with lower bounds on
the number of members per cluster in MapReduce. Un-
like most MapReduce capacitated clustering algorithms
that are based on linear programming, our algorithm
uses maximum flow.

Improving the round complexity or the approxima-
tion factor of our algorithm and removing the assump-
tion k ≤ m to improve scalability remain open. Proving
similar results for other clusterings with `p-based costs
such as k-means and k-median is also interesting.
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Peeling Digital Potatoes

Löıc Crombez Guilherme D. da Fonseca Yan Gérard ∗

Abstract

The potato-peeling problem (also known as convex
skull) is a fundamental computational geometry prob-
lem that consist in finding the largest convex shape in-
side a given polygon. The fastest algorithm to date
runs in O(n8) time for a polygon with n vertices that
may have holes. In this paper, we consider a digital
version of the problem. A set K ⊂ Z2 is digital con-
vex if conv(K) ∩ Z2 = K, where conv(K) denotes the
convex hull of K. Given a set S of n lattice points, we
present polynomial time algorithms for the problems of
finding the largest digital convex subset K of S (digi-
tal potato-peeling problem) and the largest union of two
digital convex subsets of S. The two algorithms take
roughly O(n3) and O(n9) time, respectively. We also
show that those algorithms provide an approximation
to the continuous versions.

1 Introduction

The potato-peeling problem [24] (also known as convex
skull [35]) consists of finding the convex polygon of max-
imum area that is contained inside a given polygon (pos-
sibly with holes) with n vertices. The fastest exact algo-
rithm known takes O(n7) time without holes and O(n8)
if there are holes [12]. The problem is arguably the
simplest geometric problem for which the fastest exact
algorithm known is a polynomial of high degree and this
high complexity motivated the study of approximation
algorithms [11, 26]. Multiple variations of the problem
have been considered, including triangle-mesh [1] and
orthogonal [19, 36] versions. In this paper, we consider
a digital geometry version of the problem.

Digital geometry is the field of mathematics that
studies the geometry of points with integer coordinates,
also known as lattice points [28]. Different definitions of
convexity in Z2 have been investigated, such as digital
line, triangle, line [27], HV (for Horizontal and Verti-
cal [4]), and Q (for Quadrant [17]) convexities. These
definitions guarantee that a digital convex set is con-
nected (in terms of the induced grid subgraph), which
simplifies several algorithmic problems.

Throughout this paper, however, we use the main and
original definition of digital convexity from the geometry

∗Université Clermont Auvergne and LIMOS, Clermont-
Ferrand, France
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Figure 1: (a) Input lattice set S. (b) Largest digital
convex subset of S (Problem 1). (c) Largest union of
two digital convex subsets of S (Problem 2).

of numbers [25]. A set of lattice points K ⊂ Zd is digital
convex if conv(K) ∩ Zd = K, where conv(K) denotes
the convex hull of K. This definition does not guar-
antee connectivity of the grid subgraph, but provides
several other important mathematical properties, such
as being preserved under certain affine transformations.
The authors recently showed how to efficiently test dig-
ital convexity in the plane [15]. A natural question is to
determine the largest digital convex subset.

The digital potato-peeling problem is defined as follows
and is illustrated in Figure 1(a,b).

Problem 1 (Digital potato-peeling) Given a set
S ⊂ Z2 of n lattice points described by their coordinates,
determine the largest set K ⊆ S that is digital convex
(i.e., conv(K) ∩ Z2 = K), where largest refers to the
area of conv(K).

Our algorithms can easily be modified to maximize
the number of points in K instead of the area of
conv(K). Compared to the continuous version, the dig-
ital geometry setting allows us to explicitly represent
the whole set of input points, instead of limiting our-
selves to polygonal shapes with polygonal holes. Note
that the input of the continuous and digital problems
is intrinsically different, hence we cannot compare the
complexity of the two problems. Related continuous
problems have been studied, such as the maximum vol-
ume of an empty convex body amidst n points [18], or
the optimal island problem [6, 22], in which we are given
two sets Sp, Sn ⊂ R2, and the goal is to determine that
largest subset K ⊆ Sp such that conv(K) ∩ Sn = ∅.

Heuristics for the digital potato-peeling problem have
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been presented in [10, 13], but no exact algorithm was
known. We solve this open problem by providing the
first polynomial-time exact algorithm.

We also solve the question of covering the largest area
with two digital convex subsets. The problem is defined
as follows and is illustrated in Figure 1(a,c).

Problem 2 (Digital 2-potato peeling) Given a set
S ⊂ Z2 of n lattice points described by their coordinates,
determine the largest set K = K1 ∪ K2 ⊆ S such that
K1 and K2 are both digital convex, where largest refers
to the area of conv(K1) ∪ conv(K2).

A related continuous problem consists of completely
covering a polygon by a small number of convex poly-
gons inside of it. O’Rourke showed that covering a poly-
gon with the minimum number of convex polygons is
decidable [29, 30], but the problem has been shown to
be NP-hard with or without holes [16, 31]. Shermer [34]
presents a linear time algorithm for the case of two con-
vex polygons and Belleville [8] provides a linear time
algorithm for three. We are not aware of any previ-
ous results on finding a fixed (non-unit) number of con-
vex polygons inside a given polygon and maximizing the
area covered.

Our results

We present polynomial time algorithms to solve each of
these two problems. In Section 2, we show how to solve
the digital potato-peeling problem in O(n3 + n2 log r)
time, where r is the diameter of the input S. We adapt
an algorithm designed to solve the optimal island prob-
lem [6, 22]. This algorithm builds the convex polygon
conv(K) through its triangulation. We use Pick’s theo-
rem [32] to test digital convexity for each triangle and
the O(log r) factor in the running time comes from the
gcd computation required to apply Pick’s theorem. The
algorithm makes use of the following two properties: (i)
it is possible to triangulate K using only triangles that
share a common bottom-most vertex v and (ii) if the
polygons lying on both sides of one such triangle (in-
cluding the triangle itself) are convex, then the whole
polygon is convex.

These two properties are no longer valid for Prob-
lem 2, in which the solution conv(K1) ∪ conv(K2) is
the union of two convex polygons. Also, since convex
shapes are not pseudo-disks (the boundaries may cross
an arbitrarily large number of times), separating the in-
put with a constant number of lines is not an option.
Instead of property (i), our approach uses the fact that
the union of two (intersecting) convex polygons can be
triangulated with triangles that share a common vertex
ρ (that may not be a vertex of either convex polygon).
Since ρ may not have integer coordinates, we can no
longer use Pick’s theorem, and resort to the formulas

from Beck and Robins [7] or the algorithm from Barvi-
nok [5] to count the lattice points inside each triangle
in O(polylog r) time.

Furthermore, to circumvent the fact that the solution
no longer obeys property (ii), we use a directed acyclic
graph (DAG) that encapsulates the orientation of the
edges of both convex polygons. For those reasons, the
running time of our algorithm for Problem 2 increases
to O(n9 + n6 polylog r). The corresponding algorithm
is described in Section 3.

In Section 4, we show that a solution to the digital
version of the problems provides an approximation to
the continuous versions, establishing a formal connec-
tion between the continuous and digital versions.

Reducing the complexity of our algorithms or extend-
ing the result to higher numbers of convex polygons re-
main intriguing open questions, which are discussed in
Section 5. Throughout, we assume the RAM model of
computation, in which elementary operations on the in-
put coordinates take constant time.

2 Digital Potato Peeling

In this section, we present an algorithm to solve the
digital potato-peeling problem in O(n3 +n2 log r) time,
where n is the number of input points and r is the di-
ameter of the point set.

Fischer [22] and Bautista et al. [6] showed how to solve
the following related problem in O(n3) time, where n is
the total number of points.

Problem 3 (Optimal Island) Given two sets
Sp, Sn ⊂ R2, determine the largest subset K ⊆ Sp such
that conv(K) ∩ Sn = ∅.

The potato peeling problem 1 for an input S ⊂ Z2 is
the optimal island problem with Sp = S and Sn = Z2 \
Sp. Restricting the problem to the bounding box of Sp,
makes Sn finite as |Sn| = O(r2). The resulting O(r6)
complexity being very large relative to r, we do not
use this direct approach. Nevertheless, the algorithm
provides some key insights.

The algorithm consists of two phases. First, a list
T of all valid triangles is computed. A triangle 4 is
said to be valid if its vertices are a subset of Sp and if
4 ∩ Sn = ∅. Second, using T and the fact that every
convex polygon has a fan triangulation in which all the
triangles share a common bottom vertex, the solution is
computed by appending valid triangles using dynamic
programming. In order to adapt this algorithm to solve
the digital potato peeling, it suffices to compute the list
of valid triangles T .

2.1 Valid Triangles

For any triangle whose vertices are lattice points4, and
any digital set S: |4 ∩ S| = |4 ∩ Z2| implies that 4 is
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valid. As in [6], we use the following result of Eppstein
et al. [20] to compute |4 ∩ S|.
Theorem 1 Let S be a set of n points in the plane.
The set S can be preprocessed in O(n2) time and space
in order to, for any query triangle 4 with vertices in S,
compute the number of points |4∩ S| in constant time.

In order to compute |4 ∩ Z2|, first, for all pairs of
points p1, p2 ∈ S, we compute the number of lattice
points lying on the edge p1p2 using a gcd computation.
This takes O(n2 log r) time, where r is the diameter
of S. Now, using Pick’s formula [32] which requires to
compute both area(4) and the number of lattice points
lying on the edges of 4, we determine in O(1) time the
validity of a triangle. Since there are O(n3) triangles
with vertices in S, the list T of all valid triangles is
computed in O(n3 + n2 log r) time. Using T , the algo-
rithm of Bautista et al. [6] determines the largest convex
polygon formed by triangles in T in O(n3) time. Hence,
we have the following theorem.

Theorem 2 There exists an algorithm to solve Prob-
lem 1 (digital potato peeling) in O(n3 + n2 log r) time,
where n is the number of input points and r is the di-
ameter of the input.

3 Digital 2-Potato Peeling

In this section, we show how to find two digital con-
vex sets K1,K2, maximizing the area of conv(K1) ∪
conv(K2). We note that the solution described in this
section can easily be adapted to solve the optimal 2-
islands problem:

Problem 4 (Optimal 2-Islands) Given two sets
Sp, Sn ⊂ R2, determine the largest union of subsets
K1 ∪ K2 such that K1 ∪ K2 ⊆ Sp, conv(K1) ∩ Sn = ∅
and conv(K2) ∩ Sn = ∅.

Consider a solution of the digital 2-potato peeling
problem. Either the two convex hulls intersect or they
do not (Figure 2). We treat those two cases separately
and the solution to Problem 2 is the largest among both.
Hence, we consider the two following variations of the
2-potato-peeling problem.

Problem 5 (Disjoint 2-potato peeling) Given a
set S ⊂ Z2 of n lattice points given by their coordi-
nates, determine the largest two digital convex sets
K1 ∪K2 ⊆ S such that conv(K1) ∩ conv(K2) = ∅.
Problem 6 (Intersecting 2-potato peeling)
Given a set S ⊂ Z2 of n lattice points given by
their coordinates, determine the largest union of
two digital convex sets K1 ∪ K2 ⊆ S such that
conv(K1) ∩ conv(K2) 6= ∅. In this case, largest means
the maximum area of conv(K1) ∪ conv(K2).

(a) (b)

Figure 2: (a) The two optimal sets intersect. (b) The
two optimal sets are disjoint and there is a supporting
separating line.
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Figure 3: (a) A fan triangulation of two intersecting
convex polygons from a point ρ. (b) Definitions used to
solve Problem 7.

3.1 Disjoint Convex Polygons

Any two disjoint convex shapes can be separated by
a straight line. Moreover two convex polygons can be
separated by a supporting line of an edge of one of the
convex polygons (Figure 2(b)).

For each ordered pair of distinct points p1, p2 ∈ S, we
define two subsets S1, S2. The set S1 contains the points
on the line p1, p2 or to the left of it (according to the
direction p2 − p1). The set S2 contains the remaining
points.

For each pair of sets S1, S2, we independently solve
Problem 1 for each of S1 and S2. Since there are O(n2)
pairs and each pair takes O(n3 +n2 log r) time, we solve
Problem 5 in O(n5 + n4 log r) time.

3.2 Intersecting Convex Polygons

The more interesting case is when the two convex poly-
gons intersect (Problem 6). Note that it is possible to
triangulate the union of two convex polygons that share
a common boundary point ρ using a fan triangulation
around ρ (Figure 3). Hence we consider the following
rooted version of the problem.

Problem 7 (Rooted 2-potato peeling) Given a set
S ⊂ Z2 of n lattice points represented by their coordi-
nates and two edges e1, e2 ∈ S2 that cross at a point
ρ, determine the largest union of two digital convex sets
K1,K2 ⊆ S such that e1 is an edge of conv(K1) and e2
is an edge of conv(K2).

Let ρ be the intersection point of e1, e2. The strategy
of the algorithm to solve Problem 7 is to encode the
problem into a DAG (V,E) whose longest directed path
corresponds to the desired solution. To avoid confusion,
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we use the terms node and arc for the DAG and keep
the terms vertex and edge for the polygons. It is well
known that the longest directed path in a DAG (V,E)
can be calculated in O(|V |+ |E|) time [33].

Let T be the set of valid triangles with two ver-
tices from S and ρ as the remaining vertex. The nodes
V = T 2∪{v0} are ordered pairs of valid triangles and a
starting node v0. The number of nodes is |V | = O(n4).
Before we define the arcs, we give an intuitive idea of
our objective.

Each node (41,42) ∈ V is such that 41 (resp. 42)
is used to build the fan triangulation of conv(K1) (resp.
conv(K2)). The arcs will be defined in a way that, at
each step as we walk through a path of the DAG, we
add one triangle to either conv(K1) or to conv(K2).
The arcs enforce the convexity of both conv(K1) and
conv(K2). Furthermore, we enforce that we always ap-
pend a triangle to the triangulation that is the least ad-
vanced of the two (in clockwise order), unless we have
already reached the last triangle of conv(K1). This last
condition is important to allow us to define the arc
lengths in a way that corresponds to the area of the
union of the two convex polygons. Figure 4 illustrates
the result of following a path on the DAG.

The edge e1 (respectively, e2) from the problem input
defines two halfplanes, one on each side. Let H1 (resp.
H2) be the halfplane that contains K1 (resp. K2). We
have not yet determined K1 or K2, but all four possibili-
ties of halfplanes may be tried independently. From now
on, we only consider the O(n) points of S lying in the
region H1∪H2. Let p1, . . . , pn be the points of S sorted
clockwise around ρ, breaking ties arbitrarily. The edge
e1 (resp. e2) has p1 (resp. pn) as a vertex. We define
the indices a < b such that e1 = (p1, pb), e2 = (pa, pn)
(Figure 3).

We are now ready to define the set E of arcs of the
DAG. There are three types of arcs. The type-0 arcs
start from the initial node v0 to (41,42) if p1 is a ver-
tex of 41 and pa a vertex of 42. These two triangles of
vertices ρ, p1, pj with j > 1 and ρ, pa, pv with v > a are
respectively bounded by the edges e1 and e2. They ini-
tialize the triangulations of our two polygons conv(K1)
and conv(K2). There are O(n2) type-0 arcs.

A type-1 arc corresponds to advancing the triangula-
tion of conv(K1), while a type-2 arc corresponds to ad-
vancing the triangulation of conv(K2). There are O(n)
type-1, 2 arcs coming out of each node. A type-1 arc
goes from (41,42) to (43,42) if:

• the quadrilateral 41 ∪43 is convex,

• 41 has vertices ρ, pi, pj with i < j < b,

• 42 has vertices ρ, pu, pv with a ≤ u < v,

• 43 has vertices ρ, pj , pk with j < k ≤ b,
• and j ≤ v.

ρ ρ

(a) (b)

p1

pb

e1
pa

e2

pn

ρ

(c) (d)

ρ

p1

e1e2

(e)

ρ

(f)

ρ

(g) (h)

ρ ρ

pb

e1 e2

pn

Figure 4: Steps of the algorithm from Section 3.2. Fig-
ure (a) represents the solution, while Figures (b) to (h)
represent the triangulation obtained at each node of a
path. The newly covered area that is assigned as the
length of the corresponding arc is marked. In (b), we
have the initial pair of edges e1, e2 which corresponds
to the starting vertex v0. After following a type-0 arc,
a first pair of triangles with vertices p1 and pa is ob-
tained in (c). The triangle 41 is brown and triangle 42

yellow. From (c) to (d), we follow a type-1 arc. The
triangle 41 (less advanced than triangle 42) advances.
From (d) to (e), we follow a type-2 arc, since triangle42

is less advanced. From (e) to (f) we have again a type-2
arc, and from (f) to (g) we have a type-1 arc. In (g),
the triangle41 has reached the final node pb and cannot
advance anymore. We have only type-2 arcs to follow
until 42 reaches pn, at a node in V1.

Similarly, there is a type-2 arc from (41,42) to
(41,44) if:

• the quadrilateral 42 ∪44 is convex,

• 41 has vertices ρ, pi, pj with i < j ≤ b,

• 42 has vertices ρ, pu, pv with a ≤ u < v,

• 44 has vertices ρ, pv, pw with v < w,
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• and either v ≤ j or j = b.

The length of each arc corresponds to the area of the
new region covered by appending a new triangle by fol-
lowing the arc. Therefore, the length of a type-0 arc
from v0 to (41,42) is the area of 41 ∪42. The length
of a type-1 arc from (41,42) to (43,42) is defined as
the area of 43 \ 42. Similarly, the length of a type-2
arc from (41,42) to (41,44) is defined as the area of
44 \ 41.

We define a set of end nodes V1 as follows. A node
(41,42) is an end node if pb is a vertex of 41 and pn
is a vertex of 42. The construction of the DAG allows
us to prove the following lemma.

Lemma 3 There is a bijection between the directed
paths of the DAG (V,E) (starting from v0 and ending in
V1) and the digital convex sets K1,K2 ⊂ S such that e1
is an edge of conv(K1) and e2 is an edge of conv(K2).
Furthermore, the length of each path is equal to the cor-
responding area of conv(K1) ∪ conv(K2). (We assume
that K1 (resp. K2) lie above the supporting line of e1
(resp. e2).)

Proof. First we show that the existence of two digital
convex sets K1,K2 ⊂ S as in the lemma statement im-
plies the existence of a directed path in the DAG as in
the lemma statement. Let K1 (resp. K2) be two convex
sets lying above the supporting line of e1 (resp. e2).
Both conv(K1) and conv(K2) contain ρ as a boundary
point and hence can be triangulated from ρ. It is easy
to see that there is a path corresponding to this trian-
gulation. Next, we show that the converse also holds.

The definition of the arcs is such that advancing
through one of them adds a triangle to one of the two
polygons while preserving convexity, which ensures that
all paths correspond to convex polygons. Furthermore,
the starting node ensures that the two convex polygons
respectively start from p1 and pa, while the set of end-
ing nodes ensure that the two convex polygons respec-
tively end at pb and pn. Hence all paths from v0 to V1
correspond to two convex polygons that fit the lemma
statement, one from edge e1 = p1, pb and one from edge
e2 = pa, pn. The validity test on each triangle ensures
that the paths describes digital convex sets.

The definition of the arcs enforces that we only move
forward the least advanced triangle, that is the trian-
gle that has the minimum maximum index among its
vertices. The only exception is when conv(K1) is com-
pleted, that is the triangle with vertex pb has been added
to its triangulation. This ensures that the new area cov-
ered by a type-1, 2 arc is simply the set theoretic differ-
ence of two triangles (instead of a triangle and an arbi-
trary convex object). As the length of the arcs is defined
as the area of the difference of the two triangles, the to-
tal length of the path is equal to the area of the union

of the two convex polygons. Hence each path from v0
to V1 describe two digital convex sets K1,K2 ∈ S such
that e1 is an edge of conv(K1) and e2 is an edge of
conv(K2), and the length of each path is equal to the
corresponding area of conv(K1) ∪ conv(K2). �

Theorem 4 There exists an algorithm to solve Prob-
lem 2 (digital 2-potato peeling) in O(n9 + n6 polylog r)
time, where n is the number of input points and r is the
diameter of the input.

Proof. As explained in Section 3.1, solving the disjoint
case (Problem 5) takes O(n5 + n4 log r) time. Next, we
show how to solve the rooted intersecting case (Prob-
lem 7) in O(n5+n2 polylog r) time, proving the theorem.

Assume without loss of generality that K1,K2 are re-
spectively above the supporting lines of e1, e2 (all four
possibilities may be tried independently). Our algo-
rithm starts by computing the DAG (V,E) with O(n4)
nodes, each representing a pair of triangles. Since each
node has at most O(n) incoming arcs, the number of
arcs is O(n5). Hence the longest path can be found in
O(n5) time.

To build the set of nodes V , we need to test the va-
lidity of O(n2) triangles. Since ρ may not be a lat-
tice point, Pick’s theorem [32] cannot be used. Still,
ρ is a rational point with denominators bounded by
O(r2). Hence, we can use either the formulas from
Beck and Robins [7] or the algorithm from Barvinok [5]
to calculate the number of lattice points |T ∩ Z2| in-
side each triangle T in O(polylog r) time. As in Sec-
tion 2, we compute |T ∩S| using a triangle range count-
ing query, which takes O(log n) time after preprocessing
S in O(n2) time [14]. The triangle is valid if and only
if |T ∩ Z2| = |T ∩ S|. The two steps to test the validity
of a triangle take O(polylog r) and O(log n) time. Since
the diameter r of n lattice points is Ω(

√
n), the domi-

nating term is O(polylog r). Hence, we test the validity
of each triangle in O(polylog r) time, which gives a total
time of O(n2 polylog r) to build the list of valid triangles
required to build V .

Consequently, we solve Problem 7 in O(n5 +
n2 polylog r) time. To obtain a solution to Problem 2,
we note that there are O(n2) candidates for the edge
e1, as well as for the edge e2. Testing all O(n4) possi-
ble edges e1, e2, we achieve the claimed running time of
O(n9 + n6 polylog r) time. �

4 From Digital to Continuous

In this section, we show that the exact algorithms for the
digital potato-peeling problem and the digital 2-potato-
peeling problem can be used to compute an approxi-
mation of the respective continuous problems with an
arbitrarily small approximation error. For simplicity, we
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focus on the potato-peeling problem, but the 2-potato-
peeling case is analogous. We note that the reduction
presented here does not lead to efficient approximation
algorithms and is presented only to formally connect the
continuous and digital versions of the problem.

Problem 8 (Continuous potato-peeling) Given a
polygon P (that may have holes) of n vertices, deter-
mine the largest convex polygon K ⊆ P , where largest
refers to the area of K.

We start with some definitions. Let KC be the poly-
gon of the optimal solution to the continuous problem
above and AC be the area of KC . Given an approxi-
mation parameter ε > 0, we show how to obtain a set
of lattice points S ⊆ P such that the area AD of the
convex hull of the solution KD of Problem 1 with in-
put S satisfies |AC − AD| = O(rε). In this section, we
use lattice points that are not integers, but points with
coordinates that are multiples of ε. Let Λε denote the
set of all points with coordinates that are multiple of
ε. Of course, a uniform scaling maps Λε to the integer
lattice used in the remainder of the paper, and hence
the integer lattice algorithms also apply to Λε.

For a polygon P , the erosion of P , denoted P− is
the subset of P formed by points within L∞ distance at
least 2ε of all points outside P (Figure 5(a)). Let A−C
be the area of the optimal solution to the continuous
potato-peeling problem with input P−.

We only give here the main directions of the proof. A
more detailed version of the proof can be found in the
appendix 5. First, by bounding the number of lattice
cells that a convex curve of a given length can cross, we
bound by O(rε) the area difference between any convex
polygon and the convex hull of the lattice points inside
it. Then, we use an erosion of 2ε in order to smooth the
input and avoid difficulties related to comb like input
polygons. We bound the area difference by O(rε) be-
tween the solution of problem 1 for any polygon and the
solution for the erosion of this polygon. Finally, despite
the digital solution being potentially outside the input
polygon, it can be shown that the area lying outside the
input polygon is bounded by O(rε) which gives us the
following theorem:

Theorem 5 Let AC be the area of the solution KC of
Problem 8 with input polygon P of diameter r. Let ε > 0
be a parameter and S = Λε ∩ P−, where P− is the ero-
sion of P by 2ε and Λε is the lattice of size ε. The area
AD of the convex hull of the solution KD of Problem 1
with input S satisfies |AC −AD| = O(rε).

The polygon conv(KD) in the previous theorem may
partially extend outside P . Nevertheless, the solution
KD of Problem 1 can be used to obtain a convex polygon
K ⊆ P which has an area A satisfying |AC − AD| =
O(rε).

5 Conclusion and Open Problems

The (continuous) potato peeling problem is a very pe-
culiar problem in computational geometry. The fastest
algorithms known have running times that are polyno-
mials of substantially high degree. Also, we are not
aware of any algorithms (or difficulty results) for the
natural extensions to higher dimensions (even 3d) or to
a fixed number of convex bodies.

In this paper, we focused on a digital version of the
problem. Many problems in the intersection of digital,
convex, and computational geometry remain open. Our
study falls in the following framework of problems, all
of which receive as input a set of n lattice points S ⊂ Zd

for constant d and are based on a fixed parameter k ≥ 1.

1. Is S the union of at most k digital convex sets?

2. What is the smallest superset of S that is the union
of at most k digital convex sets?

3. What is the largest subset of S that is the union of
at most k digital convex sets?

In [15], the authors considered the first problem for
k = 1, presenting polynomial time solutions (which may
still leave room for major improvements for d > 3). We
are not aware of any previous solutions for k > 1. In
contrast, the continuous version of the problem is well
studied. The case of k = 1 can be solved easily by
a convex hull computation or by linear programming.
Polynomial algorithms are known for d = 2 and k ≤
3 [8, 34], as well as for d = 3 and k ≤ 2 [9]. The problem
is already NP-complete for d = k = 3 [9]. Hence, the
continuous version remains open only for d = 2 and
fixed k > 3.

It is easy to obtain polynomial time algorithms for the
second problem when k = 1, since the solution consists
of all points in the convex hull of S. The continuous ver-
sion for d = k = 2 can be solved in O(n4 log n) time [3].
Also, the orthogonal version of the problem is well stud-
ied (see for example [21]). We know of no results for the
digital version.

In this paper, we considered the digital version of the
third problem for d = 2 and k = 1, 2, presenting algo-
rithms with respective running times of O(n3 +n2 log r)
and O(n9 + n6 polylog r), where r is the diameter of
S. Since the first problem trivially reduces to the third
problem, we also solved the first problem for k = d = 2
in O(n9 +n6 polylog r) time. It is surprising that we are
not aware of any faster algorithm for the first problem
in this particular case.

The third problem for d > 2 or k > 2 remains open.
The DAG approach that we used for d = 2 is unlikely to
generalize to higher dimensions, since there is no longer
a single order by which to transverse the boundary of
a convex polytope. Surprisingly, even the continuous
version seems to be unresolved for d > 2 or k ≥ 2.
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Appendix

6 From Digital to Continuous

The width of P is the minimum distance between two
parallel lines `1, `2 such that P is between `1 and `2.

The following lemma that bounds the area difference
between a convex polygon and the convex hull of its
intersection with a lattice set will be useful to our proof.

Lemma 6 Let C be a convex polygon of diameter r.
The convex hull H = conv(C ∩ Λε) satisfies

area(C) ≤ area(H) + 6
√

2πrε+ 16ε2.

Proof. The lattice Λε induces a grid with vertex set Λε

and square cells of side length ε. Let X− be the set of
grid cells that are completely contained in C and X∂

be the set of cells that are partially contained in C. All
cells in X∂ intersect the boundary ∂C of C.

Since the perimeter of a convex shape is at most π
times its diameter [2], the perimeter of ∂C is at most
πr. Since a curve of perimeter p intersects at most
3p/ε
√

2 + 4 grid cells of side length ε [23], we have
|X∂ | ≤ 3πr/ε

√
2 + 4.

All cells in X− are contained in H and C is covered
by X− ∪ X∂ . Therefore, the area of C \ H is at most
the area in X∂ , which is

ε2|X∂ | ≤ 4ε2 ·
(

3

ε
√

2
πr + 4

)
= 6
√

2πrε+ 16ε2,

proving the lemma. �

The following lemma bounds the area difference be-
tween the optimal solutions of the continuous potato
peeling problem with inputs P and P−.

Lemma 7 Let P be a polygon of diameter r and P− be
the erosion of P . Let C (resp. C ′) denote the largest
convex polygon inside P (resp. P−). We have the fol-
lowing inequality:

area(C) ≤ area(C ′) + 2
√

2πrε.

Proof. The erosion C− of C is a convex polygon that
lies inside P−. Hence the area of C ′ is at least as large
as the area of C−.

As C is a convex polygon of diameter at most r, the
perimeter of C is at most πr. As every eroded points
from C in order to obtain C− are inside C and at a
maximum distance of 2

√
2ε of the boundary of C, they

are all included inside a set of rectangles that lie inside
C with the edges of C as sides and width 2

√
2ε. Hence,

the area difference between C and its erosion is at most
2
√

2επr, which proves the lemma. �
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P

P−

(a) (b)

ε

4ε

p
x1 x2

Figure 5: (a) A polygon P , its erosion P−, and the set
Λε ∩ P−. (b) To include the point p that is outside P ,
conv(KD) has to go between the lattice points within
L∞ distance 2ε of p.

The digital solution may have portions that lie outside
the input polygon P of the continuous version. However,
this portion cannot be too big, as shown in the following
lemma.

Lemma 8 Let P be a polygon of diameter r and P−

be the erosion of P . Let S = P− ∩ Λε, and KD be
the largest digital convex subset of S. The following
inequality holds:

area(conv(KD) \ P ) ≤ 2rε.

Proof. Let p be a point in conv(KD) \ P . As S is in-
cluded inside P−, all the lattice points within L∞ dis-
tance ε of p are not in S (see Figure 5). All 16 lattice
points at a L∞ distance less than 2ε of p are not in
S. Hence, in order to include p, conv(KD) has to lie
between two vertically (or horizontally) consecutive lat-
tice points x1 and x2, which are separated by distance
ε. Furthermore p is at a horizontal (or vertical) distance
strictly greater than ε from x1 and x2. The widest an-
gle the incoming and outgoing edges of C can form is
hence 2 arctan(1/2), effectively forming a turning angle
of at least π − 2 arctan(1/2). As the sum of turning
angles inside a convex polygon is equal to 2π and can
never decrease, and as π − 2 arctan(1/2) > 2π/3 such
a turning angle can only happen twice. Also, as in or-
der to include any point p outside of P , conv(KD) has
to go in between x1 and x2, the width of this (possible
non-contiguous region) including p is at most ε and the
diameter at most r, hence, the area is bounded by rε.
Therefore, there can be no more than two such regions
in conv(KD) (even though each of them can enter and
leave P multiple times), which proves the lemma. �

Using lemma 7, it follows that AC − A−C ≤ 2
√

2πrε.

Lemma 6 gives us that A−C − AD ≤ 6
√

2πrε + 16ε2.
Lemma 8 gives us that AD − 2rε ≤ AC . Hence,

AC − 8
√

2πrε− 16ε2 ≤ AD ≤ AC + 2rε,

proving the following theorem.

Theorem 9 Let AC be the area of the solution KC of
Problem 8 with input polygon P of diameter r. Let ε > 0
be a parameter and S = Λε ∩ P−, where P− is the ero-
sion of P by 2ε and Λε is the lattice of size ε. The area
AD of the convex hull of the solution KD of Problem 1
with input S satisfies |AC −AD| = O(rε).

The polygon conv(KD) in the previous theorem may
partially extend outside P . Nevertheless, the solution
KD of Problem 1 can be used to obtain a convex polygon
K ⊆ P which has an area A satisfying |AC − AD| =
O(rε).

The same proof strategy can be applied to obtain
an approximation to the continuous version of the 2-
potato-peeling problem using the digital version of the
problem.
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Largest Triangle inside a Terrain

Arun Kumar Das∗ Sandip Das† Joydeep Mukherjee ‡

Abstract

In this paper, we present an O(n2) time algorithm to
find a largest area triangle contained inside a terrain
with n vertices. We also present an O(n log n) time 1

2 -
factor approximation for the same.

1 Introduction

Many well-known algorithms for geometric optimization
problems on arbitrary sets often involve finding some
other set with some nice properties such that it also
approximates the original set very closely. Designing
algorithms for the problems on these subsets become
easy which lead to good approximate solution for the
original problems. These arbitrary sets often come in
the form of polygons. A well explored direction in this
regard is to come up with polygons with certain de-
sired properties such as convexity, bounded number of
sides, etc. which is supposed to approximate the given
polygon sufficiently closely. The closeness of approxima-
tion is often guided by optimization of some parameters
like area, perimeter, etc. associated with the computed
polygon.

A rich body of work has been devoted towards com-
puting maximum area enclosed convex polygons in a
given polygon. Finding a largest area convex polygon
contained in a simple polygon was posed by Jacob E.
Goodman [9]. Chang et al. [6] came up with a polyno-
mial time solution for the same. In fact finding largest
area triangle within a given convex polygon has been
quite well studied by Boyce et al. [2], Dobkin and Sny-
der [8]. Later Chandran and Mount [5] has shown a par-
allel algorithm for enclosing and enclosed triangles in a
given convex polygon. Melissaratos and Souvaine [15]
came up with an O(n4) time exact algorithm for com-
puting a largest area triangle inside a simple polygon.
They also proposed in the same paper an O(n3) time ex-
act algorithm for computing a largest triangle inscribed
in a simple polygon. Note that an inscribed triangle
in a simple polygon is a triangle, which is contained in
the polygon and whose vertices lie on the boundary of

∗Advanced Computing and Microelectronics Unit, Indian Sta-
tistical Institute, Calcutta, India, arund426@gmail.com
†Advanced Computing and Microelectronics Unit, Indian Sta-

tistical Institute, Calcutta, India, sandipdas@isical.ac.in
‡Advanced Computing and Microelectronics Unit, Indian Sta-

tistical Institute, Calcutta, India, joydeep.m1981@gmail.com

the polygon. Hall-Holt et al. [11] studied the approxi-
mate version of these problems providing an O(n log2 n)
polynomial time approximation scheme (PTAS) for the
biggest stick problem and an O(n) PTAS for the largest
area fat triangle problem contained in a simple polygon.
In the same paper they also provide an O(1) approxi-
mation for computing a largest area triangle or convex
polygon in a simple polygon. Later on Cabello et al.
[4] provided an O(n(log2 n+ 1

ε3 log n+ 1
ε4 )) time PTAS

for largest area convex polygon contained in a simple
polygon. Cabello et al. [3] provided an O(n3) exact al-
gorithm for computing a maximum area and maximum
perimeter rectangle contained in a convex polygon re-
spectively. They also provided (1 − ε) approximation
algorithm for the same which takes O( 1

ε
3
2

+ 1

ε
1
2

log(n)).

These polygon inclusion problems are motivated by
applications in computer graphics for occlusion culling
[11]. The enclosure problems find application in stock
cutting, collision avoidance [6]. Bose and De Carufel [1]
studied the problem of minimum area enclosing triangle
with a fixed angle.

In this paper, we find a largest area triangle contained
in a terrain. Terrain is a geometric object bounded by
a base and a polyline, called the upper boundary, such
that any line perpendicular to the base cuts the upper
boundary exactly once. We consider here the base lying
on the positive x-axis, so our upper boundary is an x-
monotone curve in R2. Figure 1 shows a terrain. Note
that there may be more than one triangle with the same
largest area, any of them suffices as our output. The
vertices defining a largest area triangle contained in a
convex polygon are subset of the vertices of the given
convex polygon as proved in Keikha et al. [13]. Note
that this observation does not hold in a terrain. We
also assume that no three vertices of the input terrain
are collinear.

2 Preliminaries

Definition 1 A vertex of a terrain is called a convex
vertex if the internal angle between the sides adjacent
to this vertex is less than 180◦. If this angle is greater
than 180◦ then it is called a reflex vertex. The endpoints
of the base of the terrain are called base vertices. The
vertex at the left end of the base is called the left base
vertex and denoted by Bl and the other base vertex is
called the right base vertex and denoted by Br.
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D
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Figure 1: A Terrain

Note that the base vertices are convex vertices.

Observation 1 For a convex vertex P of a terrain, if
a line segment PR from P to base of the terrain com-
pletely lies inside the terrain, then PR does not pass
through any convex vertex of the terrain other than the
base vertices.

Now we recall a result from basic Euclidean geometry.

Result 1 Let 4PQR be a triangle and M be the mid-
point of PQ. If a line parallel to QR passing through M
cuts PR at N , then N is mid point of PR and length
of MN is half of the length of QR.

3 Properties of maximum area triangle inside terrain

In this section we present some interesting observations
about maximum area triangle contained in terrain.

Lemma 1 One side of a largest area triangle contained
in a terrain must coincide with the base of the terrain.

Proof. We prove this Lemma by showing that for any
given triangle inside a terrain there exists another trian-
gle with a side coinciding with the terrain base having
area greater or equal to the given triangle.

Let 4PQR be any triangle lying inside the terrain
and AB be the terrain base. The nearest vertex among
P,Q,R with respect to the terrain baseAB is considered
as a lowest vertex of4PQR. The orientation of4PQR
can happen in four possible ways:

1. The base of 4PQR is parallel to the terrain base,
i.e. it has two lowest vertices

2. 4PQR has only one lowest vertex and the edges
adjacent to it have slopes of different sign

3. 4PQR has only one lowest vertex and the edges
adjacent to it have slopes of same sign

4. 4PQR has an edge perpendicular to the terrain
base

Case 1: Suppose P and Q are two lowest vertices of
4PQR, hence PQ is parallel to the base of the terrain

A B

R

M

P Q

N

Figure 2: Case 1

AB. We draw perpendiculars from P and Q, namely
PM and QN on AB, then 4MNR is inside the terrain
and area(4MNR) > area(4PQR) (Figure 2).

A′ B′P

R

Q

M N

Figure 3: Case 2

Case 2: If 4PQR has a unique lowest vertex say P
and PQ and PR have slopes of opposite signs (Figure
3). Then we draw a line A′B′ parallel to the terrain
base and passing through P inside the terrain. Now
the perpendiculars from Q, i.e. QN and R, i.e. RM
also reach A′B′ without crossing the boundary of the
terrain. Without loss of generality let RM > QN ,
then RQ is a line of negative slope. As the height of
points on a line of negative slope is a decreasing function
with respect to x-coordinate, we have, area(4MNR) =
area(4RMQ) > area(4PQR). If RM = QN , then
area(4MNR) = area(4RMQ) = area(4PQR). Now
we can treat 4MNR or 4MNQ by Case 1.

A′ B′P

R

Q

M N

Figure 4: Case 3

Case 3: In this case, 4PQR has a unique lowest
vertex P and PQ and PR have slopes of same sign.
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Without loss of generality, we assume that PQ and PR
both have positive slopes (Figure 4) and the slope of PR
is greater than slope of PQ. We draw A′B′, RM and
RN as defined in Case 2. Then RM must intersect the
line segment PQ, otherwise 4PQR lies inside 4PMR.
Now, in this case also area(4PNR) > area(4PQR).
As PR has positive slope, the perpendicular from Q on
PR (extended) is shorter than the perpendicular from
N on PR (extended). Then the result is true using the
arguments of Case 1.

A′ B′P

Q

R

N

Figure 5: Case 4

Case 4: 4PQR has the unique lowest vertex P and
either PR or PQ is perpendicular to AB. Let us assume
PQ is perpendicular to AB (Figure 5). Then we draw
RN , perpendicular from R on A′B′(as defined earlier).
Then area(4PQN) = area(4PQR).

Note that these arguments hold even if the lowest
vertex P touches the base of the terrain. In that case
A′B′ coincides with the base. Hence the result follows.

�

Observation 2 If the base of an optimal triangle co-
incides with the terrain base and α and β be the in-
ternal angles adjacent to the base of the triangle, then
0◦ < α ≤ 90◦ and 0◦ < β ≤ 90◦.

Proof. Without loss of generality if α > 90◦, we can
draw a perpendicular on the terrain base from the top
most vertex of a triangle to obtain a larger triangle,
which is a contradiction. �

In an optimal triangle one side is coinciding with the
base of the terrain and that side is termed as the base of
the optimal triangle. The side which has a positive slope
with the base of the terrain is expressed as the left side
of the optimal triangle. Similarly the side which has
negative slope with the base of the terrain is expressed
as the right side of the optimal triangle.

Lemma 2 Each of the left and right sides of an optimal
triangle is a segment of a line which passes through two
vertices of the terrain.

Proof. We prove the Lemma by showing that any line
passing through only one vertex of the terrain cannot

contribute a segment as a side of an optimal triangle,
which has its base lying on the terrain base. We will
show that in such cases we can rotate this line and ob-
tain a larger triangle. The base of an optimal triangle
lies on the base of the terrain (by Lemma 1). Now if
a side of the triangle coincides with a line that passes
through only one vertex, which is a convex one, then
this vertex must be one of the vertices of this triangle.
In such a case we simply rotate the side passing through
that convex vertex to increase the area of the considered
triangle.

A B

E

F

P

Q

C

D

O
M

L

Y

Z

X

N

Figure 6: Lines passing through two vertices give opti-
mal solution

Now we consider when the side PQ of 4AQP passes
through only one reflex vertex O of the terrain (Figure
6). We show that4AQP cannot be an optimal triangle.
We rotate PQ around O in both sides to get4ADC and
4AFE, such that PC = EP . As O is a reflex vertex,
we can always rotate the line in this manner, such that
EF and CD lies inside the terrain. Note that we can al-
ways rotate until PQ hits another vertex of the terrain.
Now we show that either area(4AFE) ≥ area(4AQP )
or area(4ADC) ≥ area(4AQP ) or both.

Let area(4ADC) < area(4AQP ). Now we draw
a line DL parallel to AC from D which intersects
PQ at X and EF at Y . Here 4ODX is similar to
4POC and 4PEO is similar to 4OXY . So we have
PC
DX

= OM
ON

= EP
XY

, where OM and ON is the perpen-

diculars from O on AC and DL respectively. Therefore
PC
EP

= DX
XY

which implies DX = XY , as PC = EP .

Now we draw a line parallel to OQ from Y , which
intersects AB at Z. Observe that Z lies between Q
and F . Hence from the Result 1, DQ = QZ and
hence area(4DQX) < area(�QZYX). This implies
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area(4DQX) < area(�QFY X).

We assumed that area(4ADC) < area(4AQP )
which implies area(4POC) < area(4QOD)
=⇒ area(4POC) < area(4DXO) + area(4DQX)
=⇒ area(4EOP ) < area(4XOY ) + area(4DQX)
=⇒ area(4EOP ) < area(4XOY )+area(�QFY X)
=⇒ area(4EOP ) < area(4QFO)
=⇒ area(4AFE) ≥ area(4AQP ).
Similarly we can show that the result holds if
area(4AFE) < area(4AQP ), by drawing a line par-
allel to the base. Thus the result follows. �

Now it is easy to see that there can be O(n2) many
lines passing through n many vertices, so the candidate
solution space is bounded by O(n4). But not all such
lines participate to produce a candidate solution, such
as the lines joining the convex vertices of the terrain
except the base vertices. So we now count the num-
ber of such lines those actually participate to produce a
candidate solution.

Lemma 3 For each vertex V of the terrain there exists
at most one vertex W of the terrain on the left and
below of V such that the line passing through V and
W intersects the base of the terrain at P (say) and the
segment V P lies completely inside the terrain.

Proof. Consider the vertices on the left of V (i.e. hav-
ing lesser x-coordinate than V ), which are visible from
V and choose the one with least y-coordinate, say W ′.
So W ′ should either be a reflex vertex or the left base
vertex of the terrain. We will show that the vertex W ′

serves as W . Let the line joining V and W ′ intersects
the terrain base at P ′. Observe that, the segment V P ′

is lying completely inside the terrain. For contradiction,
suppose the point W is not the point W ′. Note that W
must be a reflex vertex here. As we assumed no three
vertices of the terrain are collinear, W cannot lie on the
line V P ′.

P ′

V

W ′

TP

Figure 7: Counting the candidate lines

Here VW ′ and VW cuts the base at P ′ and P respec-
tively (Figure 7). Without loss of generality P lies on
the left of P ′, i.e. V P has smaller positive slope than
V P ′. Then the extension of the perpendicular W ′T
from W ′ on the base, cuts V P above W ′. Since W ′

is a reflex vertex of a terrain, W ′T is the only part of
the perpendicular that lies inside the terrain. This im-
plies some portion of V P is lying outside the terrain,
which leads to a contradiction. If P lies on the right of
P ′ then by similar argument some portion of V P ′ lies
outside terrain, which is also a contradiction.

Now if W ′ is a convex vertex, then it has to be the
left endpoint of the terrain base. Then P ′ coincides with
W ′. By using similar arguments as above we establish
the claim. �

Similarly, we conclude the following Lemma for the
vertex, which lies on the right side of a vertex V of the
terrain.

Lemma 4 For each vertex V of the terrain there exists
at most one vertex W of the terrain on the right and
below of V such that the line passing through V and
W intersects the base of the terrain at Q(say) and the
segment V Q lies completely inside the terrain.

Proof. Follows from similar arguments of Lemma
3. �

Observe that the lines, mentioned in Lemma 3 and
Lemma 4 are the candidates for defining left and right
boundary of an optimal triangle whose base coincides
with the base of the terrain. These lines are termed as
Candidate Lines. Denote the set of all candidate lines
of positive slope by L and the set of all candidate lines
of negative slope by R. The vertices through which
a candidate line passes are called the definers of this
candidate line. The upper one, which has the larger
y-coordinate is called the upper definer and the other
one is called the lower definer. A triangle in the terrain
whose base lies on the terrain base and whose sides are
segments of candidate lines, is called a grounded trian-
gle.

Combining Lemma 3 and Lemma 4 we have the fol-
lowing result.

Lemma 5 The cardinality of L and R are bounded by
O(n), where n is the total number of vertices of the ter-
rain.

4 An Exact Algorithm

We can check whether a line lies inside a terrain in O(n)
time. So in O(n2) time we can locate all the candidate
lines which contribute to form an optimal triangle hav-
ing the base coinciding with the terrain base. Then we
compute O(n2) triangles in O(n2) time formed by these
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O(n) candidate lines and report the one with largest
area. We can also use techniques like shortest path trees
[10] (as described later) to find the candidate lines in
O(n) time, but that does not improve the total time of
our search.

Theorem 6 An optimal solution can be found in O(n2)
time.

5 An Approximation

We design an approximation algorithm with O(n log n)
running time. The algorithm finds a triangle whose
height is greater or equal to an optimal triangle and
base length is at least half of an optimal triangle. Now
to reduce the running time we first find O(n) candidate
lines efficiently. Recall that Bl and Br are the left base
vertex and right base vertex of the terrain. We consider
a graph (VT , E), where VT denotes the vertices of the
terrain and an edge (vi, vj) ∈ E if and only if vi and vj
are two definers of a candidate line belonging to the set
L and (Bl, Br) ∈ E. Note that the graph is connected.
The cardinality of L is (n− 2) (follows from Lemma 3),
the cardinality of the edge set E of the graph is (n− 1),
hence this graph is a tree. We denote it by T .

Lemma 7 Let v be a vertex of T . Then the path from
v to Bl in T is the shortest path from v to Bl in the
terrain.

Proof. First we observe the structure of the paths in
T . Let (vi, vj) and (vj , vk) be two edges in this tree
such that vi lies below vj and vj lies below vk in the
terrain. Then, from the property of the candidate lines,
the segment vivj has lesser positive slope than the seg-
ment vjvk. This means P is a outward convex chain,
where P = (v, v1, v2, ..., vs, Bl) be the path from v to Bl

in T . We show that no other path Q inside the terrain
from Bl to v can have a shorter length than P.

Bl

v

v1

vs w

Figure 8: Shortest path tree and the candidate lines

Let Q be another path from Bl to v which is shorter
than P. As shown by Lee and Preparata [14], any path
Q must pass through the vertices of the terrain to min-
imize its length. If no vertex of Q lies on the right of

P and Q lies totally inside the terrain, then Q must
pass through the vertices of P. Since P is constructed
by joining its vertices through straight line segments, Q
cannot be shorter than P. So Q must have a vertex on
the right of P. Let w be such a vertex of Q as shown in
Figure 8.

Without loss of generality let Bl be visible from w.
So, length of Blw+wv is at least length of Q. Applying
triangle inequality repeatedly we can say that length of
P is shorter than this quantity. This implies that P is
the shortest path in the terrain from v to Bl. �

Theorem 8 The tree T is the shortest path tree of the
terrain sourced at Bl.

Proof. The proof follows from Lemma 7. �

We can conclude that the tree constructed by the
members of R in a similar fashion, is the shortest path
tree of the terrain sourced at Br. So we can find out
the candidate lines by constructing these two shortest
path trees.

Let ci be a candidate line which intersects the base of
the terrain at bi. Also let ti denote the topmost point
on ci such that the segment biti lies completely inside
the terrain. We denote the height of a point p in the
terrain by ht(p) = y, where (x, y) is the coordinate of
point p. So an optimal grounded triangle constructed
with the segments of ci ∈ L and cj ∈ R can have height
at most max{ht(ti), ht(tj)}. Let pv be the point on the
terrain base where the perpendicular from point v on
the terrain base, intersects the terrain base.

Lemma 9 Let ci ∈ L, cj ∈ R be two candidate lines
forming an optimal grounded triangle and suppose ci
and cj intersect at point aij inside the terrain. Then
one of the triangles between 4tiptibi and 4tjptj bj has
base length at least half of the base length of the optimal
triangle 4biaijbj.

bi

aij

bj

tj

ti

ptj paij
pti

Figure 9: Capturing the base

Proof. The internal angles adjacent to the base of
4biaijbj are acute (by Observation 2), which implies
that paij lies between bi and bj . So either bipaij (as

shown in Figure 9) or bjpaij
has length at least half

of the length of bibj . Accordingly either 4tiptibi or
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4tjptj bj has base length at least half of the base length
of the triangle 4biaijbj .

�

We find the candidate lines and the corresponding tis
as defined above. Then we calculate the area of the tri-
angles 4bitipti and report that one with the maximum
area. Since any optimal grounded triangle having a side
lying on ci, has lesser height than the height of ti, we
can conclude that the reported triangle has area at least
half of an optimal triangle.

Using the shortest path tree method [10] we can locate
the candidate lines. This takes O(n) time. Then by
using the ray-shooting query [7] we can find the ti for a
line ci in O(log n) time. So total time complexity of the
search is O(n log n). So we can conclude the following
theorem.

Theorem 10 A 1
2 -factor approximation for a largest

area triangle inside a terrain can be found in O(n log n)
time.

6 Remarks

We presented an O(n2) time exact algorithm, and
O(n log n) time 1

2 -approximation algorithm for comput-
ing a largest area triangle contained in a terrain. We ex-
pect to generalize the above approximation algorithm to
an approximation scheme in case of simple polygon. We
want to further investigate the complexity of computing
a largest area convex polygon inside a given terrain.
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Abstract

Given two n-vertex polygons, P = (p1, . . . , pn) lying in
the xy-plane at z = 0, and P ′ = (p′1, . . . , p

′
n) lying in

the xy-plane at z = 1, a banded surface is a triangulated
surface homeomorphic to an open cylinder connecting
P and P ′ such that the triangulation contains vertex
disjoint paths πi connecting pi to p′i for all i = 1, . . . , n.
The surface then consists of bands, where the ith band
goes between πi and πi+1. We give a polynomial-time
algorithm to find a banded surface without Steiner
points if one exists. We explore connections between
banded surfaces and linear morphs, where time in the
morph corresponds to the z direction. In particular,
we show that if P and P ′ are convex and the linear
morph between them preserves planarity, then there is
a banded surface without Steiner points.

1 Introduction

The problem of reconstructing a 3D polyhedral
structure between two planar cross-sections has
been heavily studied because of its many practical
applications, e.g., in medicine for constructing models
of body organs from MRI slices. Most approaches,
e.g. [3], separate the problem into two steps, both of
which are hard and are tackled via heuristics: choose
a correspondence between the two cross-sections; and
then construct a triangulated surface using extra Steiner
points. The problem is considered to be well-solved by
these heuristic methods, but many theoretical questions
remain open. We focus on the second step, i.e., we
assume that the correspondence is given. Also we focus
on the case of two polygons, though the case of general
graph drawings is also of interest.

Given two simple n-vertex polygons, P = (p1, . . . , pn)
lying in the xy-plane at z = 0, and P ′ = (p′1, . . . , p

′
n)

lying in the xy-plane at z = 1, we want to interpolate
between them by constructing a non-self-intersecting
triangulated surface S homeomorphic to an open-ended
cylinder, with P at one end and P ′ at the other end.
Vertices of S that are not vertices of P or P ′ are called
Steiner points. We want the surface to be monotone,

∗Cheriton School of Computer Science, University of Waterloo.
Research of TB, VI and AL supported by NSERC. This research
was initiated at the Algorithmic Problem Session group at the
University of Waterloo

in the sense that any plane z = t intersects the
surface in one simple (non-self-intersecting) polygon.
Furthermore, we want to maintain the correspondence
between pi and p′i in the following strong sense: for each
i there is a path πi of edges in the triangulation of S
from pi to p′i, and these paths are vertex disjoint. The
paths then partition the surface S into interior-disjoint
bands B1, . . . , Bn, where Bi is the subset of S between
πi and πi+1. We call S a banded surface and we call this
problem banded surface reconstruction between parallel
slices or just “banded surface reconstruction”. Figure 1
shows some examples.

A

BC

A′

B ′

C ′

A

B
C

A′

B ′
C ′

A

BC

A′

B ′

C ′

A

B
C

A′

B ′
C ′

(a) (b)

(c) (d)

Figure 1: Examples of banded surfaces without Steiner
points. (a) Starting with a triangular prism based on
equilateral triangle P = ABC, rotate the top triangle
to obtain P ′ = A′B′C ′ used subsequently. (b) The
Schönhardt polyhedron is a banded surface formed by
bending each original rectangular face inward to form
two triangles, using the “right” chords AB′, BC ′, CA′.
(c) Using the outward or “left” chords, AC ′, CB′, BA′

also yields a banded surface (an antiprism when P ′

is rotated by 60◦). (d) An example of a triangulated
surface that is not banded due to the lack of a path
from A to A′ disjoint from BB′ and CC ′.

Our conditions prevent some undesirable “solutions”
such as placing one Steiner point X at z = 1

2 and
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A

B

C

A′

B ′

C ′

A1/3

B1/3

C1/3

Figure 2: The examples of Figure 1(b,c) in
top-view with triangle A′B′C ′ translated horizontally.
(Invariance under translation is proved in Lemma 3.)
The cross-section at z = 1/3 shows the triangle
A1/3B1/3C1/3 of the linear morph, together with the
inward (solid colour) and outward (dashed colour)
choices for each edge. Observe that whereas the linear
morph uses the edge A1/3B1/3 at z = 1

3 , the inward
banded surface using chord AB′ uses two edges (shown
in solid red), the first parallel to A′B′ and the second
parallel to AB, and the outward banded surface using
chord A′B uses two edges (shown in dashed red), the
first parallel to AB and the second parallel to A′B′.

building cones from the configurations at z = 0 and
z = 1 to X. (The fact that each of these cones
does not self-intersect is proved in [8].) Furthermore,
the condition about disjoint paths πi prevents us from
replacing such a central point X by a polygon with fewer
than n vertices in the plane z = 1

2 .

In this paper we concentrate on the case where no
Steiner points are allowed. Understanding this case
may lead to more general solutions where we design S
in layers using intermediate polygons (made of Steiner
points) at a succession of z values, and build surfaces
without Steiner points between successive layers.

When no Steiner points are allowed we must use the
edges (pi, p

′
i), and our only choice is how to triangulate

each quadrilateral pi, pi+1, p
′
i+1, p

′
i. There are two

possible chords for each quadrilateral: the right chord
(pi, p

′
i+1) or the left chord (pi+1, p

′
i). The difference

between these two choices can be seen in Figure 1(b) and
(c), and also in Figure 2. An example of two triangles
with no banded surface is shown in Figure 3(a).

Our Results. We prove the following:

1. There is a polynomial time algorithm (using
2-SAT) to solve the banded surface reconstruction
problem when no Steiner points are allowed.

2. The existence of a banded surface without Steiner
points is preserved by translating P ′.

3. If P and P ′ are convex and the linear morph from P
to P ′ preserves planarity (these terms are defined
on the next page) then there is a banded surface
without Steiner points between P and P ′. This no
longer holds if P and P ′ are non-convex.

4. In the other direction, the existence of a banded
surface without Steiner points does not imply that
the linear morph preserves planarity, not even when
P and P ′ are triangles. See Figure 3(b).

A
BC

A′

B ′ C ′

(a) (b)

A

B

C

A ′

B ′ C ′

A
1/2

B
1/2

C
1/2

Figure 3: (a) Triangles ABC and A′B′C ′ have no
banded surface (without Steiner points): the edge A′B′

must be in a triangle with either vertex A or vertex B
but both those triangles intersect the edge CC ′. (b) A
banded surface between ABC and A′B′C ′ using chords
AC ′, BA′, and CB′, showing the cross-section (dashed,
shaded grey) at z = 1

2 . However, the linear morph
does not preserve planarity since at z = 1

2 the triangle
A1/2C1/2B1/2 (shown in red) is inverted.

Previous Work. Gitlin, O’Rourke and Subramanian
[8] considered a similar problem of joining two polygons
via a triangulated surface without adding Steiner points.
However, they did not require disjoint paths from
pi to p′i, which gives a lot more freedom, e.g., the
two polygons can have different numbers of vertices.
Essentially, every edge of P must be in a triangle with
some vertex of P ′, and vice versa, and these triangles
must be internally disjoint. Their main result was a
construction of a pair of polygons on 63 vertices with
no triangulated surface between them. Their proof
involved a computer search. Barequet and Steiner [5]
gave a slightly simpler example on 45 vertices. It is an
open question whether this version of the problem is
NP-complete.

There is a vast literature about interpolating between
two families of nested polygons lying in parallel planes
via a triangulated surface, see [3, 4]. Barequet and
Steiner [4] write: “The primary concern in the literature
has usually been to find fast heuristics for selecting
a ‘good’ reconstruction among the many available
solutions.” There is little work analyzing the number
of Steiner points, or examining when a solution with no
Steiner points is possible.

Our problem is related to the problem of finding a
piecewise linear embedding of a 2D simplicial complex in
3D, which was recently shown to be NP-hard [7]. (One
dimension down this is easy, since it is the problem of
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t=0

t=1

Figure 4: A morph from a rectangle at time (or
z-coordinate) t = 0 to the “arch-shaped” polygon
at time t = 1 yields a 3D interpolation by taking
“snapshots” of the morph at some intermediate time
points, and joining vertices between one snapshot and
the next. Note that the quadrilateral patches formed
this way (one of which is coloured blue) are not planar
in general. This figure is loosely based on one by
Surazhsky and Gotsman [10, Figure 10].

finding a (poly-line) planar drawing of a graph.) Our 2D
complex consists of the quadrilaterals pi, pi+1, p

′
i+1, p

′
i.

Our additional structure ensures that there always is a
solution, so our goal is just to minimize the number of
Steiner points.

Relationship to Morphing. A morph is a continuous
transformation from one shape to another. In
particular, a morph from an initial simple polygon (or
planar straight-line graph drawing) P 0 to a final one,
P 1, with the same labelled vertices, is a continuously
changing family of polygons/drawings P t indexed by
time t ∈ [0, 1]. A morph preserves planarity if all
intermediate polygons/drawings P t are simple/planar.
In a linear morph each vertex moves on a straight line
from its initial position to its final position at constant
speed (where the speed of a vertex depends on the
distance it must travel), and an edge is always drawn as
a line segment between its endpoints.

Our problem of reconstructing a 3D polyhedral
structure between two planar drawings is very related
to morphing—the z direction corresponds to time in the
morph. In fact, it is claimed (for example, by Surazhsky
and Gotsman [10]) that morphing algorithms solve 3D
shape reconstruction. We will examine this claim more
closely. Figure 4 shows how a morph between two
polygons yields a 3D surface composed of quadrilateral
“patches”, each a ruled surface. In order to obtain
a piece-wise linear surface we must replace each such
quadrilateral by two triangles. It is not obvious how
to do this—replacing quadrilaterals by pairs of triangles
may cause the surface to self-intersect. It seems intuitive
that this can be remedied by taking sufficiently many
snapshots, but such analysis is lacking.

An algorithm by Alamdari et al. [1] finds “piece-wise

linear” morphs that consist of a linear number of
planarity-preserving linear morphs. This would provide
a solution to banded surface reconstruction if we could
show how to add Steiner points to turn a linear morph
into a triangulated surface.

In the other direction, a banded surface (even one
with Steiner points) can be interpreted as a morph
between the polygons P and P ′, albeit a morph in which
an edge becomes a poly-line. Such “morphs with bent
edges” have been investigated [9] and come with small
grid guarantees, unlike the piece-wise linear morphs
of [1]. A banded surface without Steiner points provides
a morph with the interesting property that in any
intermediate drawing of the morph, an edge e appears
as a path of two line segments, one in the direction of
the initial version of e and the other in the direction of
the final version of e. See Figure 2. Such morphs may be
valuable for visualizations. We note that there is work
on morphing while maintaining edge directions [6]—this
only applies in the restricted situation where the initial
and final polygons have corresponding edges with the
same directions.

To summarize, it seems worth investigating to what
extent linear morphs provide banded surfaces, and to
what extent banded surfaces provide morphs.

2 Finding a Banded Surface without Steiner Points

In this section we give an algorithm using 2-SAT to
find a banded surface without Steiner points between
two n-vertex polygons, P = (p1, . . . , pn) lying in the
xy-plane at z = 0, and P ′ = (p′1, . . . , p

′
n) lying in the

xy-plane at z = 1. For each i = 1, . . . , n we have
the choice of the right chord pip

′
i+1 or the left chord

pi+1p
′
i. Let the Boolean variable Ri be 1 if the right

chord is chosen and 0 otherwise. Each chord choice
determines two triangles of the surface, for example
Ri = 1 determines triangles pipi+1p

′
i+1 and pip

′
i+1p

′
i.

We say that chord choices for i and j conflict if the
resulting open triangles intersect. Note that this can be
tested, for given i, j, in constant time. The problem of
choosing chords to form a non-self-intersecting surface
can be formulated as a Boolean satisfiability problem
by adding a clause to prohibit conflicts, e.g., if chord
choices Ri and ¬Rj conflict then we add the clause
¬(Ri ∧ ¬Rj). Note that there are O(n2) clauses.

There is a banded surface without Steiner points if
and only if the resulting clauses are satisfiable. Because
all clauses have two variables, the result is a 2-SAT
instance. Since 2-SAT can be solved in linear time [2],
we have:

Lemma 1 There is a quadratic time algorithm that
either finds a banded surface without Steiner points, or
declares that no such surface exists.
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3 Some Conditions for the Existence of a Banded
Surface

One approach to banded surface reconstruction when
Steiner points are required, is to subdivide the interval
z ∈ [0, 1] into 0=z0, z1, . . . , zk=1 and place an n-vertex
polygon at each zi, 0 < i < k so that each successive pair
of polygons admits a banded surface without Steiner
points. Using this approach, the final solution would
have nk Steiner points.

In order to design the intermediate polygons, it would
be good to have conditions for when two polygons
admit a banded surface without Steiner points. (Our
polynomial-time test does not seem helpful when the
polygons are not given).

In this section we explore two situations where we can
guarantee the existence of a banded surface. We show:

1. Translation of P ′ in the z = 1 plane preserves
the existence of a banded surface without Steiner
points (Lemma 3).

2. If P is convex and P ′ is a rotation of P by an
angle less than π, then a banded surface exists
(Lemma 5). The example of Figure 8 shows that
this property does not hold more generally, not
even for a star-shaped polygon.

We first show how translation of the target-polygon
affects the intermediate polygons in a linear morph:

Lemma 2 Let P be an n-vertex polygon in the z = 0
plane and P ′ be an n-vertex polygon in the z = 1 plane.
Let Q′ be a translation of P ′ within the z = 1 plane.
For any 0 < t < 1, if Pt is the polygon at time t during
the linear morph from P to P ′, and Qt is the polygon at
time t during the linear morph from P to Q′, then Qt

is a translation of Pt within the z = t plane.

Proof. Set s = Q′−P ′ to be the translation vector and
consider an arbitrary point p of P that morphs to point
p′ of P ′ and q′ of Q′. We have q′ = p′ + s, and hence

qt = (1− t)p+ tq′ = (1− t)p+ tp′ + ts = pt + t · s

so polygon Qt is a translation of Pt by t · s. �

In particular, if the linear morph from P to P ′

preserves planarity, then the same holds for the linear
morph from P to any translation of P ′. We can argue
the same for banded surfaces:

Lemma 3 Assume that P, P ′ and Q′ are as in
Lemma 2. If there is a banded surface without Steiner
points between P and P ′, then the same choice of chords
yields a banded surface without Steiner points between
P and Q′.

Proof. We show that the banded surface between P
and P ′ is the same as the linear morph between two
modified polygons PD and P ′D, which we now define.
Initially start with P and P ′. For each i = 1, . . . , n, if
we chose the right chord pip

′
i+1, then duplicate vertex

pi in PD (inserting an edge of length 0) and duplicate
vertex p′i+1 in P ′D. Proceed symmetrically if we chose
the left chord. Now consider the linear morph from PD

to P ′D, where vertices that have been inserted due to a
chord correspond to each other. Say we chose the right
chord pip

′
i+1. Then the zero-length edge pipi in PD

morphs to edge p′ip
′
i+1 in P ′D, hence forms a triangle.

Likewise edge pipi+1 in PD morphs to zero-length edge
p′i+1p

′
i+1 in P ′D, and also forms a triangle. The two

triangles together form exactly the part of the banded
surface between edges pipi+1 and p′ip

′
i+1 in P and P ′.

Since the banded surface is the same as the linear
morph from PD to P ′D the result now follows from
Lemma 2. �

We now turn to rotations, beginning with this result
on linear morphs when the target-polygon is a rotation
of the source-polygon:

Lemma 4 Let P be a polygon and let P ′ be a rotation of
P about an origin X by an angle α. For any 0 < t < 1
let Pt be the polygon at time t during a linear morph
from P to P ′. If α 6= π or t 6= 1

2 then Pt is a rotated
copy of P that has been scaled by st 6= 0.

Proof. We consider P , P ′ and Pt projected to the xy
plane. If α = π then every point p of P maps to to −p
in P ′, which implies pt = (1 − 2t)p. So Pt = stP for
st = 1− 2t, which is non-zero for t 6= 1

2 .
Now suppose that α < π (the case α > π is

symmetric). For any point p of P , consider the triangle
∆p := ∆pXp′, where X is the center of the rotation.
Note that ∆p and ∆q are similar for any two points
p and q of P , since they both have angle α and two
equal-length incident sides; in particular ∆q is obtained
from ∆p by scaling by ||q||/||p|| and (possibly) rotating.
Also notice that pt travels along the side of ∆p opposite
to angle α, and is at the point that divides the side at
ratio t/(1−t). We can view pt as having been rotated by
some angle θt and scaled by some st > 0. Both θt and st
are independent of the choice of p since all triangles ∆p

are similar. Therefore Pt is obtained from P by scaling
by st and rotating by θt. �

Lemma 5 Let P be a convex polygon and let P ′ be a
rotation of P about an origin X by an angle α < π.
Then there is a banded surface between P and P ′.

Proof. Observe first that the linear morph from P
to P ′ preserves planarity since, by Lemma 4, each
intermediate polygon is a rotated and scaled copy of P .
By Theorem 6 (forthcoming, but there is no circularity)
this implies the existence of a banded surface. �
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4 Linear Morphing versus Banded Surface
Reconstruction

In this section we compare the existence of a
planarity-preserving linear morph from P to P ′ and the
existence of a banded surface without Steiner points.
In general, these two properties are independent, i.e.,
neither implies the other. Figure 3(b) shows an example
of two triangles that have a banded surface, but the
linear morph does not preserve planarity. Figure 8
shows an example of two stars that do not have a banded
surface, but the linear morph preserves planarity.

When the polygons P and P ′ are convex, we do get
an implication:

Theorem 6 If P and P ′ are convex and the linear
morph from P to P ′ preserves planarity, then there is
a banded surface without Steiner points between P and
P ′.

Proof. Let pti be the position of the ith vertex at time
(z-coordinate) t during the linear morph. In particular,
p0i = pi and p1i = p′i. Let P t be the polygon at time
t during the morph. By our convention of numbering
polygons in counterclockwise order, the inside of P is
to the left of pipi+1, and the inside of P ′ is to the
left of p′ip

′
i+1. Also, because the linear morph preserves

planarity, the inside of P t is to the left of ptip
t
i+1.

We begin by defining the surface S, i.e., which chords
to use. Let v0i be the vector pi+1−pi in the xy plane, and
let v1i be the vector p′i+1− p′i projected to the xy plane.
Let θi be the angle between v0i and v1i , measured towards
the inside of P , as shown in Figure 5. We distinguish 3
cases:

• If θi < π, use the left chord pi+1p
′
i. In the

cross-section of S at z-coordinate (or time) t, the
edge ptip

t
i+1 is replaced by a segment in the direction

v0i followed by a segment in the direction v1i . We
call the resulting triangle ∆t

i and refer to it as a 01
triangle. Observe that ∆t

i lies to the outside of the
edge ptip

t
i+1. See Figure 5(a).

• If θi > π, use the right chord pip
′
i+1. Then, in the

cross-section at z-coordinate t, the edge ptip
t
i+1 is

replaced by a segment in the direction v1i followed
by a segment in the direction v0i . We refer to the
resulting triangle ∆t

i as a 10 triangle. Again, ∆t
i

lies to the outside of ptip
t
i+1, see Figure 5(b).

• If θi = π, use either chord—in this case the
quadrilateral pi, pi+1p

′
i+1p

′
i is coplanar, and ∆t

i

collapses to the edge ptip
t
i+1.

We now prove that S, as defined by the above chord
choices, is non-self-intersecting, which proves that S is a
banded surface without Steiner points. In particular, we
will prove that St, the cross-section of S at z-coordinate

pi pi+1

pt
pi+1

=pi

∆i

pi

pi+1

pt

pi+1

=pi

∆i

(b)(a)

t

t

i+1

i+1

vi
0

vi
1 vi

1

vi
0

θi

θi

Figure 5: A top view to illustrate choosing chords in
the proof of Theorem 6. In order to show the angles
clearly, P ′ has been translated so that pi is at the
same xy-coordinates as p′i. (Lemma 3 justifies this.)
Note that pti then remains at these same xy-coordinates.
Hatching indicates the inside of the polygon on that
edge. (a) If θi < π, use a left chord to obtain a 01
triangle ∆t

i. (b) If θi > π, use a right chord to obtain
a 10 triangle ∆t

i. The segments that replace ptip
t
i+1 are

shown in red/cyan.

t is a simple polygon. By assumption, the polygon P t

with vertices pt1, p
t
2, . . . , p

t
n is simple. St consists of P t

plus triangles ∆t
i added to the outside of each edge. See

Figure 6. We will show that no two triangles intersect.

Claim 7 Suppose that ∆t
i,∆

t
i+1, . . . ,∆

t
j are all 01

triangles. Let r0i be the ray from pti in the direction
v0i . Then none of these triangles cross r0i from its left
to its right.

Proof. It suffices to prove that no triangle crosses the
ray of the previous triangle, so consider triangle ∆t

i+1

and r0i . The apex of ∆t
i+1 lies on r0i+1. Rays r0i and r0i+1

emanate from the endpoints of the edge ptip
t
i+1 and the

angle between r0i and r0i+1 is positive (counterclockwise).
Thus the apex of ∆t

i+1 lies to the left of r0i . �

pi
t
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tPt

∆j
t

ri
0

rj
1

ri
1

∆i
t

pk
t

∆k
t

pl
t

pt
i+1

∆i+1
t

Ri,j

Rk,l

sl
0

sk
1

Figure 6: Polygon P t (in blue) with 01 triangles
∆t

i, . . . ,∆
t
j and 10 triangles ∆t

k, . . . ,∆
t
l .

Define r1i to be the ray from pti+1 in the direction
−v1i . Thus a 01 triangle ∆t

i is bounded by r0i and r1i .
Symmetrically, for a 10 triangle, define s1i to be the ray
from pti in the direction v1i , and s0i to be the ray from
pti+1 in the direction −v0i . Thus a 10 triangle ∆t

i is
bounded by s1i and s0i .
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From Claim 7, by symmetry, we obtain (see Figure 6):

Claim 8 If ∆t
i,∆

t
i+1, . . . ,∆

t
j are 01 triangles then none

of them cross r1j from right to left. If ∆t
k,∆

t
k+1, . . . ,∆

t
l

are 10 triangles then none of them cross s1k from left to
right and none of them cross s0l from right to left.

These two claims imply that St is simple if all the
triangles are the same (all 01 or all 10). It remains to
consider the possibility that there are triangles of both
types.

Claim 9 Suppose ∆t
i−1 is a 10 triangle and ∆t

i is a 01
triangle. Then ∆t

i−1 and ∆t
i are disjoint. Furthermore,

P t is convex at pti.

Proof. We analyze the top-view projection with
P ′ translated so that pi and p′i are at the same
xy-coordinates.

Consider the angle αt
i = ∠pi+1pip

t
i+1. Because ∆t

i is a
01 triangle, αt

i goes from 0 to θi < π. Similarly, because
∆t

i−1 is a 10 triangle, the angle αt
i−1 = ∠pi−1pipti−1 goes

from 0 to 2π − θi−1 < π.
If pip

t
i−1 and pip

t
i+1 cross over each other, as in

Figure 7(a), i.e., θi+2π−θi−1 ≥ ∠pi−1pipi+1, then there
must be some time t when αt

i+α
t
i−1 = ∠pi−1pipi+1, i.e.,

angle ∠pti−1ptipti+1 becomes 0. But we assumed that P t

remains simple, so this cannot happen.

(b)(a)
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Figure 7: Illustration for the proof of Claim 9: (a) top
view projection at pi = p′i showing the angles αt

i and
αt
i−1; (b) because θi + 2π − θi−1 < ∠pi−1pipi+1, P ′ lies

inside P at pi.

Thus we must have the situation shown in
Figure 7(b), so ∆t

i−1 and ∆t
i are disjoint and P t remains

convex at pti. �

With these claims in hand, we can complete the proof
of the theorem. Divide the circular sequence ∆t

1, . . . ,∆
t
n

into maximal subsequences all of the same type (all 01
or all 10). If Di,j = ∆t

i, . . . ,∆
t
j is such a maximal

subsequence then by Claims 7 and 8 no two triangles
of Di,j intersect, and all the triangles of Di,j live in the
region Ri,j bounded by pti, . . . , p

t
j+1 and two bounding

rays—r0i and r1j in the case of 01 triangles, as shown
in Figure 6. Between one sequence Di,j and the next,
Dj+1,l, Claim 9 implies that the regions Ri,j and Rj+1,l

are disjoint. �
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Figure 8: A star-shaped polygon P where the linear
morph to its 90◦ rotation P ′ preserves planarity, but
there is no banded surface: (a) P and P ′ and the
intermediate position of the linear morph at t = 1

2
(shaded blue); (b) If we choose the chord for edge BC
that produces the “outward” triangle (shown in red)
then at t = 1

2 it intersects one choice for OA and one
choice for BA; (c) The other choices for OA and BA
intersect each other; (d) Thus we are forced to choose
the chord for edge BC that produces the “inward”
triangle (shown in red), and, by symmetry, the “inward”
triangle for DC (shown in cyan)—but these intersect.

5 Conclusions

We have introduced the idea of a banded surface to
construct a polyhedron between two polygons in parallel
slices and have explored some connections between
linear morphs and banded surfaces without Steiner
points. Many questions remain:

1. What is a bound on the number of Steiner points
needed to construct a banded surface between two
n-vertex polygons? What if the polygons are
convex?

2. Is the problem of minimizing the number of Steiner
points NP-hard?
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On Multi-Dimensional Team Formation

Thomas Schibler∗ Ambuj Singh† Subhash Suri‡

Abstract

We consider a team formation problem in multi-
dimensional space where the goal is to group a set of
n agents into α teams, each of size β, to maximize their
total performance. The performance of each team is
measured by a score, which is the sum of h highest skill
values in each dimension. We wish to maximize the sum
of team scores. We prove that the problem is NP -hard
if the dimension is d = Ω(log n) even for h = 1 and
β = 4. We then describe an efficient algorithm for solv-
ing the problem in two dimensions as well an algorithm
for computing a single optimal team in any constant
dimension.

1 Introduction

The problem of grouping a set of agents into teams with
the objective of optimizing their collective performance
is ubiquitous in a variety of organization settings, in-
cluding team sports, project management, law, military,
management consulting, academic ad hoc committees,
to name a few. Mathematical models of team selection
and performance, therefore, are an important area of
research in social and management sciences. In these
models, the skill set of each individual is typically mod-
eled as an attribute vector. Research shows that while
individual skills are clearly an important factor, the
team’s ability to search over vast and often ill-defined
decision space crucially depends on its overall synergy
and diversity [7, 14, 18, 20]. As a result, it is widely
recognized that the performance of a team along a spe-
cific skill dimension should not depend on the average of
the group members’ values (so called weak synergy [6])
but rather on the skills of the best individuals on each
dimension [1, 10, 19].

The selection of a single best team has been consid-
ered broadly in the literature [2, 3, 12, 13, 9, 11, 4,
15]. The more general problem of assembling multi-
ple teams, however, is less well-understood, and has
been studied mainly in the context of very specific
performance objectives. For instance, Fitzpatrick and
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Santa Barbara, CA 93106, USA, tschibler@gmail.com
†Computer Science Department, University of California,

Santa Barbara, CA 93106, USA, ambuj@cs.ucsb.edu
‡Computer Science Department, University of California,
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Askin [5] develop heuristics for assembling multiple
‘multi-functional’ teams using an integer programming
formulation. The coalition formation problem in multi-
agent (and multi-robot) systems also partitions agents
into teams but the primary goal there is strategic util-
ity maximization of completing a given set of tasks [16].
When the utility function is a simple sum of scalars, this
becomes an easy-to-solve assignment problem in bipar-
tite graphs [17], but under arbitrary set-valued functions
the coalition formation is both NP -hard and inapprox-
imable [16].

Against this backdrop, in this paper we investigate
a simple and natural model for assembling multiple
teams with multi-dimensional skills that allows us to
explore the computational complexity of multi-team for-
mation as a function of the problem’s intrinsic param-
eters: number of agents n, number of teams α, team
size β, and dimension d of the skill vector. We place no
constraints on the team structure except its prescribed
size—any subset of agents can form a team—and use a
simple additive function over independent attributes to
measure team performance, thereby isolating the com-
binatorial aspects of the problem.

Specifically, we have an agent pool of n candi-
dates, each modeled as a d-dimensional point p =
(p1, p2, . . . , pd), where each dimension represents an in-
dependent real-valued skill. We want to form α teams,
each of size β, for some integer values α, β, with αβ ≤ n,
so as to maximize the total score of all the teams. Each
agent belongs to at most one team. In formulating the
team score, we combine the two important aspects of
a team performance: strength and robustness [3]. We
measure the team strength by its coordinate-wise max-
ima but in order to add some degree of robustness we
take the top h values for each coordinate, for a user-
specified parameter h ≥ 1. Thus, a team’s score is de-
fined as the sum of h highest values of all dimensions.
We use the notation scoreh(T ) to denote the score of
team T using the top h scoring rule, which can be for-
mally defined as

scoreh(T ) =
d∑

j=1

max
S⊂T,|S|=h

∑

pi∈S
pij ,

where pij is the jth coordinate of the ith point pi. Our
problem then is the following: given a set of n agents,
form α teams T1, T2, . . . , Tα, each of size β to maximize∑
i scoreh(Ti). Figure 1 shows an example in two di-
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mensions, where (A,C,D) is an optimal team of size
3 for the instance on the left using scoring parameter
h = 2.

Our Results

We show that the multi-team formation problem is NP -
hard for dimension d = Ω(log n), even with h = 1 and
β = 4. Specifically, we reduce the well-known NP -
complete problem of 3-Dimensional Matching to the
team formation problem in dimension d = Ω(log n). (If
we consider very large dimensions, namely, d = Ω(n),
the problem becomes trivially hard because simply ac-
quiring all necessary skills is a set covering problem. In
most realistic settings, however, the dimension is much
smaller than n, which is the focus of our work.) Our
main result is a polynomial time algorithm for solving
the 2-dimensional team formation problem optimally,
for all scoring rules h ≥ 1, using the following two-step
algorithm. We first form a single team of size α × β,
which we call a league, using a modified scoring rule.
We prove that the total score of the league equals the
score of the optimal team formation, and that an opti-
mal league can be decomposed into an optimal solution
of the team formation in polynomial time.

Our dynamic programming based algorithm can com-
pute an optimal league in any fixed dimension. How-
ever, we show that a key structural result, called league
decomposition lemma, fails in higher dimensions, and
so the optimal league’s score no longer equals the score
of the optimal team formation problem. Thus, form-
ing multiple teams in more than two, but a constant,
dimension remains an open problem.

2 Hardness of Team Formation

We begin with a brief reintroduction of the multi-team
formation problem. Given an agent pool of n candi-
dates, each candidate modeled as a d-dimensional point
p = (p1, p2, . . . , pd), we want to form α teams, each of
size β, for some integer values α, β, with αβ ≤ n, so as
to maximize the sum of team scores. Each agent belongs
to at most team, and the score of a team T is defined
as

scoreh(T ) =
d∑

j=1

max
S⊂T,|S|=h

∑

pi∈S
pij ,

where pij is the jth coordinate of the ith point pi, and
h ≥ 1 is the scoring parameter.

Theorem 1 The multi-team formation problem is NP -
hard.

Proof. We reduce the well-known 3-dimensional
matching (3DM) [8] problem to our problem. An in-
stance of 3DM consists of three input sets X,Y, Z each

of size n and a set of triples W ⊂ X × Y × Z. The
problem is to decide if there exists a subset of n triples
T ⊆W so that each element of X ∪ Y ∪ Z is contained
in exactly one of the triples.

Given an instance of 3DM, we create an instance of
the team formation problem as follows. The number of
dimensions in our problem will be 6`+4, for a parameter
` = Θ(log n). For each element ofX∪Y ∪Z, we associate
a unique bit string of length 2`, containing ` zeros and
` ones. We call this string the tag of that element. The
bitwise complement of a tag t will be denoted t′. In
particular, we will use the following types of bit strings:

1. tag(x) = a unique bit string of length 2`
containing ` bits of 0 and ` bits of 1

2. tag′(x) = bitwise complement of tag(x)

3. 0` = a string of length ` containing all 0

Using the fact that
(
2`
`

)
≥ 2`, the choice of ` = 2 log n

suffices for the creation of 3n distinct tags, one for each
element of X ∪ Y ∪ Z. With the help of these tags we
now create a point for each element of X ∪ Y ∪ Z and
each triple t = (u, v, w) of W , in dimension 6` + 4, as
follows:

x : tag(x) 02` 02` 1 0 0 0
y : 02` tag(y) 02` 0 1 0 0
z : 02` 02` tag(z) 0 0 1 0
t : tag′(u) tag′(v) tag′(w) 0 0 0 1

Specifically, the first 2` dimensions of x ∈ X are its
tag bits, followed by 4` bits of 0’s, and its last four bits
are 1 0 0 0. The patterns for y ∈ Y and z ∈ Z are simi-
lar, as shown above. Next, the point corresponding to a
triple t = (u, v, w) has 6` bits corresponding to the tag′

strings of u, v, w, followed by the pattern 0 0 0 1. Alto-
gether we have 3n + |W | points in dimension O(log n),
which is polynomial in the input size.

We now prove the following: the input 3DM instance
is a yes instance if and only if our constructed instance
admits formation of α = n teams, each of size β = 4,
with total score at least n(6` + 4). To prove the for-
ward direction, suppose the 3DM instance has a solution
given by the set of triples T . For each t = {x, y, z} ∈ T ,
we create a team of size 4 using the points corresponding
to x, y, z and t. Since |T | = n, and no element appears
in more than one triple, we can form n disjoint teams.
We now show that these teams achieve the target total
score.
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Each point’s coordinate is either 0 or 1 along each of
the 6`+ 4 dimensions, and so to reach the target score,
each team must collect a 1 in each dimension, using
its four points. Suppose the four points correspond to
x, y, z and the triple (x, y, z). Then, by construction, in
each of the first 6` dimensions, we have a 1 in either
tag() or tag′(), satisfying the requirement. Finally, the
same holds for the last four dimensions, which is easy
to check by inspection. Thus, assuming that the 3DM
instance has a satisfying solution, we can construct n
teams, each of size 4 with total score n(6`+ 4).

In the reverse direction, we show that any set of n
teams with this score correspond to a perfect 3 dimen-
sional matching. First, we observe that the optimal
score requires that every team contributes exactly one
1 in each dimension. Considering the last 4 dimensions
alone, this is only possible if the team contains exactly
one point corresponding to a triple and each of the 3
elements in X,Y, and Z. Given this team structure,
each of the first 3 sets of 2` dimensions must collect a
1 from either the tag or tag′ of some element or triple
respectively. To satisfy all 2` dimensions, the tag and
the tag′ must correspond to the same element, other-
wise they will not be bitwise complements of each other.
Consequently, we must have elements x, y, z and triple
t = {u, v, w} with x = u, y = v, and z = w. If this prop-
erty holds for all teams, then all selected triples must
exactly cover each of the element sets, proving the exis-
tence of a 3DM solution. This completes the proof. �

The hardness proof is easily extended to any team size
β ≥ 4 by introducing an appropriate number of agents
with null skills, namely, points with all 0 coordinates.
The argument requires increasing the number of dimen-
sions by Ω(β) to avoid the use of multiple triples in a
single team. If the dimension is Ω(n), then computing
a single team is also intractable. The proof can also be
extended to scoring rule with h > 1 by introducing an
appropriate number of points whose all coordinates are
1s.

3 An Efficient Algorithm for 2 Dimensions

Given the NP-hardness of the general problem, we now
consider optimal team formation in small dimensions.
In one dimension, the problem can be easily solved in
O(n log n) time, as follows. We sort the agents in the
increasing order of the skill level, say, the x axis. We
then repeatedly select the top h unassigned agents, and
assign them to the next team, until each of the α teams
has h agents. Clearly, this assignment has the maxi-
mum sum of team scores. If needed, we can make each
team’s size to be exactly β ≥ h, by arbitrarily selecting
any of the unassigned agents since their scores do not
contribute to the team scores.

In fact, a similar greedy strategy also solves the team
formation problem for any dimension d ≥ 1 if the team
size is β ≥ hd: repeat the earlier one-dimensional algo-
rithm independently for each dimension. (It is possible
for an agent to contribute a top score in more than one
dimension, in which case a team may reach its maxi-
mum possible score with fewer than hd agents.) For
team size β < hd, however, the problem becomes non-
trivial even in dimension d = 2 and h = 2. This is the
focus of the following discussion, where we consider the
team formation problem in two dimensions.

3.1 Forming 3-person teams in 2-dimensions

In the interest of simpler exposition and proofs, we de-
scribe our algorithm using the scoring rule h = 2, and
then discuss the minor adaptations needed for general-
ization to higher values of h. Therefore, in the following
we drop the subscript h from the scoring notation; it is
always assumed to be h = 2. Specifically, we focus on
the case of team size β = 3, which helps illustrate some
of the main difficulties of the problem. The case of β = 1
or β = 2 is easily solved greedily in two dimensions, and
thus omitted from our discussion.

Somewhat surprisingly, the problem of forming teams
of size 3 turns out to be non-trivial even if we want to
form a single team, namely, α = 1 with the scoring
parameter h = 2. It serves as a test case both for dis-
proving greedy schemes, and for our polynomial time
algorithm. Using x and y as coordinates in two dimen-
sions, suppose a 3-person team has agents with coor-
dinates (x1, y1), (x2, y2), (x3, y3). (Recall that we are
using scoring rule of top two values, namely, h = 2.)
Since the team score is composed of top two x and top
two y values, and there are only 3 agents, at least one of
them contributes both x and y to the team score. Let
us call such an agent a 2-contributor. Each of the other
agents contributes its x or y values (possibly these two
agents are the same).

This property of the optimal 3-person team suggests
a natural greedy algorithm: sort the agents by their
x, y, and x + y values. First take the agent with the
maximum x+ y, remove it from all three lists, and then
choose the agents with the maximum x and maximum y.
Unfortunately, this simple algorithm is flawed. In fact,
one can show that any algorithm that selects the team
using only the rank order by x, y and x+ y coordinates
fails. In particular, we construct two instances, each
containing 4 agents, whose sorted orders by x, y, and x+
y are identical, yet their top scoring teams are different.
The construction is shown in Figure 1.

On the left, we have an instance with four agents A =
(4, 11), B = (5, 5), C = (1, 8), D = (8, 1). The optimal
3-person team for this instance is (A,C,D) with score
of 31 = x(A)+x(D)+y(A)+y(C), with A contributing
both x and y, C contributing y and D contributing x.
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Figure 1: An example for α = 1, β = 3, h = 1 and
d = 2. On the left, we show an instance of team forma-
tion with four two-dimensional agents: A = (4, 11), B =
(5, 5), C = (1, 8), D = (8, 1). On the right, we show
a closely related instance with A′ = (4, 11), B′ =
(7, 7), C ′ = (1, 8), D′ = (8, 1). The two instances have
exactly the same sorted orders along x, y, x+y, but they
lead to different optimal 3-person team solutions. The
optimal team for the left instance is (A,C,D) with score
31 while the team for the right instance is (A′, B′, D′)
with score 33.

On the right, we have another instance also with four
agents, where only the coordinates of B′ are different:
A′ = (4, 11), B′ = (7, 7), C ′ = (1, 8), D′ = (8, 1), whose
optimal team is (A′, B′, D′) with score of 33 = x(B′) +
x(D′) + y(A′) + y(B′). Yet, the two instances have the
same ranking order by x, y, and x+y. The crucial point
of this example is that although A is an obvious choice
for inclusion in the team, whether it contributes both x
and y or just y depends on which other agents are in
the team, namely, B or B′.

Of course, since there are only O(n3) choices for a 3-
person team, one can exhaustively find an optimal one.
But what about forming α teams? Even for the sim-
ple sum-of-team-scores objective function, the greedy
strategy of iteratively computing the best 3-person team
among the remaining agents fails, as shown by the fol-
lowing example of six agents that we want to group into
two teams of size 3.

A = (20, 20);B = (10, 20);C = (20, 10);

D = E = F = (0, 0)

The single optimal team is (A,B,C), with an score of
80, which leaves the remaining team of (D,E, F ) with
score 0. Instead, an optimal choice of two teams would
be (A,B,D) and (C,E, F ), which together have a score
of 100.

3.2 A Polynomial Time Algorithm

In the following, we develop a polynomial time algo-
rithm for solving the multi-team formation problem op-
timally in two dimensions. Our algorithm is based on
the following idea:

1. First, identify the union of all the agents that are
in the optimal set of teams, and then

2. Partition this union into individual teams while
preserving the total score.

A 3-person team in dimension d = 2 involves a total of
2d = 4 individual skill scores, namely, top two scores in
each of the two dimensions. Across α teams, therefore,
we have a total of 4α scores. Instead of forming these
teams, let us consider a slightly different problem. Find
a group of 3α agents whose score is computed as follows:
for each dimension, we take the top 2α skill values, and
the group score is the sum of these 4α values.

For ease of reference, let us call such a group of 3α
agents with this new scoring rule a league. Given a
league L, let score(L) be the total score of L. Sup-
pose T is the optimal set of 3-person teams, with to-
tal score score(T ). The question we ask is: what
is the gap between score(T ) and score(L)? Clearly,
score(T ) ≤ score(L), because the union of T is a valid
league: a group of 3α agents, whose dimension-wise
scores add up to score(L). But how much larger can the
league score be compared to the team score? Our main
result is that the two are always equal in two dimen-
sions and, more importantly, (1) an optimal league can
be partitioned in polynomial time into α teams of size
β = 3 with the same total score, and (2) we can com-
pute an optimal league in polynomial time. Together
the two lead to a polynomial time algorithm.

3.3 Optimal League Decomposition

Let us first establish the league decomposition lemma.

Lemma 2 (League Decomposition) Given an in-
stance of multi-team formation in two dimensions, let
T be an optimal solution of α teams of size 3 each,
and let L be an optimal league of size 3α. Then,
score(T ) = score(L). We can also partition L into an
optimal multi-team solution in time O(n).

Proof. The score of a league sums the top 2α values in
each dimension. We label each point a 2-contributor, x-
contributor, y-contributor, or none, depending on how
many coordinate values it contributes to the league
score. We then observe the following:

1. there are at least α 2-contributors.

2. there are an equal number of x and y-contributors,
and this number is at most α.

The first claim follows from the pigeon hole principle:
4α values are summed in scoring the league, but there
are only 3α points, and so at least α points must con-
tribute both of their coordinates. This leaves at most 2α
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values unaccounted for, which must be evenly split be-
tween x and y values. Thus, at most α values can come
from an x-contributor, and α from a y-contributor.

1: procedure Partition 2D League(p1, · · · ,p3α)
2: Initialize contributor lists X, Y , and XY .
3: Initialize empty list of teams T .
4: for i ∈ [0, len(X)] do
5: Add team {XY [i], X[i], Y [i]} to T .

j ← len(X).
6: while j < len(XY ) do
7: Select any unused point p.
8: Add team {XY [j], XY [j + 1],p} to T .
9: j ← j + 2.

10: Return T .

Figure 2: Partitioning a league into optimal teams.

We use these two facts to design a simple greedy
algorithm for partitioning the league. The algorithm
is shown above in Fig. 2. We first pair any 2-
contributor of the league with one x-contributor and
one y-contributor. Because there are at least as many
2-contributors as x or y-contributors, we can continue
this until there are no more 1-contributors left. By (2)
above, we exhaust the x and y contributors at the same
time. If any 2-contributors remain, we pair them arbi-
trarily together, along with an arbitrary extra point if
we wish to maintain the team size.

To see that the resulting teams have the same total
score as L, we note that exactly two x and two y values
contributing to the league score are assigned to each
team. Finally, the greedy algorithm only uses unsorted
lists, and therefore runs in O(n) time. This completes
the proof. �

3.4 Computing an Optimal League

We now describe an algorithm for computing the op-
timal league L, using dynamic programming. Given a
set of n d-dimensional points p1, · · · ,pn, we construct
a 4-dimensional table A of size n× 3α× 2α× 2α whose
A[i, j, k, l] entry stores scorek,l(Li,j), where

Li,j = an optimal league using at most

j points in {p1, · · · ,pi}
scorek,l(L) = sum of top k x-values and top l

y-values of L

The table is initialized as L0,j = Li,0 = 0, for all i, j.
Suppose we have computed all Li−1,j−1 and want to
compute Li,j . Consider the new point pi. It is either not

included in the league, or if it is included it serves in one
of the three possible roles: x-contributor, y-contributor,
or 2-contributor. We can, therefore, compute the table
entry Li,j using the following dynamic program:

1: procedure 2D League(p1, · · · ,pn, α)
2: Initialize n× 3α× 2α× 2α table A
3: Let A[0, j, k, l] = 0, ∀j, k, l
4: Let A[i, 0, k, l] = 0, ∀i, k, l
5: for i ∈ [1, n] do
6: for j ∈ [1, 3α] and k, l ∈ [0, 2α] do
7: sx ← A[i− 1, j − 1, k − 1, l] + pi[x]
8: sy ← A[i− 1, j − 1, k, l − 1] + pi[y]
9: sx,y ← A[i−1, j−1, k−1, l−1] +pi[x] +

pi[y]
10: s0 ← A[i− 1, j, k, l]
11: A[i, j, k, l]← max(sx, sy, sx,y, s0)

12: Return A[n, 3α, 2α, 2α]

Specifically, if pi is an x-contributor, then
scorek,l(Li,j) is the x-coordinate of pi plus the
scorek−1,l(Li−1,j−1); that is, the remaining points may
only contribute k − 1 x-values. We have similar cases
for pi being a y-contributor or a 2-contributor. The
final optimal league score is found in the table entry
A[n, 3α, 2α, 2α].

The table A has size O(nα3), each entry can be com-
puted in constant time, and so the algorithm runs in
O(nα3) time and space.

3.5 Extension to Top h Scoring Rule

The league decomposition lemma and the algorithm for
computing the optimal league easily extend to scor-
ing rule of top h, for all h ≥ 2, as follows. Without
loss of generality, we may assume that the team size
satisfies h ≤ β < 2h. Thus, the league size satisfies
αβ < 2αh. By the pigeonhole principle, the number of
2-contributors in the league is at least α(2h − β), and
therefore we can assign to each team at least (2h−β) of
these 2-contributors, and fill the rest by 1-contributors
arbitrarily. Similarly, the dynamic program algorithm is
easily extended by changing the table size to hα instead
of 2α. We summarize the main result of our paper.

Theorem 3 The multi-team formation problem in two
dimensions can be solved optimally in worst-case time
and space O(nα3βh2), where α is the number of teams,
β the team size, h the scoring parameter, and n is the
number of agents.

4 Team Formation in Higher Dimensions

The dynamic programming algorithm of Section 3.3 can
be extended to form an optimal single team of size
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β < hd in polynomial time, for any fixed dimension
d. Specifically, we compute a (d+ 2)-dimensional table
A, whose first two dimensions are the same as before,
namely, the first i points and the team size j. Each
of the remaining d indices corresponds to the number of
top scores in each dimension. In particular, scorek1,···kd ,
where each ki ∈ [0, h], is the team score where top ki
values in dimension i have been accounted for. There
are 2d such combinations, so each table entry can be
computed in O(2d) time. As mentioned earlier, when
the team size β ≥ hd, the problem can be easily solved
in O(dn) time using a greedy algorithm. We therefore
have the following result.

Theorem 4 We can compute an optimal single team
of size β in d dimensions in time O((2h)dβn) time.

The real difficulty in higher dimensions lies in forming
multiple teams. In two dimensions, we used the League
Decomposition Lemma as a key tool. Unfortunately,
as we show below, in higher dimensions, this lemma no
longer holds.

Theorem 5 Let L be an optimal league, and T a set
of optimal teams in dimensions d ≥ 4. Then, there are
instances for which score(T ) < score(L).

Proof. Consider the following set of 9 agents in four
dimensions. A = A′ = (1, 1, 1, 0), B = B′ =
(1, 1, 0, 1), C = C ′ = (1, 0, 1, 1), D = D′ = (0, 1, 1, 1),
and F = (0, 0, 0, 0). Suppose our goal is to form α = 3
teams, each of size β = 3. Then, trivially, our league
consists of all p points, where the scoring rule sums the
top 2α = 6 values in each dimension. By construction,
we have six 1s in each dimension, and so score(L) = 24.

However, any partition of these nine agents into 3
teams must assign the all-zero point F to one of the
teams, which can therefore have a score of at most 6.
On the other hand, no team has score more than 8, since
the sum of top two entries in each of the four dimensions
is two. Thus, the optimal team formation has score 22,
proving that score(T ) < score(L). This completes the
proof. �

One can also show that an optimal partition of an
optimal league L may not give an optimal team forma-
tion solution T . For instance, imagine introducing one
more agent G = (1, 1, 1, 1) to the set of points in the
previous example. Replacing F by G does not improve
score(L), so L remains an optimal league. On the other
hand, replacing F by G does improve score(T ). Find-
ing an efficient algorithm for optimal or approximately
optimal team formation in a constant dimension larger
than 2 remains an interesting open problem.

5 Concluding Remarks

Our work introduces a simple and natural model for
multi-dimensional multi-team formation, and shows
that computing optimal teams is NP -hard even in mod-
erate dimensions. We show that the problem of forming
multiple teams optimally can be efficiently solved in two
dimensions, as is the problem of forming a single team
in any dimension d = O(log n). The problem of form-
ing multiple teams in higher than two dimension, either
exactly or approximately, remains an interesting open
problem.

There are several other natural objective functions
for team optimization, such as maximizing the mini-
mum team score, instead of maximizing the sum of team
scores. For maximizing the minimum, unfortunately, we
can show that the problem is NP -hard even in one di-
mension if we sum the top three scores of the team. The
objective function can also be extended by considering
other aspects of team formation that translate to more
general constraints beyond individual-specific skills: for
example, synergy between team members translates to
edge-level requirements. Learning the skills and syn-
ergies based on past observations is another possible
future extension of the research.
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Simple Fold and Cut Problem for Line Segments

Guoxin Hu∗ Shin-ichi Nakano† Ryuhei Uehara∗ Takeaki Uno¶

Abstract

We investigate a natural variant of the fold-and-cut
problem. We are given a long paper strip P and n line
segments drawn on P such that each line segment is
perpendicular to the two long edges of P and the dis-
tances between the line segments are not uniform. We
cut all the line segments by one complete straight cut
after overlapping all of them by a sequence of simple
foldings. Our goal is to minimize the number of simple
foldings. In this paper, we give algorithms for finding
a shortest sequence of simple foldings for given n line
segments. We first investigate the case that the dis-
tances are almost the same. In this case, our algorithm
runs in O(n2) time and O(n2) space. Next we extend
the algorithm for general distances. In general case, our
algorithm runs in O(n3) time and O(n2) space.

1 Introduction

Take a sheet of paper, fold it flat, and then make one
complete straight cut. What shapes can the unfolded
pieces have? This fold-and-cut problem was introduced
formally from the viewpoint of computational geometry
in 1998 [5]. It is well known that there is a universal the-
orem for this problem, that is, any planar graph drawn
by straight lines can be fold-and-cuttable. There are
two major approaches to this problem in general form
(see [7] for further details). However, in any of these ap-
proaches, to cut any shape, we need quite complicated
folding operations so far, and hence it is quite difficult
to realize by folding robots. From this viewpoint, the
fold-and-cut problem for restricted ways of folding has
been investigated. Demaine et al [4] only use a simple
folding as a basic operation and investigate a connected
simple polygon which can be a solution of the fold-and-
cut problem. There are several models of simple folding
[1], and precisely, they use all-layer simple folding, which
is the simplest operation among them [2]. Demaine et
al [4] focus on a connected simple polygon, and it was
open for disconnected polygons.

In this paper, we consider the fold-and-cut problem
for disconnected polygons, which is quite complicated

∗School of Information Science, Japan Advanced In-
stitute of Science and Technology, Japan {huguoxin,
uehara}@jaist.ac.jp
†Gunma University, Japan nakano@cs.gunma-u.ac.jp
¶National Institute of Informatics, Japan uno@nii.jp

Figure 1: A simple example. The input of this problem
is [1,1,2,2,2,1,2,2,2,2,2,1,2,1]. Mountain foldings and
valley foldings are represented by dash-dot red lines and
dash blue lines, respectively.

in general form. Therefore, we start from the simplest
problem in this framework. Intuitively, we introduce
a one-dimensional version of this problem. (A similar
idea is introduced for some paper folding problems; see
[3, 6].) We are given a set of n parallel line segments on a
long paper strip P . The given line segments are perpen-
dicular to the two long edges of P , which give us the set
of cut lines. A simple example is given in Figure 1(a).
In this example, a paper strip P is of length 23, and 13
line segments are given as shown in the figure. We have
the sequence of distances [1,1,2,2,2,1,2,2,2,2,2,1,2,1] as
the input of this problem. In order to cut these line seg-
ments by one complete straight cut, we have to overlap
all of these line segments on a line so that no other part
overlaps on the line.

We employ the simplest folding model, which is called
all-layer simple folding. Once we choose a crease line,
all paper segments on the crease line are folded in the
same direction. (See [1, 2] for further details of simple
folding models.) From the practical viewpoint, all-layer
simple folding is easier than the others, and hence there
are some folding robots realizing it. Hereafter, we just
use the term simple folding for simplicity.

We note that this problem always has a feasible so-
lution achieved by a naive algorithm (Figure 1(b)) if
the intervals satisfy some condition, which is discussed
later: We first put crease lines halfway between two con-
secutive line segments, next fold along these crease lines
alternately in mountain and valley folds, and obtain a
pleat folding (Figure 1(c)). Then all given cut lines are
on the same line, and we can cut them (and do not
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cut any other paper) with one complete straight cut.
Therefore, if we perform simple folding n− 1 times, we
obtain a valid folded state to be cut. However, we can
sometimes reduce the number of simple foldings. For
example, the crease line pointed by a bold arrow in Fig-
ure 1(b) can be folded first, and then the length of the
paper strip is drastically reduced.

As we will see, the naive algorithm with n − 1 fold-
ings always works if the minimum distance dmin and
the maximum distance dmax satisfy dmax/dmin ≤ 2. We
say distances are almost the same when this condition
is satisfied. (We note that the condition is sufficient,
but not necessary.) However, for example, the input
[10,1,1,10] does not satisfy this condition, and then the
naive algorithm does not work anymore. However, even
in this case, we can solve the problem: We first fold
the leftmost paper segment in half 4 times. Then we
have the paper strip represented by [0.625,1,1,10]. We
fold again for the rightmost paper segment and obtain
[0.625,1,1,0.625]. Then we can use the naive algorithm.
We will see that any sequence of distances has a feasible
solution for the simple fold and cut problem using this
technique.

In this paper, we consider the problem for finding
the optimal way of simple folding. That is, for any
given set of n line segments on a paper strip, our aim
is finding the shortest sequence of all-layer simple fold-
ings to overlap all line segments on a line. When the
distances are almost the same, by some observations, it
is not difficult to construct a straightforward algorithm
that runs in O(n4) time. We will give a non-trivial effi-
cient algorithm for solving this problem in O(n2) time
and O(n2) space. Next we extend this algorithm to the
problem for general case. In general case, our extended
algorithm finds a shortest simple foldings in O(n3) time
and O(n2) space.

2 Preliminaries

Let (d0, d1, . . . , dn) be the input of the problem. The pa-
per strip P is of length L =

∑n
i=0 di. We regard the pa-

per strip P as a line segment of length L which is placed
on the interval [0, L] on the x-coordinate. Let `0 = 0
(and `n+1 = L) be the corresponding x-coordinate of
the left (and right) endpoint of P , respectively. We also

let `j =
∑j−1

i=0 di for 0 < j < n. Namely, `j gives the x-
coordinate of the j-th line segment. We sometimes call
paper strip between `i and `i+1 the ith paper segment.

We define the point fj as the middle point between
two consecutive line segments `j and `j+1 with 0 ≤ j ≤
n (precisely, fj = (`j +`j+1)/2). Except the 0th and the
nth segment, we can assume that our algorithm always
folds P at some fj (otherwise, we cannot make a simple
fold and cut anymore).

We here note that `0 and `n+1 are not the line seg-

Figure 2: Two simple foldings along (a) f3 and (b) f8.
Two sheets are overlapping in gray areas.

ments to be cut. In a sense, they are already cut, and
we do not need to fold along the line at f0 and fn.
On the other hand, when d0 and dn are quite large,
we cannot use the simple pleat folding algorithm stated
in the introduction. Once we fold along a line fi, the
paper segment in [0, d0] or [L − dn, L] may cover some
other crease lines, and we cannot make any simple fold
anymore. When they cover no crease line, the line fi
becomes the edge of the paper strip and it plays the
same role then. This issue will be discussed in Sec-
tion 4. We first assume on the distances to avoid this
issue. Let dmin = min{2d0, d1, d2, . . . , dn−1, 2dn} and
dmax = max{2d0, d1, d2, . . . , dn−1, 2dn}. When we have
1 ≤ dmax/dmin ≤ 2, we can use the simple pleat folding
algorithm as follows. When we fold the paper strip by a
simple folding along the leftmost crease line fi at the ith
step, the left paper segment from fi is of length at most
max{d0, dmax/2}, and the (i + 1)st paper segment is of
length at least dmin ≥ max{dmax/2, dn}. Therefore, the
leftmost paper segment does not cover the crease line
fi+1. We call the distances are almost the same in this
situation. Now we are ready to state our problem:

Input: A paper strip P with parallel n lines `1, . . . , `n,
where di is the distance between `i and `i+1 for
each d = 0, . . . , n (`0 and `n+1 denote the left and
right edges of P ).

Operation: All-layer simple folding.

Goal: Finding a shortest sequence of simple foldings
that overlaps all lines `i (1 ≤ i ≤ n) on a line, and
no other paper segment is on the line.

We first consider the case that the distances are al-
most the same. That is, we only make a simple folding
along some crease line fi. We assume that the (folded)
paper strip P is on the interval [i, j] for some i < j.
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When our algorithm makes a simple fold P at fk with
i < fk < j, it flips the left part of P at the crease fk
if fk ≤ (i + j)/2, and it flips the right part of P at
fk if fk > (i + j)/2. Then, we can observe that P al-
ways shrinks without changing its position. Precisely,
we have the following observation:

Observation 1 Assume P is placed on the interval
[i, j] for some i < j. After making a simple folding,
P is placed on the interval [i′, j′] such that either (1)
i < i′ ≤ (i + j)/2 and j′ = j or (2) i′ = i and
(i + j)/2 < j′ < j. Moreover, the sequence of line
segments (or distances) in [i′, j′] is not changed by the
simple folding.

Two examples are shown in Figure 2. We here note
that in this simple folding, the direction (mountain or
valley) of simple folding does not matter. Therefore, we
do not consider the direction of each folding hereafter.
Intuitively, we start from a paper strip P placed on
[0, L], the interval shrinks after each simple folding, and
eventually, we obtain the paper strip placed on [fj , fj+1]
for some j. Then we can make one complete straight
cut of all given line segments (without cutting any other
part). Our goal is finding the shortest sequence of fks
for it.

Let (d0, d1, . . . , dn) be the input of the problem, and
(f1, . . . , fn−1) be the middle points. At the point fi
with fi ≤ L/2, we can fold P at fi only if every pair of
corresponding line segments overlaps. More precisely,
we say that P is simple foldable at fi if and only if
di+j = di−j for every j = 1, 2, . . . , i − 1 and d2i ≥ d0
(since d0 is the length of the leftmost paper segment)1.
Such a simple folding at fi is said to be valid. We can
define it for a point fi with fi > L/2 in the same way.
We can also define a valid simple folding for a folded P in
the same manner. When a folded state of P is obtained
by a sequence of valid simple foldings, the folded state
is also said to be valid. Let fi be a valid point of P
with fi ≤ L/2. Then it is easy to see that the sequence
(d1, . . . , di, . . . , d2i−1) is a palindrome of odd length, and
d0 ≤ d2i.

In this paper, palindromes of odd lengths play an im-
portant role. For a given string S = (s0, s1, . . . , sn), a
maximal palindrome centered at si is defined by a maxi-
mal palindrome of odd length at center si in S. We will
use the following result by Manacher:

Theorem 1 ([8]) For a given string S =
(s0, s1, . . . , sn) of length n, let pi be the length of
the maximal palindrome centered at si. Then the
sequence (p0, p1, . . . , pn) can be computed in O(n) time
and O(n) space.

1We may have a special case that 2i = n (see Figure 3(c)).
In this case, the length of this paper segment is changed to
max{d0, dn}. The management of this special case is trivial and
hence we do not consider in this paper hereafter.

We here note that, by Observation 1 and Theorem 1,
we can solve the simple fold and cut problem for a given
P in O(n4) time and O(n2) space if the distances are
almost the same:

Proposition 2 If the distances are almost the same,
there is an algorithm for solving the simple fold and cut
problem for P in O(n4) time and O(n2) space.

Proof. For the input of the problem, let P be the set
of intervals [fi, fj ] for each 0 ≤ fi < fj ≤ L. By Obser-
vation 1, each valid folded state P can be represented
by an interval [fi, fj ] for some 0 ≤ fi < fj ≤ L. Now
let G = (P, E) be a directed graph defined as follows.
For each pair of P1, P2 ∈ P, (P1, P2) ∈ E if the folded
state represented by P2 can be achieved from the folded
state represented by P1 by a simple folding. Then the
solution of the problem is given by a shortest path on
G from the interval [0, L] to an interval [fi, fi+1] for
some i. Since |P| = O(n2) and each vertex Pi is of
degree O(n), the construction of G takes O(n3) time
with O(n2) space with precomputation of the sequence
of lengths of maximal palindromes by Theorem 1. Then
the shortest path problem can be solved in O(n4) time
with O(n2) space by the breadth first search. �

3 Almost the Same Case

We will improve the running time in Proposition 2 from
O(n4) time to O(n2) time. That is, the main theorem
in this section is as follows:

Theorem 3 There is an algorithm for solving the sim-
ple fold and cut problem for P when the distances are
almost the same in O(n2) time and O(n2) space.

Here we show a simple but crucial lemma.

Lemma 4 Let (d0, d1, . . . , dn) be the input of the prob-
lem, and (f1, . . . , fn−1) be the middle points. Let P ′ be
a folded state of P placed on [fi, fj ]. We assume that
two simple foldings at fk and fk′ are both valid for some
k and k′ with i < k < k′ < (i+j)/2. Then for any valid
simple folding sequence F = (fk, . . .), we have another
valid simple folding sequence F ′ = (fk′ , . . .) that is as
short as F .

Proof. In F , after first valid simple folding at fk, we
obtain the folded state P ′′ in the interval [fk, fj ]. On
the other hand, after fk′ , the folded state P ′′′ is in the
interval [fk′ , fj ] with fk < fk′ . Then, by Observation
1, P ′′′ is the subsequence of P ′′. Precisely, the latter
part [fk′ , fj ] in P ′′ is the same as P ′′′. Therefore, we
first replace the first fk in F by fk′ and remove all valid
simple foldings fk′′ with fk < fk′′ < fk′ , then we obtain
a valid simple folding sequence F ′. Then F ′ is as short
as F , which completes the proof. �
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We can obtain the same lemma for the right part of P .
Therefore, when we consider the shortest sequence of
valid simple foldings for any folded state P ′ of P placed
on [fi, fj ], it is sufficient to consider two valid simple
foldings at fl and fr, where fl is the maximum valid
simple foldable point with fl ≤ (fi +fj)/2 and fr is the
minimum valid simple foldable point with (fi + fj)/2 <
fr.

3.1 Data Structures for Our Algorithm

Let (d0, d1, . . . , dn) be the input of the problem, and
(f1, . . . , fn−1) be the middle points on P . Our algorithm
is based on dynamic programming. We will use the
following tables.

Palindromes: To check valid simple folding, we will
use the sequence (p0, p1, . . . , pn−1), where pi is the
length of the maximal palindrome centered at fi for
each i = 0, . . . , n− 1. By Theorem 1, the sequence can
be computed in O(n) time and O(n) space.

LLine, RLine: For positive integers i and l,
LLine[i][l] indicates whether the paper segment [`i, `i+l]
can be folded to left along the line fi+l or not. In-
tuitively, when LLine[i][l] = 1, the paper segment
[`i, `i+2l] gives us a palindrome with respect to the dis-
tances. More precisely, we define LLine[i][l] = 1 if
di = di+2l, di+1 = di+2l−1, . . ., and di+l−1 = di+l+1.
Otherwise, we define LLine[i][l] = 0. We note that if
L < i + 2l, we define LLine[i][l] = 0. For the sake of
simplicity, we also define LLine[i][0] = 1 for any i.

In the same manner, we also define RLine[i][l]. Pre-
cisely, we define RLine[i][l] = 1 if di = di−2l, di−1 =
di−2l+1, . . ., and di−l+1 = di−l−1.

For the initial state of P where P is placed on an
interval [0, L], by Lemma 4, we can observe that the
shortest valid simple folding sequence starts from either
the crease line fl or fr such that (0) let fm be the central
crease line, that is, m = bn/2c, (1) fl is the maximum
index in 0 ≤ l ≤ m such that LLine[0][l − i] = 1, and
(2) fr is the minimum index in m < r ≤ n such that
RLine[n][n− r] = 1. This observation holds for general
folded state of P as follows.

Lemma 5 Let P ′ be the folded state of P which is ob-
tained by some simple foldings in the manner stated in
Observation 1. That is, we can assume P ′ is placed
on an interval [fi, fj ] for some crease lines fi and fj
with i < j. Let fm be the central crease line given by
m = b(i + j)/2c. Then the shortest valid simple fold-
ing sequence starts from either the crease line fl(i, j)
or fr(i, j) such that (1) fl(i, j) is the maximum index
in i ≤ l ≤ m such that LLine[i][l − i] = 1, and (2)
fr(i, j) is the minimum index in m < r ≤ j such that
RLine[j][j − r] = 1.

Proof. By Lemma 4 and the definitions of LLine,
RLine, it follows. �

Let sf[i][j] be the minimum number of simple foldings
of the folded state P ′ placed on an interval [fi, fj ] of the
paper strip P . Then by Lemma 5, we have the following
observation.

Observation 2 The minimum number of simple fold-
ings is given by sf[0][n− 1] which satisfies the following
recursive definitions.

sf[i][j] = ∞ if i > j,

sf[i][j] = 0 if j = i,

sf[i][j] = min{
sf[fl(i, j) + 1][j], sf[i][fr(i, j)− 1]

}+ 1 otherwise,

where fl(i, j) and fr(i, j) are defined as shown in
Lemma 5.

Hereafter, we will show the implementation of the com-
putation of Observation 2 which runs in O(n2) time and
O(n2) space.

3.2 Algorithm Description and Computational Com-
plexity

In this section, we prove Theorem 3 by showing the
details of implementation of our main algorithm. It
computes the minimum number of simple foldings by
computing sf[0][n− 1] in Observation 2. The algorithm
consists of initialization of auxiliary arrays and compu-
tation of sf[i][j].

3.2.1 Initialization step

For a given input (d0, d1, . . . , dn), the algorithm first
computes the middle points (f1, . . . , fn−1). Next it com-
putes the sequence (p0, p1, . . . , pn−1), where pi is the
length of the maximal palindrome centered at fi for each
i = 0, . . . , n − 1. By Theorem 1, the sequence can be
computed in O(n) time and O(n) space. The algorithm
next computes LLine[i][l] for each i and l. (We prepare
a two-dimensional array to store the table LLine[i][l].)
By the definition of LLine[i][l], LLine[i][l] = 1 if and
only if pi+l > 2l. Therefore, it can be computed in
O(n2) time with O(n2) space.

In order to compute the maximum and minimum in-
dices in Lemma 5, we use two auxiliary tables (or arrays)
Fl(i, j) and Fr(i, j). For m = b(i + j)/2c, each element
Fl(i, j) gives the maximum index l in [i,m] such that
LLine[i][l − i] = 1, and Fr(i, j) gives the minimum
index r in [m + 1, j] such that RLine[j][j − r] = 1.
For a fixed i, it is not difficult to see that Fl(i, j) is
changed from Fl(i, j − 1) only when the correspond-
ing LLine[i][m − i] = 1, otherwise, Fl(i, j) =Fl(i, j −
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1). More precisely, we have (0) Fl(i, 0) = i (since
LLine[i][0] = 1), (1) Fl(i, j) = m if LLine[i][m−i] = 1,
and (2) Fl(i, j) =Fl(i, j − 1) if LLine[i][m − i] = 0.
Therefore, the table Fl(i, j) can be computed in O(n2)
time and O(n2) space. For the table Fr(i, j), we can
use a symmetric argument, and it can be computed in
the same manner.

3.2.2 Computation of sf[i][j]

Now we turn to the computation of the minimum num-
ber of simple foldings. It can be done by computing the
array sf[i][j]. Using the auxiliary arrays in the previous
section, we can describe this computation as follows:
sf[i][i] = sf[i][i + 1] = 0 for each i, and

sf[i][j] = min{sf[Fl(i, j) + 1][j], sf[i][Fr(i, j)− 1]}+ 1

for each j = i, . . . , n− 1

This equation is a recursive function with respect to
the interval [i, j]. That is, sf[i][j] is defined by sf[i′][j]
and sf[i][j′] such that i < i′ and j′ < j. Therefore, we
can use the standard dynamic programming technique
with respect to the length of the interval. That is, the
algorithm first initializes all elements of sf[i][i] =sf[i][i+
1] = 0 and next computes all elements of sf[i][i + 2],
then computes all elements of sf[i][i + 3], and so on.
This can be done in O(n2) time and O(n2) space, which
completes the proof of Theorem 3.

4 General Case

In the general case, we have to take care of the case
that the leftmost paper segment or the rightmost paper
segment covers some lines `i to be cut after folding.

To avoid this, the leftmost or rightmost paper seg-
ment has to be simple folded locally to shrink its length.
Some simple examples are given in Figure 3. We here
note that any intermediate paper segment, say the ith
paper segment between `i and `i+1, cannot be shrunk
by any all-layer simple fold: If we fold along some crease
line except fi, either `i or `i+1 should overlap with some
paper inside of this segment. Then we cannot separate
this cut line by any all-layer simple fold, and hence we
will fail to perform one straight cut for this line. That
is, if we want to shrink the ith paper segment, we have
to fold along fi first, and make it the leftmost or right-
most paper segment of length di/2 in the folded state.
Then we can observe the following:

Observation 3 For any given numbers d and D with
d < D, the minimum number of simple foldings to make
a paper segment of length D to one of length at most d
is dlog2 D − log2 de.

Proof. It is easy to see that to reduce the length of a
paper segment of length D to at most d, the optimal

Figure 3: We have to roll up the leftmost paper segment
of length 6; it should be folded in half (a) 3 times to
make it of length 6/23 = 0.75 < 1 when we fold it
along the crease line f1, (b) 2 times to make it of length
6/24 = 1.5 < 2 when we fold it along the crease line f2,
and (c) 0 times when we fold it along the crease line f5.

way is to repeat in simple folding in half k times such
that k is the minimum integer with D/2k < d. Solving
this, we obtain the claim. �

In the case that distances are almost the same, one
simple folding can always be done at any fi if it is valid.
In general case, as observed above, it is not necessarily
true anymore. We suppose that the folded state P ′ is
on an interval [i, j] as shown in Observation 1, and we
want to make a simple folding along fk for some k in
(i, j). Then we have two basic operations that consist
of two phases: we first shrink the leftmost paper strip
and make a simple fold along fk when k ≤ (i + j)/2,
or we first shrink the rightmost paper strip and make
a simple fold along fk when k > (i + j)/2. The ex-
tra simple foldings can be estimated by Observation 3.
In order to describe this extra foldings, we introduce a
function ef(di, dj) as follows. If di is short enough, we
need no extra foldings. We have three cases; we define
ef(di, dj) = 0 when (1) 0 < i < n and (di/2) ≤ dj ,
(2) i = 0 and j = n, (3) i = 0, j < n, and d0 ≤ dj ,
or (4) i = n, j > 0, and dn ≤ dj . In the other cases,
we need extra foldings as follows. When 0 < i < n and
(di/2) > dj , we define ef(di, dj) = dlog2(di/2)−log2 dje.
When i = 0 or i = n (with j 6= 0 and j 6= n), we define
ef(di, dj) = dlog2 di − log2 dje when di > dj .

Now we are ready to show the main theorem in this
section:
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Theorem 6 There is an algorithm for solving the sim-
ple fold and cut problem for P in general distances in
O(n3) time and O(n2) space.

Proof. The basic strategy is the same as the proof of
Theorem 3. The key issue is that we cannot have the
monotone property used in the proof of Lemma 4 any-
more. When we have two valid foldings at fk and fk′

with i < k < k′ < (i + j)/2 on the folded state P ′ on
[i, j] except the leftmost paper segment, fk can be bet-
ter choice than fk′ if ef(di, d2k−i) is much smaller than
ef(di, d2k′−i). Thus we cannot use Lemma 5.

However, we use the following weaker claim. Let P ′

be the folded state of P which is obtained by some
simple foldings, in the manner stated in Observation 1.
That is, we can assume P ′ is placed on an interval [fi, fj ]
for some crease lines fi and fj with i < j. Let fm be
the central crease line given by m = b(i + j)/2c. Then,
since no intermediate paper segment can be folded by
an all-layer simple folding along a line except fis, the
shortest valid simple folding sequence starts from either
the crease line fl(i, j) or fr(i, j) such that (1) fl(i, j) is
an index in i ≤ l ≤ m such that LLine[i][l − i] = 1,
and (2) fr(i, j) is an index in m < r ≤ j such that
RLine[j][j − r] = 1.

Thus, we can use the same technique for finding the
shortest sequence of simple foldings maintained by an
array sf[i][j] which is defined by sf[i][i] = 0 for each i,
and

sf[i][j] = min{
sf[i′][j] + ef(di, d2i′−i), sf[i][j

′] + ef(dj , d2j′−j)

}+ 1

for each i′ = i+1, . . . ,m and j′ = m+1,m+2, . . . , j−1.
The correctness follows from the above discussion. This
equation is still a recursive function with respect to the
interval [i, j]. That is, sf[i][j] is defined by sf[i′][j] and
sf[i][j′] such that i < i′ and j′ < j. Therefore, we can
use the standard dynamic programming technique with
respect to the length of the interval. This can be done
in O(n3) time and O(n2) space. �

5 Concluding Remarks

In this paper, we investigated a one-dimensional vari-
ant of the simple fold and cut problem. We use the
simplest model for simple folding. When we use the
other models for simple folding discussed in [1], we will
have a different problem. For example, the naive al-
gorithm stated in the introduction always works with
n − 1 foldings for some simple folding models stronger
than all-layer simple folding model. In this case, find-
ing a shortest sequence of simple foldings seems to be
a completely different problem, which is an interesting
open problem.

On any simple folding model, the simple fold and
cut problem for multiple simple polygons in two-
dimensional space is still open. The authors conjecture
that finding a shortest sequence of simple foldings for
this general two-dimensional case is NP-complete.
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Rectangular Unfoldings of Polycubes

Martin L. Demaine∗ Robert Hearn† Jason Ku‡ Ryuhei Uehara§

Abstract

In this paper, we investigate the problem that asks if
there exists a net of a polycube that is exactly a rect-
angle with slits. For this nontrivial question, we show
affirmative solutions. First, we show some concrete ex-
amples: (1) no rectangle with slits with fewer than 24
squares can fold to any polycube, (2) a 4 × 7 rectangle
with slits can fold to a heptacube (nonmanifold), (3)
both of a 3 × 8 rectangle and a 4 × 6 rectangle can fold
to a hexacube (nonmanifold), and (4) a 5 × 6 rectangle
can fold to a heptacube (manifold). Second, we show a
construction of infinite family of polycubes folded from
a rectangle with slits. The smallest one given by this
construction is a 6 × 20 rectangle with slits that can
fold to a polycube of genus 5. This construction gives
us a polycube for any positive genus. Moreover, by this
construction, we can show that there exists a rectangle
with slits that can fold to k different polycubes for any
given positive integer k.

1 Introduction

It is well known that a unit cube has eleven edge de-
velopments. When we unfold the cube, no overlap oc-
curs on any of these eleven developments. In fact, any
development of a regular tetrahedron is a tiling, and
hence no overlap occurs [1]. However, this is not neces-
sarily true for general polycube, which is a polyhedron
obtained by face-to-face gluing of unit cubes. For ex-
ample, we can have an overlap when we unfold a box
of size 1 × 1 × 3 (Figure 1), while we have no overlap
when we unfold a box of size 1 × 1 × 2 (checked by ex-
haustive search). On the other hand, even for the Dali
cross (3-dimensional development of 4-dimensional hy-
per cube), there is a non-overlapping unfolding that is
a polyomino with slits that satisfies Conway’s criterion
in the induced plane tiling [2].

In this context, we investigate a natural but nontriv-
ial question that asks if we can fold a polycube from a
rectangle with slits or not. We first note that a con-

∗Computer Science and Artificial Intelligence Lab, MIT,
mdemaine@mit.edu

†bob@hearn.to
‡Electrical Engineering and Computer Science Department,

MIT, jasonku@mit.edu
§School of Information Science, Japan Advanced Institute of
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Top

Bottom

Bottom

Top

Figure 1: Cutting along the bold lines of the left box of
size 1 × 1 × 3, overlap occurs at the dark gray square
on the right development. This development was first
found by Takeaki Uno in 2008. We have four places to
glue the top, however, this development is essentially
unique way for this box to overlap except the place of
the top, which is examined by exhaustive search.

vex polycube (or a “box”) cannot be folded from any
rectangle with slits. In general, any slit has no meaning
of a development of a convex polycube as proved in [3,
Lemma 1]. Therefore, a rectangle cannot fold to any
convex polycube even if we make slits in any way. That
is, if the answer to the question is yes, the polycube
should be concave.

In this paper, we show two series of affirmative an-
swers to the question. First, we develop an algorithm
that searches slits of a given rectangle to fold a poly-
cube. Based on the algorithm, we find some concrete
slit patterns:

Theorem 1 (1) No rectangle with slits with fewer than
24 squares can fold to any polycube, (2) a 4×7 rectangle
with slits can fold to a heptacube, which is nonmanifold,
(3) both of a 3×8 rectangle and a 4×6 rectangle can fold
to a hexacube, which is also nonmanifold, and (4) a 5×6
rectangle can fold to a heptacube, which is manifold.

Second, we show a construction of infinite family of
polycubes folded from a rectangle with slits.

Theorem 2 For any positive integer g, there is a rect-
angle with slits that can fold to a polycube of genus g.

As a result, we can conclude that there are infinite many
polycubes that can be folded from a rectangle with slits.
In the construction in Theorem 2, we use a series of
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Figure 2: The right rectangle is an unfolding of the
left polycube of volume 7. The left figures describe the
polycube by slices of it.

gadgets that have many different ways of folding. Using
this property, we also have the following corollary.

Corollary 3 For any positive integer k, there is a rect-
angle with slits that can fold to k different polycubes.

2 Proof of Theorem 1

We first show the results and give a brief idea of the
algorithm that we used for finding the patterns.

2.1 Pattern 1: 4× 7 rectangular unfolding of a hep-
tacube

In Figure 2, we give a heptacube that has a 4×7 rectan-
gular unfolding. Cubes a and f touch along a diagonal.
In the unfolding, D, B, R, L, U, F mean Down, Back,
Right, Left, Up, Front, respectively. This heptacube
has 90 rectangular unfoldings.

2.2 Patterns 2 and 3: 3 × 8 and 4 × 6 rectangular
unfoldings of a symmetric hexacube of genus 1

In Figure 3, we give a hexacube that has two rectan-
gular unfoldings. One is of size 3 × 8 and the other is
of size 4 × 6. This polycube has no diagonal touch, al-
though it is genus 1 at the central point. There are 1440
rectangular unfoldings, and one of each type is shown
in Figure 3. (This 24-face hexacube has 12 symmetries;
therefore, the number of distinct rectangular unfoldings
is 120 rather than 1440.)

2.3 Pattern 4: 5×6 rectangular unfolding of a sym-
metric heptacube

In Figure 3, we give a heptacube that has rectangular
unfolding of size 5 × 6. This polycube has no diagonal
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Figure 3: The left down polycube of volume 6 has two
different rectangular unfoldings of size 3 × 8 and 4 × 6
with slits.
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Figure 4: The left polycube of volume 7 has rectangular
unfolding of size 5 × 6.
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Top

Bottom

Figure 5: Spanning tree corresponding to the pattern in
Figure 1.

touch with genus 0. Curiously, this heptacube has only
4 rectangular unfoldings. All unfoldings are shown in
Figure 4. As you can observe, these 4 unfoldings are
almost the same except the cut of unit length at the
top left corner.

Our program confirmed that there are no rectangular
polycube unfoldings with fewer than 24 faces, and the
one shown in Figure 3 is unique for 24 faces. These facts
complete the proof of Theorem 1. We here observe the
algorithm used in this section.

2.4 Algorithm

The input of our algorithm is a polycube Q.
We here consider the polycube Q of surface area
n squares as a graph G(Q) = (V, E); the
set V of n unit squares and E = {{u, v} |
the unit squares u and v share an edge on Q}. On the
graph G(Q), a slit on Q cuts the corresponding edge.
Then it is known that an unfolding of the polycube Q
is given by a spanning tree of G(Q) (see, e.g., [3]). For
example, the cutting pattern in Figure 1 corresponds to
the spanning tree in the right graph in Figure 5. There-
fore, when a polycube Q is given, the algorithm can
generate all unfoldings by generating all spanning trees
for the graph G(Q). (We note that, as mentioned in In-
troduction, some slits can be redundant in this context;
however, we do not care about this issue. Therefore,
some unfoldings in the figures contain redundant slits.)

For each spanning tree of G(Q), the algorithm checks
whether the corresponding unfolding overlaps or not. If
not, it gives a valid net of Q. If, moreover, it forms
a rectangle, it is a solution of our problem. For a
given spanning tree, this check can be done in linear
time. Since all spanning trees of a given graph G can
be enumerated in O(1) time per tree (see [5]), all un-
foldings of a given polycube Q of area n can be done
in O(nT (G(Q))) time, where T (G(Q)) is the number of
spanning trees of G(Q).

We note that our algorithm runs for any given poly-

A

BCDEFG

H

I J

K A

H K J

I

BCDEF
G

Figure 6: An F gadget.

Figure 7: A construction of a rectangle of size 6 × 20.
It can fold to a polycube of genus 5.

Figure 8: A construction of rectangle of size 6 × 24. It
can fold to a polycube of genus 1.

cube Q, and it can check if Q has a valid net or not. By
exhaustive check, we have the following theorem:

Theorem 4 All polycubes that consist of 12 or fewer
cubes have an edge unfolding without overlapping.

3 Proof of Theorem 2

Next we turn to a construction of family of polycubes.
We first introduce a gadget shown in Figure 6, which

is called an F gadget. An F gadget is a rectangle of size
3 × 6 with some slits, which can be folded to F shape
as shown in Figure 6. Gluing two copies of F gadgets
(precisely, one is the mirror image), we can obtain an
L-shaped pipe with hole of size 1×2. Therefore, joining
four of the L-shaped pipes, we can construct a polycube
as shown in Figure 7. By elongating the gadgets, we can
change the size and genus as shown in Figure 8.

Now we introduce another series of gadgets in Fig-
ure 9, which is called I gadgets. An I gadget of size i

161



31st Canadian Conference on Computational Geometry, 2019

I(1)

I(2)

I(3)

I(4) A B

A

A

A

A

A

A

A A

A

B

B

B

B

B

B

B B

B

Figure 9: I gadgets.

is a rectangle of size 3 × (i + 2) with some slit. The I
gadget of size i has a zig-zag slit of length 2i as shown
in Figure 9. This gadget can be folded not only in the I
shape in a natural way, but also many other ways. For
example, I(4) has nine ways of folding in total as shown
in the right in Figure 9. Therefore, in general, I(i) has
exponentially many ways of foldings. (The exact value
is open, but it is at least 9i/4 by joining i/4 of I(4)s.)

Combining these gadgets, it is easy to construct a
rectangle with some slits for folding a polycube of any
genus. In Figure 10(a), we give an example of a rectan-
gle with some slits that can be folded to a polycube of
genus 2. Figure 10(b) describes the polycube of genus 2
folded from (a) (since all polycubes folded in this man-
ner are of thickness 2, we draw them by top-view).

We can observe that there are many polycubes folded
from (a) by the property of the I gadget. That is, each
I gadget in a rectangle can be folded to one of nine
different shapes unless it intersects with others and the
length has consistency. That is, choosing each way of
folding properly, we can fold to (exponentially) many
different polycubes from the rectangle of length 6 × n
with slits. For a rectangle in Figure 10(a), one of the
variants is given in Figure 10(c). Now it is easy to see
that Theorem 2 and Corollary 3 hold.

4 Concluding Remarks

In this paper, we show some concrete polycubes folded
from a rectangle with slits. Among them, there is a
polycube of genus 0. We also show that there are in-
finitely many polycubes folded from a rectangle with
slits. This construction gives us infinitely many poly-
cubes of genus g for any positive integer g, and it also
gives us infinitely many rectangles that can fold to (at
least) k different polycubes for any positive integer k.
However, so far, we have no construction that gives in-
finitely many polycubes of genus 0, which is an open
problem.

The series of I gadgets in Figure 9 gives us interesting
patterns. For a given i, the number of ways of folding of
I(i) seems to be an interesting problem from the view-

F F F FI(4)

genus 2

genus 1

(a)

(b)

(c)

I(4) I(4) I(4)

Figure 10: (a) A construction of rectangle of size 6×48.
(b) A polycube of genus 2 folded from the rectangle.
(c) Another polycube of genus 1 folded from the same
rectangle.

point of computational origami. From the viewpoint of
puzzle, it is also an interesting problem to decide the
kind of polyominoes folded from I(i) for general i. In
the construction in Theorem 2 and Corollary 3, we use
the rectangle of size 6×n. It may be interesting whether
we can use the rectangle of size 4 × n or not.

In Theorem 4, we stated that all polycubes consist-
ing of 12 or fewer cubes have an edge unfolding with-
out overlap. This theorem begins to address an open
problem that asks whether there exists a polycube that
has no non-overlapping edge unfolding. It seems very
challenging to find such an “ununfoldable” polycube
by brute-force search: our program is able to quickly
find solutions for randomly sampled polycubes with as
many as 1000 cubes (as well as for hand-constructed
polycubes that appear hard to unfold), and exhaus-
tive search becomes infeasible at much smaller numbers.
This problem sometimes appears as “grid unfoldings” in
the context of unfolding of orthogonal polyhedra. See
[6, 7, 8, 9, 10] for further details.

Acknowledgements

The fourth author was supported in part by
MEXT/JSPS KAKENHI Grant Number 17H06287 and
18H04091. This work was discussed at the 34th Bel-
lairs Winter Workshop on Computational Geometry, co-

162



CCCG 2019, Edmonton, Canada, August 8–10, 2019

organized by Erik D. Demaine and Godfried Toussaint,
held on March 22–29, 2019 in Holetown, Barbados. We
thank the other participants of that workshop for pro-
viding a stimulating research environment.

References

[1] Jin Akiyama. Tile-Makers and Semi-Tile-Makers.
American Mathematical Monthly, Vol. 114, pp. 602–
609, 2007.

[2] Stefan Langerman and Andrew Winslow. Polycube
Unfoldings Satisfying Conway’s Criterion. Japan Con-
ference on Discrete and Computational Geometry and
Graphs (JCDCG3 2016), 2016.

[3] Jun Mitani and Ryuhei Uehara. Polygons Folding
to Plural Incongruent Orthogonal Boxes. Canadian
Conference on Computational Geometry (CCCG 2008),
pp. 39–42, 2008.

[4] Erik D. Demaine and Joseph O’Rourke. Geomet-
ric Folding Algorithms: Linkages, Origami, Polyhedra.
Cambridge University Press, 2007.

[5] David Avis and Komei Fukuda. Reverse search for
enumeration. Discrete Applied Mathematics, Vol. 65,
pp. 24–46, 1996.

[6] Therese Biedl, Erik Demaine, Martin Demaine, Anna
Lubiw, Mark Overmars, Joseph O’Rourke, Steve Rob-
bins, and Sue Whitesides. Unfolding Some Classes of
Orthogonal Polyhedra. 10th Canadian Conference on
Computational Geometry (CCCG’98), 1998.

[7] Erik D. Demaine, John Iacono, and Stefan Langer-
man. Grid Vertex-Unfolding Orthostacks. International
Journal of Computational Geometry and Applications,
Vol. 20(3), pp. 245–254, 2010.

[8] Mirela Damian, Robin Flatland, and Joseph O’Rourke.
Grid Vertex-Unfolding Orthogonal Polyhedra. Discrete
and Computational Geometry, Vol. 39, pp. 213–238,
2008.

[9] Greg Aloupis, Prosenjit K. Bose, Sebastien Collette,
Erik D. Demaine, Martin L. Demaine, Karim Douieb,
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Folding Polyominoes with Holes into a Cube
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Abstract

When can a polyomino piece of paper be folded into a
unit cube? Prior work studied tree-like polyominoes,
but polyominoes with holes remain an intriguing open
problem. We present sufficient conditions for a poly-
omino with hole(s) to fold into a cube, and conditions
under which cube folding is impossible. In particular,
we show that all but five special simple holes guarantee
foldability.

Figure 1: Three polyominoes that fold along grid lines
into a unit cube, from puzzles by Nikolai Beluhov [4].

1 Introduction

Given a piece of paper in the shape of a polyomino (i.e.,
a polygon in the plane formed by unit squares on the
square lattice that are connected edge-to-edge), does it
have a folded state in the shape of a unit cube? The
standard rules of origami apply; in particular, we allow
each unit square face to be covered by multiple layers
of paper. Examples of this decision problem are given
by the three puzzles by Nikolai Beluhov [4] shown in
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christiane.schmidt@liu.se

Figure 1. We encourage the reader to print out the
puzzles and try folding them.

Prior work [2] studied this decision problem exten-
sively, introducing and solving several different models
of folding. This gave rise to a model that matches the
puzzles in Figure 1: Fold only along grid lines of the
polyomino; allow only orthogonal folding angles (±90◦

and ±180◦); and forbid folding material strictly interior
to the cube. In this model, the prior work [2] character-
izes which tree-shaped polyominoes lying within a 3×n
strip can fold into a unit cube.

Notably, however, the polyominoes in Figure 1 are
not tree-shaped or even simple: One puzzle has a hole,
another puzzle has two holes, and a third puzzle has
a degenerate hole (a slit). Arguably, these holes are
what makes the puzzles fun and challenging. Therefore,
in this paper, we embark on characterizing which poly-
ominoes with hole(s) fold into a unit cube in this model.
Although we do not obtain a complete characterization,
we give many interesting conditions under which a poly-
omino does or does not fold into a unit cube.

The problem is sensitive to the choice of model. In
the more flexible model allowing half-grid folds and 45◦

diagonal folds between grid points, the prior work [2]
shows that all polyominoes of at least ten unit squares
can fold into a unit cube, and lists all smaller poly-
ominoes that fold into a cube. Thus this model already
has a complete characterization of polyominoes that fold
into a cube, including those with holes. Therefore, we
focus on the grid-fold model described above.

Specific to polyominoes and polycubes, there is ex-
tensive work in this model on finding polyominoes that
fold into many different polycubes [3] and into multiple
different boxes [1, 5, 6, 7, 8].

Our Results.
1. We identify which polyominoes with a single hole

are foldable; see Theorem 1, Section 3.1. In fact, all
but five simple holes already guarantee foldability.

2. We identify combinations of two (of the remaining
five) holes that allow the polyomino to fold into a
cube; see Section 3.2.

3. We show that certain of the remaining five simple
holes or their combinations do not allow a foldable
polyomino; see Section 4.
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4. We present an algorithm that checks a necessary
local condition for foldability; see Section 4.4.

2 Notation

A polyomino is a polygon P in the plane formed by
a union of |P | = n unit squares on the square lattice
that are connected edge-to-edge. We do not require a
connection between every pair of adjacent squares; that
is, we allow slits along the edges of the lattice subject
to the condition that the polyomino is connected.

We call a set h of connected missing squares and slits
a hole if the dual has a cycle containing h in its interior.
We call a hole of a polyomino simple if it is one of the
following: a unit square, a slit of size 1, slits of size 2
(corner or straight), or a U-slit of size 3, see Figure 2
for an illustration.

Figure 2: The five simple holes.

A connected three-dimensional polyhedron formed by
a union of unit cubes on the cubic lattice that are con-
nected face-to-face is called a polycube. If the poly-
cube Q is a unit cube, we denote it by Q = C.

In this paper, we study the problem of folding a given
polyomino P with holes to form C, allowing only 90◦

and 180◦ folds along the lattice. We illustrate mountain
folds in red, and valley folds in blue. Whenever we
show numbers on faces in crease patterns these refer to
a “real” die, i.e., opposite faces sum up to 7.

3 Polyominoes That Do Fold

In this section, we present polyominoes that fold. We
start with polyominoes that contain a hole guaranteeing
foldability.

3.1 Polyominoes with Single Holes

In this section, we show that all holes different from a
simple hole guarantee foldability.

Theorem 1 If a polyomino P contains a hole h that is
not simple, then P folds into a cube.

Proof. It is easy to see that because the hole h is non-
simple, it must be a superset of one of the holes in Figure
4, that is, we distinguish the cases where h contains
• Two unit squares sharing an edge
• Two unit squares sharing a vertex

Figure 3: Folding strategy to reduce to seven cases.

• A unit square and an incident slit
• A slit of length at least 3 (straight, zigzagged, L-

shaped, or T-shaped)
In a first step, we show that if h contains one of the

four above holes, we may assume that it contains ex-
actly this hole. Let h be a hole containing a hole h′ of
the above type. By definition of a hole, h needs to be
enclosed by solid squares. Thus we can sequentially fold
the squares of P in columns to the left and right of h′ on
top of the columns directly left and right of h′, respec-
tively, as illustrated in Figure 3. Afterwards, we fold
the squares of P in rows to the top and bottom of h′ on
top of the rows directly top and bottom of h′, respec-
tively. We call the resulting polyomino P ′. Note that
because h is a hole of P , all neighbouring squares of h′

exist in P ′. Thus we may assume that we are given one
of the seven polyominoes depicted in Figure 4, where
striped squares may or may not be present.

Figure 4: Any polyomino with a hole that is not simple
can be reduced to one of the seven illustrated cases;
striped squares may or may not be present.

Secondly, we present folding strategies. Note that the
case if h′ consists of two squares sharing only a vertex,
we can fold the top row on its neighboring row and
obtain the case where h′ consist of a square and an
incident slit. For an illustration of the folding strategies
for the remaining cases consider Figure 5. �

Are simple holes ever helpful? In fact, four of the five
simple holes sometimes allow foldability, as illustrated
in Figure 6. Note that the U-slit of size 3 reduces to the
square hole. In Lemma 11, we show that the slit of size
1 never helps to fold a rectangular polyomino. Lemma 7
implies that the polyominoes without the holes cannot
be folded.

3.2 Combinations of Two Simple Holes

In this section we consider combinations of two simple
holes that fold.
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Figure 5: Crease pattern of cube foldings; mountain
folds (solid red), valley folds (dashed blue). Squares
with the same number cover the same face of the cube.
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Figure 6: Four simple holes may be helpful.

Theorem 2 A polyomino with two vertical straight
size-2 slits with at least two columns and an odd number
of rows between them folds.

Proof. As in the previous section, we first fold all rows
between the slits together to one row; this is possible
because there is an odd number of rows between the
slits. Then, all the surrounding rows and columns are
folded towards the slits. Finally, we fold the columns be-
tween the slits to reduce their number to two or three.
Depending on whether the number of columns between
the slits was even or odd, this yields a shape similar
to the one shown in Figure 7 (a) and (b), respectively.
Striped squares may be (partially) present. In all cases,
the two shapes fold as indicated by the illustrated crease
pattern. Note that in Figure 7 (b) the polyomino is of
course connected, which implies that for sure at least
one square of the central column is part of the poly-
omino, i.e., a square with label 6 is used. �

If the two slits have only one or no column between
them, then the shape cannot be folded as can be verified
by the algorithm of Section 4.4.

In the following theorems we call a U-slit which has
the open part at the bottom an A-slit. If the orientation
of the U-slit is not relevant, then we call it a C-slit.

Theorem 3 A polyomino with an A-slit and a unit
square hole/C-slit in the same column above it, having
an even number of rows between them, folds.

Proof. We can assume that the upper hole is a unit
square, as the flaps generated by a C-slit can always be
folded away. Similar to before we fold away all surround-
ing rows and columns and reduce the number of rows
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Figure 7: Combinations of two simple holes that are
foldable with and without (part of) the striped region.

between the A-slit and the unit square hole to two. This
yields the shape of Figure 7 (c), which can be folded. �

Note that if the bottom slit is a U-slit, then the shape
of Figure 7 (c) does not fold, again verified by the algo-
rithm of Section 4.4.

Theorem 4 A polyomino with an A-slit and a unit
square hole/C-slit below it and separated by an odd num-
ber of rows, folds, regardless in which columns they are.

Proof. As before we assume that the lower hole is
a unit square, fold away all surrounding rows and
columns, and reduce the number of rows between the
two slits/holes to one. Furthermore we fold the columns
between the slits/holes to minimize their number. In
this way the number of columns between the two
slits/holes is at most two, and we obtain one of the
shapes shown in Figure 7 (d) to (g). All of them fold,
with or without the striped region. Note that the upper
unit square holes in Figure 7 (d) and (e) can be replaced
by an A-slit which can be folded away. �

Note that if the two holes are in the same or neigh-
boured column(s) (Figure 7 (d) and (e)), then it does
not matter which orientation the U-slits have or whether
they are unit square holes—any combination folds. We
thus get the following statement.

Theorem 5 A polyomino with two unit square holes
which are in the same or in neighboured column(s) and
have an odd number of rows between them folds.

4 Polyominoes That Do Not Fold

In this section, we identify simple holes and simple hole
combinations that do not allow the polyomino to fold.
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First, we present some results that show how the pa-
per is constrained around an interior vertex.

Lemma 6 Four faces around a polyomino vertex v for
which the dual graph is connected cannot cover more
than three faces of C.
Proof. v is incident to 4 faces in P . As vertices of P
are mapped to vertices of C and all vertices of C are
incident to 3 faces, v is incident to only 3 faces in C. �

Lemma 7 Four faces around a vertex v not in the
boundary of P cannot cover more than two faces of
C. In particular, at least two collinear incident creases
must be folded by 180◦.

Proof. Let A, B, C, and D be the faces around v in
circular order. By Lemma 6, at most three faces of C
are covered by A, B, C, and D. Hence, at least two faces
map to the same face of C. These can either be edge-
adjacent of diagonal. For the first case, let this w.l.o.g.
be A and B. Hence, the crease between them must be
folded by 180◦. Then C and D must also map to the
same face of C to maintain the paper connected. The
crease between C and D must also be folded by 180◦. In
the latter case, w.l.o.g. A and C map to the same face
of C. As they are both incident to v, only two options of
folding those two faces on top of each other exist. Either
the edge between A and B gets folded on top of the edge
between B and C, this leaves a diagonal fold on B, a
contradiction, or the edge between A and D gets folded
on top of the edge between B and C, which results in D
being mapped to C, and those are two adjacent faces, in
which case we already argued that two collinear incident
creases must be folded by 180◦. �

Corollary 1 Let v, w be two vertices in P ’s interior,
which share a horizontal edge. If we fold horizontally
through v, i.e., if the two collinear incident creases of v
folded by 180◦ are horizontal, then we also have to fold
180◦ horizontally through w.

4.1 Polyominoes with Unit Square Holes, L-Shaped
Holes and U-Shaped Holes

We begin by examining the possible foldings of a poly-
omino containing a unit square hole. Suppose that a
given polyomino P with a unit square hole h folds into
a cube. Furthermore, let the shape of h no longer be a
square in the folded state. That is, the hole h is folded
in a non-trivial way. Then, in the folded state, either
all edges of h are glued together, or two pairs of edges
are glued forming an L-shape. We will argue that if P
folds into a cube, the first case is impossible, while the
second produces a specific crease pattern around h.

Lemma 8 The four edges of a unit square hole of a
polyomino that folds into a cube cannot be all glued to-
gether in the folded state.

DA
B CA C

B

DF4

F1 F2

F3

Figure 8: Four edges of a square hole glued together.

Proof. Let the four faces of the polyomino edge-
adjacent to the hole be A, B, C, and D, and the four
faces vertex-adjacent to the hole be F1, F2, F3, and F4,
see Figure 8. Consider A, F1, and B in the folded state.
As the two corresponding edges of the hole are glued to-
gether, the three faces must be pairwise perpendicular.
The similar statement holds for the triples {B,F2, C},
{C,F3, D}, and {D,F4, A}. Therefore, if P folds into a
cube, face A must be glued to face C, face B must be
glued to D, F1 to F3, and F2 to F4. Suppose, w.l.o.g.,
in the folded state face A lies in a more outer layer than
C. Then, F1 and F4 are in a more outer layer than F3

and F2, respectively. Thus, face B connects the more
inner layer of F2 to the more outer layer of F1, and at
the same time D connects the inner layer of F3 to the
outer layer of F4. Hence, faces B and D intersect, which
is impossible. Therefore, if the polyomino folds into a
cube, the four edges of a square hole cannot all be glued
together. �

It follows that the only non-trivial way to glue the edges
of a square hole of a polyomino folded into a cube is to
form an L-shape. This effectively amounts to gluing a
pair of diagonal vertices of the hole.

Let a, b, c, and d be the four vertices of the hole, and
suppose a and c are glued together when folding the
polyomino into a cube, see also Figure 9 (left). Consider
the crease pattern around the hole. We shall only focus
on the angles of the creases and not the type of the fold,
as there may be (and will be) other creases in P affecting
the type of the creases under our consideration. Observe
that the three faces incident to each of the vertices b and
d are pairwise perpendicular, they form a corner of a

a

cb

d
1

11

2

2

3

3

5

4

Figure 9: Left: crease pattern around a hole folding into
an L-shape when gluing vertices a and c; 90◦ creases
are shown in green, and 180◦ creases in orange. Right:
numbers indicate the face of the cube in the folded state;
mountain folds are shown in solid, and valley folds as
dashed lines.
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cube. Thus, the creases emanating from b and d are all
90◦. Further observe that the three faces around each
of the vertices a and c fold into two faces of a cube,
thus leading to one of the creases being 90◦ and the
other 180◦. Finally, the two 180◦ creases are parallel to
each other. Indeed, consider the right side of Figure 8.
For a crease to form an L-shape one of the two dashed
blue lines must fold to 180◦, which corresponds to two
parallel creases in the unfolded state. Therefore, the
crease pattern in Figure 9 (left) is the only pattern of
creases (up to rotation and reflection) around a non-
trivially folded square hole. Figure 9 (right) shows the
faces of the corresponding crease pattern.

Note that the arguments above extend to an L-shape
slit of size 2, and a U-slit of size 3.

Theorem 9 Two holes, which are either unit square,
L-slit of size 2, or U-slit of size 3, of a polyomino P such
that (1) P contains all the other cells of the bounding
box of the two holes, (2) P folds into a cube, cannot be
both folded non-trivially if the number of rows and the
number of columns between the holes is at least 1.

Proof. It follows from the above observations that if
there were two unit square holes, both folded non-
trivially, with positive number of rows and columns
between them, there would be two intersecting 90◦

creases. �

Theorem 10 A rectangle with two unit square holes in
the same row does not fold into a cube if the number of
columns between the holes is even.

Proof (sketch). We prove that a 3× 6 rectangle with
two unit squares holes as in Figure 10 does not fold
into a cube. From that it follows that any 3× (4 + 2k)
rectangle with two unit square holes in the same row
separated by 2k columns does not fold into a cube. Note
that both holes must be folded non-trivially, otherwise
the polyomino cannot be folded into a cube.

The vertical fold in the middle of two holes must be
a 180◦ fold as depicted in Figure 10; otherwise there
would be two perpendicular 90◦ creases. There are two
types of crease patterns for this polyomino: when pairs
of parallel 90◦ creases run vertical, and when there is one
pair of horizontal parallel 90◦ creases. In both cases, the
faces in between of those creases all map to the same
face on C, which implies that the face opposite to the
one on C cannot be covered. �

1

1

1

1

1 1 11

Figure 10: A polyomino that does not fold into a cube.

4.2 Polyominoes with a Single Slit of Size 1

The following Lemma shows that slit holes of size one
do not help in folding a rectangular polyomino into C.

Lemma 11 A rectangular polyomino P with a single
slit hole of size 1 does not fold into C.

Proof. Because of Corollary 1 we can restrict to the
polyomino in Figure 11. Let A, B, C, D, E and F be
the faces adjacent to h as in Figure 11. Because the
paper must remain connected, the endpoints of h must
map to adjacent vertices of C. Then the paper behaves
exactly as if the slit were not there as follows. If E and B
maps to the same face of C, then A (resp., C) must map
to the same face as F (resp., D). Otherwise, E and B
maps to adjacent faces. Then, A and C (resp., F and D)
maps to the same face as B (resp., E). By the successive
application of Lemma 7 in a rectangular polyomino P ,
without loss of generality only the front, left, back and
right faces of C can be covered. �

A B C

DEF

Figure 11: A polyomino
with a slit hole of size one.

A B C

ED

F G H

Figure 12: A polyomino
with a single square hole.

4.3 Rectangles with a Single Square Hole

In this section, we show the following fact:

Theorem 12 If P is a rectangle with a single square
hole h, then P does not fold into a unit cube C.

Proof. Let P ′ denote the 3×3 rectangle with a central
unit square hole depicted in Figure 12. By Corollary 1
any polyomino P needs to be reduced to P ′:

Claim 1 Every rectangle with a single unit square hole
is foldable (if and) only if P ′ is foldable.

Consequently, it remains to show that

Claim 2 The polyomino P ′ does not fold into C.
We label the eight faces of P ′ by (A,B,C,D,E,F,G,H) as
depicted in Figure 12. Without loss of generality assume
that A maps to the top face of C. First, we argue that C
cannot map to the same face. If that was true, then B
also maps to the top face and by the number of faces,
every remaining face must map to a different face of C.
However, if D maps to the back face of C, so does E,
a contradiction. Consequently, A and C do not map to
the same face. By symmetry, F does not map to the top
face (and neither C nor F map to the same face as H).
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Next, we argue that the only faces that can map to
the bottom face of C are C and F: If E would map to the
bottom face, any of (B,C) or (D,F,G,H) must cover the
front face and right face, respectively. For B to cover the
front face, C must cover the bottom face. (Analogously,
the argument for G.) H has odd number of squares to
A, if H would map to the bottom face, one face would
have to be between A and H, hence, we would need to
reduce the number by folding, this folds H onto C or F.
A contradiction to the first fact. Hence, only faces that
can map to the bottom face of C are C and F.

W.l.o.g., let F be the bottom face, and D the back
face. Then the only faces that can cover the left face are
C and H; in particular, if E covers the left face then the
right face remains uncovered. Thus, we assume w.l.o.g.
that C covers the left face. Hence, B maps to the top
face. Now, if E maps to the back face, both G and H
must map to the right face of C, and the front face is
uncovered. If E maps to the left face, because the top
and left faces are doubly covered, every remaining face
must be singly covered. Then, H must map to the front
face. But face G can only map to the top face, which
cannot happen because A and B already cover this face.
The only remaining case is when both C and F map to
the bottom face, thus, B and D maps to the right and
back faces of C respectively. However, both E and G can
only cover faces of C that are already covered (bottom,
back and right faces), and C would not have all its faces
covered. �

4.4 An Algorithm to Check a Necessary Local Con-
dition for Foldability

Consider the following local condition: let s be a square
in a polyomino P such that the mapping between ver-
tices of s and vertices of a face of C has been fixed.
Then, for every adjacent square s′ of s, there are two
possibilities how to map its four vertices onto C: the
two vertices shared by s and s′ must be mapped con-
sistently and for the other two vertices there are two
options depending on whether s′ is folded at 90◦ angle
to an adjacent face of C, or whether it is folded at 180◦

to the same face of C.
The algorithm below checks whether there exists a

mapping between all vertices of squares of P to vertices
of C such that the above condition holds for every pair
of adjacent polyomino squares of P .

1. Run a breadth-first-search on the polyomino
squares, starting with the leftmost square in the
top row of P and continue via adjacent squares.
This produces a numbering of polyomino squares
in which each but the first square is adjacent to at
least one square with smaller number.

2. Map vertices of the first square to the bottom face
of C. Extend the mapping one square at a time
according to the numbering, respecting the local

condition (that is, in up to two ways). Track all
such partial mappings.

The algorithm is exponential, because unless inconsis-
tencies are produced, the number of possible partial
mappings doubles with every polyomino square. Never-
theless, it can be used to show non-foldability for small
polyominoes: if no consistent mapping exists for a poly-
omino, then the polyomino cannot be folded onto C. On
the other hand, any consistent vertex mapping covering
all faces of C obtained by the algorithm that we tried
could in practice be turned into a folding. However, we
have not been able to prove that this is always the case.

The algorithm above was used to prove that poly-
ominoes in Figure 13 do not fold, as well as it aided
us to find the foldings of polyominoes in Figure 7. An
implementation of the algorithm is available at http:

//github.com/zuzana-masarova/cube-folding.

Figure 13: These polyominoes with single L, U and
straight size-2 slits do not fold.

5 Conclusion

We showed that, if a polyomino P does contain a non-
simple hole, then P folds into C. Moreover, we showed
that a unit square hole, size 2 slits (straight or corner),
and a size-3 U-slit sometimes allow for foldability.

Based on the presented results, we created a font of
26 polyominoes with slits that look like each letter of
the alphabet, and each fold into C. See Figure A in
the appendix, and http://erikdemaine.org/fonts/

cubefolding/ for a web app.
We conclude with a list of interesting open problems:
• Does a consistent vertex mapping output by the al-

gorithm in Section 4.4 imply that the polyomino is
foldable? If so, is the folding uniquely determined?
• Is any rectangular polyomino with one L-shape, U-

shape or straight size-2 slit foldable? Currently, we
only know that the small polyominoes in Figure 13
do not fold.
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Figure A: Cube-folding font: the slits representing each letter enable each rectangular puzzle to fold into a cube.
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Minimum Forcing Sets for Single-Vertex Crease Pattern

Koji Ouchi∗ Ryuhei Uehara∗

Abstract

We propose an algorithm for finding a minimum forcing
set of a given flat-foldable single-vertex crease pattern
(SVCP). SVCP consists of straight lines called creases
that can be labeled as mountains or valleys, and the
creases are incident to the center of a disk of paper. A
forcing set is a subset of given creases that forces all
other creases to fold according to the given labels. Our
algorithm is a modification of a conventional algorithm
for 1D origami. We show that the size of a minimum
forcing set of an SVCP is n/2 or n/2 + 1 where n is the
number of the creases in the SVCP.

1 Introduction

In an origami application called self-folding origami, a
thin material folds into an intended shape by rotating
the planes around creases according to the label moun-
tain or valley assigned on the creases [6, 8, 11, 12]. The
cost of such application can be reduced if it is enough
to put actuators on a subset of creases. Finding such a
subset of creases can be modeled as a forcing set prob-
lem. In applications, a material is often desirable to
satisfy flat foldablity in order to make the size small.
A material is flat-foldable if we can transform it from
the completely unfolded state to the flat state that all
creases are completely folded.

Forcing set problem is a new topic in computational
origami, which was considered in [1, 2, 4]. Especially,
minimum forcing set for flat foldability was studied for
1D origami [4] and 2D Miura-ori [2]. In a forcing set
problem for flat foldability, a flat-foldable crease pattern
C and a flat-foldable mountain-valley assignment (or
MV assignment briefly) µ is given, where µ is a function
from creases to {M, V}. MV assignment µ(c) on a crease
c ∈ C determines the direction of rotation of the planes
around c when folding. A forcing set F is a subset of C
where c ∈ F is assigned the value µ(c), and F makes the
other creases c′ ∈ C\F to be assigned the value µ(c′): F
is not a forcing set if c′ can have the assignment opposite
to µ(c′) to make the given crease pattern foldable. A
forcing set F is called minimum if there is no other
forcing set with size less than |F |.

This paper focuses on minimum forcing sets for flat-
foldable single-vertex crease pattern (SVCP). An SVCP

∗School of Information Science, Japan Advanced Institute of
Science and Technology, {k-ouchi, uehara}@jaist.ac.jp

Figure 1: An example of flat-foldable SVCP with MV
assignment.

Figure 2: Examples of minimum forcing sets for the flat-
foldable SVCP in Figure 1. Each crease with a small
circle is the crease of the forcing set.

is a crease pattern whose creases are incident to the cen-
ter of the paper to be folded. We consider the paper of
SVCP is a disk. If |C| is two, we are to fold the paper
in half, and it is obvious that the size of the minimum
forcing set is one. Figure 1 is an example of flat-foldable
SVCP with MV assignment. The minimum forcing sets
for the flat-foldable SVCP in Figure 1 are depicted in
Figure 2. A crease pattern is flat-foldable if and only if
there exists an MV assignment so that the paper settles
into a flat shape without penetrating itself after fold-
ing the creases along the assignment. Bern and Hayes
developed an algorithm to determine flat foldablity of
a given SVCP with MV assignment [3]. Flat-foldable
SVCPs were studied in [13] from the viewpoint of enu-
meration as well. A crease pattern of SVCP is a se-
quence of creases C = (c0, c1, . . . , cn−1) which are put
clockwisely on the disk incident to the center. θi de-
notes the clockwise angle from ci to ci+1 mod n. We call
(C, µ) an MV pattern.
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In this paper, we develop an algorithm to find a min-
imum forcing set of a given flat-foldable SVCP in O(n2)
time. As far as the authors know, our algorithm is the
first one for finding a minimal forcing set of flat-foldable
SVCP, even though SVCP is an important component of
origami. Our algorithm is based on that for 1D origami
in [4] because the structure of SVCP is similar to 1D
origami if we regard it as a ring by cutting away the
inner space of the paper: the creases reduce to points
on the ring, and the paper becomes 1D origami if we
cut the ring at some point. We also reveal that the size
of F is n/2 or n/2+1. Precisely, |F | is n/2 if the SVCP
is of generic angles, which is a case that the angles to be
operated always differ. In the case when all the angles
in the SVCP are equal, |F | is n/2 if n = 2, otherwise |F |
is n/2+1. For a general SVCP, which does not have any
constraints, the size of F is n/2+1 if the crease pattern
can be reduced to an SVCP of equal angles with size four
or more by repeatedly crimping consecutive two creases
(ci, ci+1 mod k) with different MV assignment where θi

is minimal, otherwise |F | = n/2.

2 Preliminaries

This section introduces some terminology and prelim-
inary results following [4]. Throughout the paper we
work with a flat-foldable MV pattern (C, µ), where
C = (c0, c1, . . . , cn−1) is an SVCP and µ is a flat-foldable
MV assignment.

2.1 Crimpable Sequences [4]

We slightly change the definition of crimpable sequence
to fit the assumption that C is circular. A crim-
pable sequence in SVCP is composed of consecutive
creases where the angles between the creases are equal,
with the property that the two angles adjacent to
the left and right end of the sequence are strictly
larger than the equal angles. Formally, for integers
0 ≤ i < n and 0 < k < n, a sequence of con-
secutive creases (ci, ci+1 mod n, . . . , ci+k mod n) is crim-
pable if θi = θi+1 mod n = · · · = θi+k−1 mod n and
θi−1 mod n > θi < θi+k mod n. We note that we have
to take a mod on the index for circulation. Thus we
may have (i− 1) mod n = (i + k) mod n.

A monocrimp operation is defined as a fold about a
single pair of consecutive creases of opposite MV parity
in a crimpable sequence.

A crimp operation is a set of monocrimps repeatedly
conducted on a crimpable sequence while the sequence
is crimpable. The following theorem will be needed in
Section 5.

Theorem 1 (Theorem 4 from [7]) Let α be a crim-
pable sequence in a foldable MV pattern. The difference
in the number of M and V assignments for the creases

in α is zero (one) if α has an even (odd) number of
creases.

In the case of a crimpable sequence α of odd length,
we say that the crease remaining after a crimp opera-
tion on α survives the crimp. We note that the surviving
crease in α is with majority assignment in α ([4, Obser-
vation 1]). Majority assignment denotes the assignment
M or V which is major in a sequence or a set of creases.

2.2 End Creases [4]

End creases are the remains after exhaustive crimps.
Exhaustive crimps mean crimping repeatedly until there
is no crimpable sequence. The following lemma holds for
SVCP.

Lemma 2 The end creases of an SVCP form a flat-
foldable SVCP of equal angles.

To prove this lemma, we need the following lemma and
theorem:

Lemma 3 (Corollary 12.2.11 from [5]) An equal-
angle SVCP is flat-foldable iff |#M − #V| = 2. This
implies that any MV assignment satisfying the condi-
tion is flat-foldable.

Theorem 4 (The Maekawa Theorem) In a flat-
foldable SVCP with MV assignment defined by angles
θ0 + θ1 + · · · + θn−1 = 360◦, the number of mountains
and the number of valleys differ by ±2.

Details about the Maekawa Theorem can be found in [5,
Chapter 12]. Now let us prove Lemma 2.

Proof. We will make exhaustive crimps, that is, we will
repeat crimps while processed C satisfies θi−1 mod n >
θi = θi+1 mod n = · · · = θi+k−1 mod n < θi+k mod n for
some i and k. After this repetition, the crease pattern
becomes one that consists of all equal angles.

The original foldable (C, µ) satisfies the equation in
Lemma 3 by the Maekawa Theorem. A monocrimp does
not change the difference of Ms and Vs. Therefore after
crimping all crimpable sequences in (C, µ), the crease
pattern satisfies |#M − #V| = 2. By Lemma 3, the
obtained equal-angle SVCP is flat-foldable. □

3 The Size of a Minimum Forcing Set of an SVCP

This section is devoted to proof of the theoretical min-
imum size of forcing sets.

3.1 SVCP of Generic Angles

In this section, let a given SVCP be of generic angles,
that is, consecutive angles to be operated always differ.
The following lemma is important in our proof.
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Lemma 5 (from [9, 10]) If an angle θi is strictly
minimal, that is, θi−1 mod n > θi < θi+1 mod n holds,
then the two consecutive creases ci and ci+1 mod n form-
ing θi have assignment different from each other in any
flat-foldable MV pattern.

In this section, first we show the existence of F with
size n/2, then we prove that F with size n/2− 1 or less
does not exist.

Lemma 6 There is a forcing set of an SVCP of generic
angles, whose size is n/2.

Proof. First we use a contradiction in order to show
that there are always consecutive three angles which
satisfy Lemma 5. Assume there are consecutive differ-
ent angles θ0, θ1, . . . , θn−1, and any consecutive three
of them do not satisfy Lemma 5. Then, for exam-
ple, we can assume θ0 > θ1 > θ2. By the condi-
tion and assumption, θ1 > θ2 > θ3 holds. Similarly,
θ0 > θ1 > θ2 > θ3 > θ4 > · · · holds and the se-
quence monotonically decreases. However, θn−1 > θ0

could never happen, which is a contradiction. Thus, we
can always apply Lemma 5.

Applying Lemma 5 on (θi−1 mod n, θi, θi+1 mod n) re-
peatedly, we can fold flat the paper. Let (ci, ci+1 mod n)
be the pair of creases between the three angles. If we
determine the assignment on one of (ci, ci+1 mod n), the
assignment on the other of the pair is also determined.
Hence we can make a forcing set by picking a crease in
each pair as an element of the forcing set. We have n/2
such pairs because generic angles are the worst case of
the number of such pairs. Therefore the size of the
forcing set is n/2. □

Lemma 7 There is no forcing set of an SVCP of
generic angles whose size is less than n/2.

Proof. The proof is by contradiction. Assume a forcing
set F with size n/2− 1 or less exists.

We monocrimp (θi−1 mod n, θi, θi+1 mod n) according
to Lemma 5. Every pair (ci, ci+1 mod n) is isolated from
other pairs and there are n/2 pairs, thus every crease
appears in a pair only once. Because |F | < n/2, there is
an index i such that both in (ci, ci+1 mod n) are not in F .
This contradicts the definition of F because the paper
folds flat in the following two cases: we assign (M, V )
on (ci, ci+1 mod n), or (V,M) on (ci, ci+1 mod n). □

By Lemma 6 and Lemma 7, we obtain the following
theorem.

Theorem 8 The size of an minimum forcing set for
SVCP of generic angles is n/2.

3.2 SVCP of Equal Angles

In this section, let a given SVCP be of equal angles, or
equal-angle SVCP. Hence θi = θi+1 mod n holds for any
integer i.

Lemma 9 There is a forcing set of an equal-angle
SVCP whose size is n/2 + 1 if n ≥ 4. Furthermore,
the forcing set is composed of all creases with majority
assignment.

Proof. Assume that F consists of all majority M
creases (thus all V creases are not in F ). If F is not
a forcing set then we can choose some crease in C \ F
to be M, contradicting Lemma 3. □

Lemma 10 There is no forcing set of an equal-angle
SVCP whose size is less than n/2 + 1 if n ≥ 4.

Proof. We prove it by contradiction. Assume F is a
forcing set of an equal-angle SVCP, whose size is n/2 or
less. Then there may be a pair of an M crease and a
V crease which are not in F (Let M be the majority in
the crease pattern). We denote such pair by p. We note
that the creases in p do not have to be consecutive.

If all V creases are in F , p does not exist. In this case,
we can invert the assignment of a pair of M creases in
C\F to Vs, where the pair is not necessary to be consec-
utive. This operation holds Lemma 3, a contradiction.

Otherwise we can swap the MV assignment in p, and
the resulting SVCP is flat-foldable by Lemma 3. This is
a contradiction to our assumption that F is forcing. □

Theorem 11 Assume that a given SVCP is of equal
angles. If the number of creases in the SVCP is two,
then the minimum forcing set consists of one crease.
Otherwise the size of the minimum forcing set of the
SVCP is n/2 + 1. By Iverson’s convention, it can be
described as n/2 + [n ≥ 4].

Proof. It is obvious if the number of creases in an
equal-angle SVCP is two. Lemma 9 and Lemma 10 im-
ply that n/2 + 1 is the minimum size of F if n ≥ 4. □

3.3 General SVCP

Here we consider that a given SVCP has no constraints.

Theorem 12 Let m be the number of monocrimps per-
formed until the given SVCP becomes a flat-foldable
equal-angle SVCP (cf. Lemma 2). F denotes a min-
imum forcing set of the given SVCP. Then |F | = n/2+
[n− 2m ≥ 4].

Proof. As the case of generic angles, we crimp the
creases in crimpable sequences as many as possible. For
each monocrimp, one of the creases in the pair must be
in F . Such monocrimps contribute to m elements in F .
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After monocrimping m times, the crease pattern
has become a flat-foldable equal-angle SVCP (cf.
Lemma 2). This equal-angle SVCP is composed of
n − 2m creases because two creases are consumed per
one monocrimp. By Theorem 11, the size of a minimum
forcing set of the equal-angle SVCP is (n−2m)/2+[n−
2m ≥ 4].

The minimum size of F is the sum of the sizes of
the two sets of forcing creases obtained above. This is
because the sets do not have intersection and both are
minimum. Thus, |F | = m + (n − 2m)/2 + [n − 2m ≥
4] = n/2 + [n− 2m ≥ 4]. □

4 Constructing a Minimum Forcing Set

4.1 Crimp Forest Construction

We convert the crimp forest algorithm in [4] to an al-
gorithm for SVCP by allowing circulation of the index
of creases when finding a crimpable sequence. The con-
verted algorithm is shown in Algorithm 1. A circulat-
ing crimpable sequence (ci, ci+1, . . . , c0, c1, . . . , ck) may
occur when the algorithm finds and crimps crimpable
sequences, but it does not change the behavior of the
other parts of the algorithm. The algorithm constructs
a forest in bottom-up manner. The edges are added
if the sequence in the parent node includes the crease
surviving the crimp on the sequence in child node.

Algorithm 1: CrimpForestSVCP(C, µ)

Initialize W ← ∅
while C has a crimpable sequence do

Let s be the crimpable sequence in C with the
smallest starting index. // modified from

[4].

create a node v corresponding to s, and add v
to W .

Make v the parent of each root node in W
whose crimpable sequence has a surviving
crease that is in s.

Apply the crimp operation to s.
Update C to be the resulting crease pattern.

end
return W

A straightforward implementation of Algorithm 1
takes O(n2) time because a naive way to find a crim-
pable sequence takes O(n) time: start searching from
c0 clockwisely; skip monotonically nonincreasing an-
gles; stop at the right side crease cr which satisfies
θr−1 mod n < θr; counterclockwisely from cr, search the
left side crease cl which satisfies θl−1 mod n > θl; other
operations can be done in constant time; since the al-
gorithm loops at most n times, the time complexity of
the algorithm is O(n2).

The following lemma describing the properties of
crimp forest holds for SVCP as well.

Lemma 13 (Lemma 4 from [4]) Given a crease
pattern C and two foldable MV assignments µ1 and
µ2, let W1 and W2 be the crimp forests corresponding
to (C, µ1) and (C, µ2), respectively. Then the following
properties hold:

(1). W1 and W2 are structually identical.

(2). Corresponding nodes in W1 and W2 have crimpable
sequences of the same size and the same interval
distances between adjacent creases.

(3). Creases involved for the first time in a crimpable
sequence at a node in W1 have the same position in
the crimpable sequence at the corresponding node in
W2.

4.2 Forcing Set Algorithm

We convert the forcing set algorithm in [4] by
three modifications: switch CrimpForest(C, µ) to
CrimpForestSVCP(C, µ); initialize F to the major-
ity of end creases according to Lemma 9 instead of all
end creases; remove one crease from F if |F | = 2 in the
initialization according to Theorem 11. See Algorithm 2
for the detail.

The preorder traversal takes O(n) time because each
node is visited only once and the sum of lengths of the
sequences in the nodes is n. Thus the main factor of
computation time is CrimpForestSVCP, which takes
O(n2) time.

We need the following lemma for the proof in Sec-
tion 5:

Lemma 14 (Lemma 6 from [4]) Let (C, µ1) be a
foldable MV pattern, and let F be the forcing set gen-
erated by Algorithm 2 with input (C, µ1). Let (C, µ2)
be a foldable pattern such that µ2 agrees with µ1 on the
forcing set F , that is, µ2(c) = µ1(c) for c ∈ F . Let
T1 and T2 be two structurally equivalent trees generated
by the forcing set algorithm (C, µ1) and (C, µ2), respec-
tively. If a crease c in a crimpable sequence α1 ∈ T1

is in F , then a crease (not necessarily c) with the same
MV assignment occurs in the corresponding crimpable
sequence α2 ∈ T2, in the same position as in α1.

5 Proof of Correctness

This section proves that F created by Algorithm 2 is
forcing and minimum. The proof is almost the same
as [4] because Damian et al. use local properties of crim-
pable sequence and abstract properties of crimp forest,
which are not affected by the change from 1D to SVCP.
In this section, we organize the proof in [4] to follow and
prove the different points.
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Algorithm 2: ForcingSetSVCP(C, µ)

Initialize W to the output generated by
CrimpForestSVCP(C, µ) // modified

from [4].

Initialize F to the all creases with majority
assignment in end creases that remain after
running CrimpForestSVCP(C, µ)
// modified from [4].

if |F | = 2 then // added to [4]

Remove one crease from F .
end
foreach tree T ∈W do

foreach node v in a preorder traversal of T do
if v’s crimpable sequence has even length
then

Add to F all creases from v’s crimpable
sequence having M assignment.

else if the surviving crease from v’s
crimpable sequence is already in F then

Add to F all creases from v’s crimpable
sequence having the majority MV
assignment.

else
Add to F all creases from v’s crimpable
sequence having the minority MV
assignment.

end

end

end

Assume that there exists a different foldable MV as-
signment µ2 for C such that µ2(c) = µ(c) for c ∈ F .
For symmetry, let µ1 = µ. We obtain W1 and W2

by running ForcingSetSVCP with input (C, µ1) and
(C, µ2), respectively. As stated in Lemma 13, W1 and
W2 are structurally identical. Let corresponding nodes
v1 ∈ T1 and v2 ∈ T2 be a pair of maximal depth in the
trees whose assignments differ. We call two crimpable
sequences α1 and α2 similar if they have the same size,
the same MV assignment read from left to right, and
same interval angles.

The proof in [4] for forcing property is by contradic-
tion with a case analysis as follows:

1. v1 and v2 are dissimilar. Let l be the length of the
crimpable sequences corresponding to v1 and v2.

(a) l is even.

(b) l is odd.

i. The creases of v1 with majority MV as-
signment are in F .

ii. The creases of v1 with minority MV as-
signment are in F .

2. All corresponding nodes in W1 and W2 have similar
crimpable sequences.

Case 1a leads to a contradiction as shown in [4]. In
this case, v1 and v2 are root nodes in T1 and T2 because
they do not have surviving crease. l/2 creases of v1

are put into F with M assignment by the algorithm.
The creases with M assignment in F have a copy in
v2 by Lemma 14, and remaining creases must have V
assignment by Theorem 1. Then v1 and v2 are similar,
which is a contradiction to the assumption that v1 and
v2 are dissimilar.

Case 1(b)i also contradicts as shown in [4]. By
Lemma 14, the creases with majority MV assignment
of v1 have a copy in v2 with the same MV assignment
and located in the same positions. All other creases in
v1, v2 must have the opposite assignment by Theorem 1.
Thus v1 and v2 are similar, a contradiction.

The difference is in Case 1(b)ii and Case 2. In
Case 1(b)ii, we have two new cases due to the second
and third steps of Algorithm 2:

A. The survivor of the root node is in F . (hence the
majority in the root node are in F .)

B. The survivor of the root node is not in F . (hence
the minority in the root node are in F .)

The proof for Case A is the same as the proof of
Case 1(b)ii shown in [4]. Assume without loss of gener-
ality that the minority assignment of v1 is M. In Case B,
we must encounter a node with majority assignment V,
or an equal number of M and V assignment. Assume to
the contrary that we encounter nodes with majority M
assignments only. At the root node r1 of T1, V creases
are selected as a part of F since we assume surviving
crease is not in F . Similarly, on each node from r1 to
v1, V creases are selected as elements of F , which con-
tradicts the assumption that the minority M creases of
v1 are in F . Let w′

1 be the first node encountered on
the path from v1 to r1 of T1 having majority assign-
ment V or an equal number of M and V assignments.
As addressed in [4], the differences in v1, v2’s crimpable
sequences must be in first-time creases.

Let p1 be the parent node of v1. In Case B, if p1 ̸= w′
1,

p1’s majority are M (by definition of w′
1) and its creases

with M should be in F (otherwise it contradicts the
assumption that minority of v1 are in F ). The difference
of first-time creases in v1 and v2 causes a contradiction
of Theorem 1 on p2 in the following cases: (1) w′

1 have
majority assignment V; (2) w′

1 have equal M and V
assignments. Figure 3 shows the first case. Assume c1

and c′
1 in Figure 3 are first-time creases and c′

0 survives
a crimp operation. Then c3 and c4 are copied to c′

3 and
c′
4 by Lemma 14. This contradicts Theorem 1 on p2.
In Case 2, the end creases form a flat-foldable

equal-angle SVCP (cf. Lemma 2). Because Forc-
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Figure 3: The case that first-time creases are different between v1 and v2, and w′
1 have majority assignment V.

ingSetSVCP puts all majority creases of the equal-
angle SVCP into F , the remains of the creases in the
equal-angle SVCP are forced to be with minority assign-
ment, and it is not possible that µ1 and µ2 differ on the
equal-angle SVCP. It follows µ1 = µ2, and therefore F
is a forcing set.

We have shown that the theoretical minimum size of
F is n/2 + [n − 2m ≥ 4] where m is the number of
monocrimps performed in exhaustive crimps (cf. Theo-
rem 12). Here we show how F yields n/2+[n−2m ≥ 4]
creases by ForcingSetSVCP. The creases from the
end equal-angle SVCP added to F in the second and
third steps in the algorithm contributes to (n−2m)/2+
[n− 2m ≥ 4] creases. The same argument as [4] can be
applied for the crimped creases: corresponding to each
crimpable sequence α with size l, the forcing set algo-
rithm adds to F precisely ⌊l/2⌋ creases; summing up
over all crimp performed by the algorithm, we get m
creases contributed to F .

6 Conclusion

We have developed an algorithm to find a minimum
forcing set of flat-foldable SVCP in O(n2) time. We
have shown that the size of such forcing set is n/2 or
n/2+1. It is an open problem to find a minimum forcing
set of arbitrary 2D origami. Enumeration of minimum
forcing sets of a given MV pattern is an interesting prob-
lem as well. We believe that our result will help us to
solve such open problems.
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Efficient Segment Folding is Hard

Takashi Horiyama∗ Fabian Klute† Matias Korman‡ Irene Parada§ Ryuhei Uehara¶

Katsuhisa Yamanaka‖

Abstract

We introduce a computational origami problem which
we call the segment folding problem: given a set of n
line-segments in the plane the aim is to make creases
along all segments in the minimum number of folding
steps. Note that a folding might alter the relative po-
sition between the segments, and a segment could split
into two. We show that it is NP-hard to determine if n
line segments can be folded in n simple folding opera-
tions.

1 Introduction

Origami designers around the world struggle with the
problem for finding a better way to fold an origami
model. Recent advanced origami models require sub-
stantial precreasing of a prescribed mountain-valley pat-
tern (getting each crease folded slightly in the correct
direction), and then folding all the creases at once. For
example, for folding the MIT seal Mens et Manus in
“three easy steps”, Chan [3] spent roughly three hours
precreasing, three hours folding those creases, and four
hours of artistic folding. The precreasing component is
particularly tedious. Thus, we wonder if this process
can be automated by folding robots. As of the writing
of this paper, the most recent robots for folding paper
can achieve only quite simple foldings (see, e.g., [2]),
but we consider a future setting in which more difficult
ones are possible. In such a setting, we have a series
of portions of the sheet that need to be folded in some
specified locations, and we would like to do it as fast
as possible (that is, in the minimum possible number of
foldings).

We consider one of the simplest folding operations
possible called all-layers simple fold. An all-layers sim-
ple fold starts with a sheet in a flat folded state and
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consists of the following three steps: (1) choose a crease
line, (2) fold all paper layers along this line, and (3)
crease to make all paper layers flat again.

In our model we start with a plain sheet of paper with
no folds or creases (say, a unit square). From that sheet
we do all-layers simple folds one at a time until we have
reached our desired shape. We note that this is one
of the simplest folding models, and that many variants
have been considered in the literature (see [1] for the
other folding models).

This situation leads us to the natural segment folding
problem: given n line segments `1, `2, . . . , `n on a sheet
of paper, we consider executing, one at a time, an all-
layers simple fold operation along a line containing one
or more segments `i for some i ≤ n. The goal is to make
a sequence of such folds in a way that all segments `i
end in crease lines. Notice that, when we fold along a
line L, the location of all segments in one side of the
line are reflected (via line symmetry) onto the other
halfplane. In particular, if L intersects the interior of
some segment `i, it may create two segments that form
a V shape and meet at the folded line (it will create two
segments if and only if L and `i do not meet at a right
angle and `i 6⊂ L). Whenever this happens, we have to
fold the two subsegments since the original segment has
been split into two.

Because folding through a line may increase the num-
ber of folds that are needed, we wonder if every instance
can be folded with a finite number of fold operations1.
We say that an instance is foldable if it has a solution to
the segment folding problem in a finite number of moves.
To date, we do not know if every problem instance is
foldable; in Figure 1 we show an example admitting an
infinite sequence of folds. Another natural question is
related to efficiency: if an instance is foldable, can we
find the sequence of folds? Ideally, one that minimizes
that number of fold operations that are needed? In this
paper we answer this question negatively by showing
that it is NP-hard to decide if we can finish in at most
n folds:

Theorem 1 Deciding whether a segment folding prob-
lem instance of n segments can be solved with n folds is
NP-hard.

1We thank Takeshi Tokuyama for posing this question.
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(a) (b)

(c) (d)

Figure 1: A problem instance that can be folded arbi-
trarily many times through non-folded input segments.
If you fold along the dashed lines, the instance cycles
through the four patterns and never ends. Note that
in all cases we have two segments forming a V shape
and three almost but not exactly orthogonal segments.
Each folding changes the length and the position of the
V shape, but the overall structure remains the same.
Note that it is possible to fold this instance with a fi-
nite number of moves (folding any of the segments that
is not part of the V shape).

Preliminaries. Let S be a given set of n segments in
R2. Let `s be the supporting line of a segment s ∈ S
and let Rs be the right closed half plane bounded by
`s. For a set U ⊆ R2 and a segment s ∈ S, we denote
as Rs(U) the reflection of set U along the supporting
line `s of segment s. A fold along the supporting line
`s of a segment s ∈ S creates a new set of segments
S′ := {(S ∩Rs) ∪R(S \Rs)} \ {s} where the segments
(or parts of them) from S in the left half plane defined
by `s are reflected into the right half plane. We denote
that operation a fold along s, or simply, folding s. Note
that we only allow folding through segments of S.

When a folding line intersects another segment s′ ∈ S,
this second segment is split into two segments that share
an endpoint. Both segments are now part of S and
must be folded as usual. The goal of the folding seg-
ment problem is to find a sequence of folds such that S
becomes empty. Specifically, we are interested in find-
ing the shortest possible sequence, that is, the one with
the fewest folds.

2 Reduction

We will prove Theorem 1 by reducing from 3SAT. A
3SAT formula is given by a set {x1, . . . xn} of boolean
variables and {c1, . . . , cm} of clauses. Each clause con-
tains the disjunction of three literals. A literal is a

positive or negative occurrence of a variable. A for-
mula F (x1, . . . , xn) is the conjunction of the clauses
c1, . . . , cm. In 3SAT we say F is satisfied if and only
if for each clause cj at least one of its literals evaluates
to true and the other two to false. This problem is well
known to be NP-complete[4]. For the reduction we will
construct a set S of segments from a given CNF formula
F .

We start by making straight-forward observations
about basic folds.

Observation 1 If a segment s lies on the boundary of
the convex hull of our set of segments a fold along it
does not change any of the remaining segments.

Let S be a set of segments in R2, we say a segment
s ∈ S stabs t ∈ S, s 6= t, if the supporting line δs
intersects t, but s and t do not share a common point.
We say a segment s ∈ S is stabbing, if there exists a
t ∈ S such that s stabs t.

Consider an instance in general position, that is, no
two segments of S lie on the same line or on perpendic-
ular lines, even after we have performed up to n folds.
In that case each fold can only decrease the size of S by
one.

Observation 2 A solution sequence of a problem in-
stance that is in general position cannot make a fold
along a stabbing segment.

This claim follows from (i) the fact that, in general
position, folding along a stabbing segment does not de-
crease the number of segments of and (ii) we are inter-
ested in determining if a problem instance can be solved
with n folds.

Observation 3 Let S be a set of segments in general
position in R2 and s ∈ S be a non-stabbing segment,
then if a fold along s does not produce a crossing between
another two segments, no segment is split.

The reduction we present uses for simplicity two per-
pendicular directions for the segments, and thus, con-
structs a set of segments that is not in general position.
However, we could perturb the endpoints such that we
obtain a set of segments in general position and whose
endpoints have rational coordinates that can be repre-
sented in polynomially many bits.

Overview. We first give a brief overview of the reduc-
tion. Let F (x1, . . . , xn) be a 3SAT formula. As usual,
our reduction will construct variable and clause gad-
gets using F (x1, . . . , xn) in a way so that any solution
must first fold all variable gadgets. In each such gadget
we will have the choice to fold one of two segments as
the first one in the sequence, which will in turn encode
the truth value of a variable. The folds themselves will
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hc

9wg

bz

Figure 2: Overview of the reduction. Note that the lengths are not up to scale.

shift the position of some literal segments. These seg-
ments will enable the folding of a clause gadget if an
only if the truth assignment of the associated variable
satisfies the clause. Only after all variables are folded
the clause gadgets can be folded. This will be possible
in the required number of steps if and only if for each
clause gadget at least one variable was folded in a way
that the corresponding literal segment was placed in the
enabling part of the clause gadget.

Global Layout. We define a vertical line γ and two
horizontal lines κ1 and κ2. We call the region between
κ1 and κ2 and to the right of γ the clause region. The
region above κ1 and to the left of γ is the literal re-
gion and the region below κ2 and to the left of γ is the
variable region. As the names indicate, we will place the
clause, literal, and variable gadgets in the corresponding
regions. See Figure 2 for an illustration, the details will
become clear in the following sections. Furthermore, we
define wC as the sum of the width of all clause gadgets
and mC = wC/2.

Variable Gadget. For each variable x the correspond-
ing variable gadget consists of thirteen segments. We
call these segments true segment t, false segment f ,

true helper th, false helper fh, true blocker one t1b , true
blocker two t2b , true blocker three t3b , false blocker one f1b ,
false blocker two f2b , false blocker three f3b , next blocker
one b1, next blocker two b2, and next blocker three b3.
For a variable x we denote with S(x) the set of the
thirteen segments corresponding to this variable. The
positioning of them is drawn in Figure 3.

Let wg be the horizontal distance between the th and
fh segment. For a variable x, the gadget S(x) without
the next blocker segment b2 has width wx = 37/2wg +
wC and constant height hx. Nearly all horizontal space
is between the two helper segments and the true and
false segment. It includes the literal strip of variable
gadget S(xi), see the light-blue region in Figure 3. This
strip has width wC .

The key property of the placement of the segments
is that if we start folding t, the segment t2b is stabbed
by the segment f , forcing us to fold (t1b and) th before
f . Symmetrically, folding first along f forces to fold (f1b
and) fh before t.

It remains to explain the function of the three next
blocker segments b1, b2, and b3 of a variable gadget S(xi)
and the placement of b2. These segments guarantee that
no segment in the variable gadget S(xi+1) can be folded
before all the segments in S(xi) have been folded along.
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Figure 3: A variable gadget. (The drawing is not up to scale.) The literal strip is shown in lightblue. The marked
points indicate that the corresponding segments are strictly separable with a vertical line.

The segment b3 ∈ S(xi) is a long horizontal segment,
and above it lie the segments in S(xi+1)\{b3 ∈ S(xi+1)}.
As we will see, it is the last segment of the variable gad-
get to be folded, and it prevents segments in S(xi+1)
from being folded before. The b2 segment is there to re-
set the following variable gadgets properly, i.e., it makes
sure the next variable is at the same distance of γ as the
ones before.

We now describe how the variable gadgets are placed
relative to each other. We begin with variable x1
and place it such that the true segment t ∈ S(x1) is
dx = 10wg units to the left of the vertical line γ and
the top-point of t ∈ S(x1) is (n − 1)8hx + 7hx units
below the horizontal line κ2. The next variable gad-
gets S(x2), . . . , S(xn) are placed to the left and above
S(x1) always leaving 15dx + 6wg + 6wC units of hori-
zontal space between t in S(xi−1) and the t segment of
S(xi), as well as 2hx units vertical space between the
upper end-point of t ∈ S(xi−1) and the lower end-point
of f ∈ S(xi). We place b2 ∈ S(xi) at 10dx + 5wC hor-
izontally to the left of t ∈ S(xi). Finally, b3 is placed
directly to the left of b2 and extended by 10wC units to
the left.

We now show that there are only four ways to fold a
variable gadget.

Lemma 2 There are exactly four ways in which a vari-
able gadget can be folded in thirteen steps, namely:

t→ t1b → th → t2b/t
3
b → f → f1b → fh → f2b /f

3
b →

b1 → b2 → b3 or

f → f1b → fh → f2b /f
3
b → t→ t1b → th → t2b/t

3
b →

b1 → b2 → b3,

where t2b/t
3
b means that we fold the two segments at that

point in any relative order.

Proof. Let S = {t, th, t1b , t2b , t3b , f, fh, f1b , f2b , f3b , b1, b2, b3}
be the segments of a variable gadget constructed as
above. Then the only three non stabbing segments are
b2, t and f . Notice that b2 cannot be folded before b1
and b3, since b1 would intersect b3 after the folding. By
Observation 2 this means the only possible folds are
along t and f , respectively.

W.l.o.g. assume we first fold t. Let S′ be the new set
of segments. Note that, since t was not stabbing and no
crossings were created, by Observation 3, we did also not
create a new segment and no two segments are sharing
a common supporting line. Identify the segments in S
with their reflected counterparts in S′. Then f and b1
are now stabbing t2b , but t1b does not stab any segment
anymore. All other segments are still stabbing the same
segments as before. Hence the only possible fold is along
the supporting line of t1b . By the same argumentation
we get that the following folds must be in order th, t2b/t

3
b ,

f , f1b , fh, f2b /f
3
b , b1, b2, and b3. �

Next, we will show that the folding sequences of
length 13n for the variable gadgets all fold the gadgets
in order of the corresponding indices. The proof of the
lemma is omitted due to space constraints.

Lemma 3 Let x1, . . . , xn be the variables of a
3SAT formula and consider the variable gadgets
S(x1), . . . , S(xn) as above, then the variable gadgets can
be folded in 13n steps if and only if they are folded in
order of their indices.

Clause Gadget. A clause gadget consists of four seg-
ments such that each one stabs the next in a cyclic way.
See Figure 4(a). Thus, by Observation 2, the four seg-
ments cannot be folded unless there is another segment
whose supporting line splits the gadget. If one or more
lines goes through the gadget along the shaded region
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Figure 4: Clause gadget.

in Figure 4(a), this gadget can be folded as shown in
Figure 4(b-d) (the remaining folds follow from Obser-
vation 1). Notice that it does not matter how many
lines go through the shaded region. As for the variable
gadgets, we denote with S(cj) the four segments corre-
sponding to the clause cj in S. Additionally, we call the
gap between the four segments, of width wg, the good
zone of the clause gadget S(cj) and the vertical strip of
width 4wg, starting at the left-most point of any seg-
ment in S(cj), the bad zone. Finally, to guarantee the
clauses get folded in order of their indices, we also in-
troduce a blocker segment bj ∈ S(cj) for each clause cj
except c1, represented by the green arrow in Figure 4.
In total, one clause gadget without its blocker, but in-
cluding the good and bad zones, has width 9wg. We
obtain the following lemma.

Lemma 4 A clause gadget S(c) in a setting where no
horizontal segment can be folded can be folded in four
steps if and only if there is a segment whose supporting
line goes through its good zone.

Let hc be the height of one clause gadget. We position
the gadgets such that the bad zone of S(c1) starts at γ
and the bottommost point of S(c1) is (m− 1)2hc units
above κ2 and hc units below κ1. The next clause S(c2) is
placed hc units below the bottommost segment in S(c1)
and such that its bad zone aligns with the rightmost
point of the four segments of S(c1). The horizontal
segment bj ∈ S(cj) is 10wg units long, wg of it lying in
the bad zone of S(cj) and the rest placed below S(cj+1).
Its y-coordinate makes it stab segment 4 in S(cj), see
Figure 4. We will see in the following section how these
blocker segments guarantee that the order on the clauses
is fixed by their indices.

Literal gadget. As explained above, the clause gad-
gets can not be folded without the supporting line of
another segment separating the cyclically intersecting
segments. Let cj be a clause and xi a variable that oc-
curs in cj . Then, we create one vertical segment S(zi,j)

in the literal gadget corresponding to that literal zi,j .
For each clause cj and variable xi, the segment S(zi,j) is
placed wg above κ1 and inside the literal strip of the gad-
get corresponding to variable xi, i.e., the corresponding
light-blue strip in Figure 3.

More precisely, S(zi,j) is placed with an offset to the
true segment t of S(xi) of (16 + 1

4 )wg + (j − 1)wc if xi
appears positive in cj and at (20 + 3

4 )wg + (j − 1)wc if
xi appears negated in cj . Additionally, we give a literal
segment S(zi,j) a negative horizontal offset δ = 1

10wg

if zi,j is the literal with smallest index i in the clause,
and a positive horizontal offset of δ if the literal appears
with the largest index i.

For each zi,j we further place a blocker segment
wg(n− i+ 1) units above the toppoint of S(zi,j), com-
pare Figure 2. Observe that no S(zi,j) can now be folded
before the corresponding blocker.

Finally we introduce one vertical segment bz. Hori-
zontally we place it 11dx + 5wC units of horizontal dis-
tance to the left of t ∈ S(xn). Vertically we put its bot-
tommost point wg units above the topmost point of the
ai,j segments. The segment bz then extends (n + 1)wg

units to the top.

Observation 4 Let F (x1, . . . , xn) be a 3SAT formula
and consider the variable gadgets S(x1), . . . , S(xn) and
literal gadgets S(zi,j) as above, then for all literals zi,j
the segments in S(zi,j) are folded after all segments in
S(x1), . . . , S(xn).

Correctness. It remains to argue the correctness of our
reduction. The proofs of Lemmas 5 and 6 are omitted
for space reasons. Theorem 1 then follows directly from
Lemma 8.

Lemma 5 Given a 3SAT formula F (x1, . . . , xn), let
S(x1), . . . , S(xn) be the variable gadgets constructed as
above. Then, after folding S(x1), . . . , S(xi), the hori-
zontal distance between t ∈ S(xi+1) and γ is dx.
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Lemma 6 Given a 3SAT formula F (x1, . . . , xn), let S
be the set of segments constructed by the reduction. Let
S be a folding sequence of the variable gadgets up to
S(xi−1). Let S′ be the segments after a fold along
s ∈ {t, f} ⊂ S(xi). If s = t, then for every literal
gadget S(zi,j) with clause cj ∈ F (x1, . . . , xn) we have
that S′(zi,j) is in the good zone of S′(cj) if zi,j is a pos-
itive literal, and in the bad zone otherwise. If instead
s = f , then for every literal gadget S(zi,j) with clause
cj ∈ F (x1, . . . , xn) we have that S′(zi,j) is in the good
zone of S′(cj) if zi,j is a negative literal, and in the
bad zone of S′(cj+1) otherwise. Moreover, it is the only
literal segment reflected to this coordinate.

We are now ready to state the same ordering lemma
for the clauses as for the variables.

Lemma 7 Let F (x1, . . . , xn) be a CNF formula and
consider the segments S as above, then after all vari-
able gadgets S(x1), . . . , S(xn) are folded the clause gad-
gets can only be folded in order S(cn), . . . , S(c1).

Proof. The lemma follows as for Lemma 3 once we re-
alize that, by Lemma 6, after folding all variable gad-
gets S(x1), . . . , S(xn), we find that the segments S(zi,j)
are reflected such that they are either in the good or
bad zone of the corresponding S(cj). This means that
for every clause gadget S(cj), aside from S(cn), we find
that the literal segments S(zi,j) are stabbing the blocker
segments b ∈ S(cj+1). �

The reduction can be computed in polynomial time
in n. More precisely, for a given CNF formula
F (x1, . . . , xn), we can construct the set S of segments
in polynomial time of n using these gadgets with suit-
able spaces. Then we can prove that F (x1, . . . , xn) is
satisfiable if and only if the constructed set S can be
folded in |S| steps. Theorem 1 follows directly from the
following lemma.

Lemma 8 Let F (x1, . . . , xn) be a formula of a 3SAT
instance with bounded degree five and S the set of seg-
ments constructed from F as above, then F is satisfiable
if and only if S can be folded in |S| steps.

Proof. Let S be the set of segments constructed as
above from a 3SAT CNF formula F (x1, . . . , xn), and let
S be a folding sequence of length |S|, folding S. Com-
bining Lemmas 3, 4 and 7, as well as Observation 4, we
get that in S the variable gadgets must all be folded
first, then the literal and clause gadgets. Furthermore,
by Lemma 2, each fold of a variable gadget starts with
the t or f segment for each variable. By Lemma 6 we
know that a literal segment gets reflected into the good
zone of a clause if and only if it appears positive and the
t segment is folded first or it appears negated and the
f segment of the corresponding variable is folded first.

Additionally, no clause gadget can be folded in the re-
quired number of steps if there is no segment inside its
good zone. Finally observe that in such a folding se-
quence no two segments ever cross. As a result, we find
a satisfying assignment of the variables of F by simply
setting xi to true if in S the true segment t ∈ S(xi)
was folded before f ∈ S(xi) and to false if the converse
holds.

For the reverse direction, let F (x1, . . . , xn) be again a
3SAT CNF formula and F a fulfilling assignment. Now
let S be the set of segments constructed as above. We
construct a folding sequence S as follows. For every
variable gadget S(xi) pick t ∈ S(xi) to be folded first
if xi is set to true in F and pick f ∈ S(xi) otherwise.
It follows from Lemmas 3, 4, and 7, and Observation 4,
that this fixes the folding sequence. Assume that|S| 6=
|S| and there is a fold in S which splits another segment,
aligns them, or leads to a crossing. By the way we
picked S none of these three cases can occur when we
fold the n variable gadgets S(x1), . . . , S(xn). Hence, the
fold splitting, aligning, or crossing two segments must
happen when the clause gadgets are folded, but then,
with Lemma 4, this can only happen in a clause cj , for
which none of the corresponding literal segments S(zi,j)
was in the good zone of S(cj). However, since F is
satisfying, this can not be the case by Lemma 6. �

3 Concluding Remarks

We showed that deciding if there is a solution to the
Segment Folding Problem with at most n folding oper-
ations is NP-hard when we don’t allow folds along stab-
bing segments. This is always the case for an instance
in general position. For simplicity, the reduction pre-
sented uses two perpendicular directions and constructs
an instance that is not in general position. However,
it is possible to modify the reduction to be in general
position. Intuitively, duplicate each segment at a small
angle such that the copy stabs the original segment. The
length of the copied segment is such that the same seg-
ments which stab the original stab the copied segment.
In that way, the original segment is always folded first.
Furthermore, after this fold, the copied segment is on
the boundary of the convex hull and can be deleted by
Observation 1.
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Nurimisaki and Sashigane are NP-complete

Chuzo Iwamoto∗ Tatsuya Ide†

Abstract

Nurimisaki and Sashigane are Nikoli’s pencil puzzles.
We study the computational complexity of Nurimisaki
and Sashigane puzzles. It is shown that deciding
whether a given instance of each puzzle has a solution
is NP-complete.

1 Introduction

The Nurimisaki puzzle is played on a rectangular grid
of cells (see Fig. 1(a)). Initially, some of the cells con-
tain circles, where each circle contains a number or no
number. The purpose of the puzzle is to fill in cells in
black (see Fig. 1(i)) according to the following rules [1]:
The set of all white cells is regarded as a land, and sets
of connected black cells are seas. (In Fig. 1(i), there are
eight seas and one land.) (1) Cells with a circle remain
white and must be a “Misaki” (Promontory), while cells
without a circle cannot be a “Misaki.” A Misaki cell has
only one of the cells next to it remaining white and the
rest have to be black. Each white cell without a circle
has at least two white cells next to it. (Namely, a cell
has a circle if and only if it is at a Misaki position.)
(2) The numbers in the circles indicate how many white
cells form a straight line from the Misaki cell (see the
four red cells starting from ¯ in Fig. 1(d)). At the cells
with empty circles, any number of white cells may form
a straight line. (3) The set of all white cells is con-
nected. (Namely, there is exactly one land on the grid.)
(4) Neither black cells nor white cells can be linked to
be a 2× 2 square or larger. (The Japanese word “Nuri”
in Nurimisaki means “painting.”)

Figure 1(a) is the initial configuration of a Nurimisaki
puzzle. In this figure, there are seven circles, three of
which contain numbers 4, 2, and 3. From Figs. 1(b)–
(i), the reader can understand the basic technique for
finding a solution. (b) Since there is a red circle in
the yellow area, white cells cannot form a straight line
downward from number ¯. Thus, cell a must be colored
black (see (c)), since a is 4 cells away from number ¯.
(c) The three cells between number ¯ and cell a must
not be colored black; such cells are indicated by • in
Fig. 1. Since ¯ is a promontory (Misaki), cells b and c
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Figure 1: (a) Initial configuration of a Nurimisaki puz-
zle. (b)–(i) are the progress from the initial configura-
tion to a solution. (g) is an invalid placement of black
cells.

must be colored black. Since there is a circled number 
in the blue area, white cells must form a straight line
downward from number ® (see the green area in (d)).
(d) Cells d and e must be colored black. (e) Since red
and green cells belong to one land, two blue cells are
not colored black. Since white cells cannot form a 2× 2
square, cell f is black (see (f)). (f) Since  is a promon-
tory (Misaki), either cell g or h must be colored black.
(g) is an invalid placement of black cells. (If cell g is
colored black, then cell i becomes a promontory (Mis-
aki), but it has no circle.) Therefore, cells g and i are
white, and cell h is black (see (h)). (h) Since the yellow
cell is a promontory (Misaki), cells j and k are black.
Since black cells cannot form a 2×2 square, at least one
of the three cells l, m, and n is white. (i) is one of the
multiple solutions.

The Sashigane puzzle is played on a rectangular grid
of cells (see Fig. 2(a)). Initially, there are circled num-
bers, empty circles, and arrows. The purpose of the
puzzle is to divide the grid into L-shaped blocks ac-
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Figure 2: (a) Initial configuration of a Sashigane puzzle.
(b)–(f) are the progress from the initial configuration to
a solution.

cording to the following rules [2]: (1) Cells with cir-
cles form the knee (bend) in a block (see Fig. 2(f)).
(2) The number in a circle shows the number of cells in
its block. Circles without numbers may have any num-
ber of cells. (3) Cells with arrows form one end of its
block; the arrow points towards the knee of this block.
(The Japanese word “Sashigane” means “steel square,”
a tool used in carpentry [3].)

Figure 2(a) is the initial configuration of a Sashigane
puzzle. In this figure, there are three arrows and three
circles, two of which contain numbers 3 and 4. (b) Each
arrow is surrounded by a “wall,” which becomes one
end of an L-shaped block. (c) Since there is a circle
in the red cell, the three green cells must form a L-
shaped block. The blue cells form a

L

-shaped block,
where ¯ is the knee of the block. (d) Circled number ®
and empty circle © are the knees of three-cell blocks.
(e) The remaining cells are divided into three L-shaped
blocks. (f) is the solution.

In this paper, we study the computational complexity
of the decision version of the Nurimisaki and Sashigane
puzzles. The instance of each problem is a rectangular
grid of cells. In the Nurimisaki puzzle problem, some of
the cells of the grid contain circles, and each circle con-
tains a number or no number. In the Sashigane puzzle
problem, there are circled numbers, empty circles, and
arrows on the grid. Each problem is to decide whether
there is a solution to the instance. Now we are ready to
present our main theorem.

Theorem 1 The Nurimisaki and Sashigane puzzle
problems are NP-complete.

The proofs are given in Section 2.2 and Appendix.
It is clear that the Nurimisaki puzzle problem belongs
to NP, since the game ends when all empty cells are
colored black or white. The Sashigane puzzle problem

also belongs to NP, since the game ends when all edges
(of cells) become a thick line (wall) or a thin line (no
wall).

There has been a huge amount of literature on the
computational complexities of games and puzzles. In
2009, a survey of games, puzzles, and their complex-
ities was reported by Hearn and Demaine [11]. Af-
ter the publication of this book, the following Nikoli’s
pencil puzzles were shown to be NP-complete: Dosun-
Fuwari [16], Fillmat [23], Hashiwokakero [6], Hebi, Sato-
gaeri, and Suraromu [18], Herugolf and Makaro [15],
Kurodoko [19], Kurotto and Juosan [17], Norinori and
LITS [7], Numberlink [4], Pipe link [24], Shakashaka [9],
Shikaku and Ripple Effect [22], Usowan [14], Yajilin
and Country Road [12], and Yosenabe [13]. Last year,
Nikoli’s pencil puzzles, Pencils [20] and Sto-Stone [5],
were shown to be NP-complete in CCCG 2018.

2 NP-completeness of Nurimisaki

2.1 3SAT Problem

The definition of 3SAT is mostly from [10]. Let U =
{x1, x2, . . . , xn} be a set of Boolean variables. Boolean
variables take on values 0 (false) and 1 (true). If x is
a variable in U , then x and x are literals over U . The
value of x is 1 (true) if and only if x is 0 (false). A clause
over U is a set of literals over U , such as {x1, x3, x4}. It
represents the disjunction of those literals and is satis-
fied by a truth assignment if and only if at least one of
its members is true under that assignment.

An instance of PLANAR 3SAT is a collection C =
{c1, c2, . . . , cm} of clauses over U such that (i) |cj | ≤
3 for each cj ∈ C and (ii) the bipartite graph G =
(V,E), where V = U ∪ C and E contains exactly those
pairs {x, c} such that either literal x or x belongs to the
clause c, is planar.

The PLANAR 3SAT problem asks whether there ex-
ists some truth assignment for U that simultaneously
satisfies all the clauses in C. This problem is known to
be NP-complete. For example, U = {x1, x2, x3, x4},
C = {c1, c2, c3, c4}, and c1 = {x1, x2, x3}, c2 =
{x1, x2, x4}, c3 = {x1, x3, x4}, c4 = {x2, x3, x4} pro-
vide an instance of PLANAR 3SAT. For this instance,
the answer is “yes,” since there is a truth assignment
(x1, x2, x3, x4) = (0, 1, 0, 0) satisfying all clauses. It is
known that PLANAR 3SAT is NP-complete even if each
variable occurs exactly once positively and exactly twice
negatively in C [8] (this restriction is used in Appendix).

2.2 Transformation from an Instance of 3SAT to a
Nurimisaki Puzzle

We present a polynomial-time transformation from an
arbitrary instance C of PLANAR 3SAT to a Nurimisaki
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Figure 3: (a) Variable gadget of Nurimisaki transformed from xi. (b) Assignment xi = 0. (c) Assignment xi = 1.
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Figure 4: (a) Clause gadget of Nurimisaki transformed from cj = {xi1 , xi2 , xi3}. (b) is an invalid placement of black
cells. If xi1 = xi2 = xi3 = 0, there is no solution to number ´.

puzzle such that C is satisfiable if and only if the puzzle
has a solution.

Each variable xi ∈ {x1, x2, . . . , xn} is transformed
into the variable gadget as illustrated in Fig. 3(a), which
is composed of three circles, one of which contains num-
ber 4.

There are two possible solutions to circled number ¯.
In Figs. 3(b) and 3(c), the three red cells between num-
ber ¯ and cell d remain white. (In this paper, all
non-black cells are called “white” cells, although they
are colored red, yellow, grey, green, blue, or orange
in Figs. 1–9.) Since circled number ¯ is a promon-
tory (Misaki), cells a, b, c and d are colored black. Fig-
ures 3(b) and 3(c) correspond to assignment xi = 0
and xi = 1, respectively.

Clause cj ∈ {c1, c2, . . . , cm} is transformed into the
clause gadget as illustrated in Fig. 4(a), which contains
three variable gadgets of Fig. 3(a). A clause gadget
is composed of 14 circles, where three circles contain
number 4 and one circle contains number 9. There is a
circle which is two cells down from number ´ (see the
red empty circle in Fig. 4(b)). Thus, number ´ cannot
form a straight line of white cells downward.

Let cj = {xi1 , xi2 , xi3}. Suppose xi1 = xi2 = xi3 = 0

(see Fig. 4(b)). In this case, there are three black cells d,
which are six cells away from number ´. Therefore,
there is no way to form a straight line of nine white
cells from number ´. Hence, Fig. 4(b) is an invalid
placement of black cells. On the other hand, if at least
one of the variables xi1 , xi2 , and xi3 is 1 (see Fig. 5),
there is a valid placement of black cells.

Fig. 6(a) is a connection gadget, where circled num-
bers ¯ appear at regular intervals of length four. If the
leftmost ¯ forms a straight line of four white cells to
the right (see the red area of Fig. 6(b)), then the second
and third ¯ must form straight lines of four white cells
to the right. Thus, signal “xi = 0” is transmitted to the
right.

On the other hand, if the leftmost ¯ forms a straight
line of four white cells to the left (see Fig. 6(c)), then
the second and third ¯ can form straight lines of four
white cells to the left. In this case, signal “xi = 1” is
transmitted to the right.

If you want the distance between two circled num-
bers ¯ to be even (see Figs. 6(d) and 6(e)), then a pair
of circled numbers ¯ are placed at an interval of length
five.

Figure 7 is the right branch gadget, where a signal
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(c) Assignment xi = 1. (d,e) Connection gadget of even length.

is separated and transmitted to two directions. (In
Fig. 9, this gadget is used between variable x4 and
clauses c1, c2.) The left branch gadget can be con-
structed similarly. Figure 7 is also used as a right turn
gadget. (In Fig. 9, right (resp. left) turn gadgets are
used between variable x1 and clause c1 (resp. x2 and
c2).)

Figure 9 is a Nurimisaki puzzle transformed from
C = {c1, c2} and U = {x1, x2, x3, x4}, where c1 =

{x1, x2, x4} and c2 = {x2, x3, x4}. In this figure, there
are two large white areas separated by connection, vari-
able, and clause gadgets. Figure 8 is an enlarged illus-
tration of variable gadget x1 and its surroundings. The
border of each white area is filled with white cells (see ◦
in the orange area of Fig. 8). In each white area in the
orange border, a black-cell row and a white-cell row ap-
pear alternately (see �� · · ·� and ◦ ◦ · · · ◦ in the white
area). From this construction, the instance C of PLA-
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Figure 8: Enlarged illustration of variable gadget x1 and its surroundings of Fig. 9. The border of white areas are
filled with white cells (see ◦ in the orange area). In each white area separated by the orange border, a black-cell row
and a white-cell row appear alternately (see �� · · ·� and ◦ ◦ · · · ◦ in the white area).

NAR 3SAT is satisfiable if and only if the corresponding
Nurimisaki puzzle has a solution.
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Figure 9: A Nurimisaki puzzle transformed from C = {c1, c2}, where c1 = {x1, x2, x4} and c2 = {x2, x3, x4}. From
the solution of the puzzle, one can see that the assignment (x1, x2, x3, x4) = (0, 1, 0, 0) satisfies all clauses of C.
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Appendix

2.3 Transformation from an Instance of 3SAT to a
Sashigane Puzzle

We present a polynomial-time transformation from an in-
stance C of PLANAR 3SAT to a Sashigane puzzle such that
C is satisfiable if and only if the puzzle has a solution.

Each variable xi ∈ {x1, x2, . . . , xn} is transformed into
the variable gadget as illustrated in Fig. 10(a), which is
composed of four circled numbers and ten arrows in a grey
(9×5)-cell area. Note that the instances of 3SAT considered
in this section have the restriction explained at the end of
Sect. 2.1.
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Figure 10: (a) Variable gadget of Sashigane transformed
from xi. (b) Assignment xi = 1. (c) Assignment xi = 0.

There are two possible solutions to circled number ± (see
blue blocks of Figs. 10(b) and 10(c)). In Fig. 10(b), the
middle ® and bottom ® must be the knees of red “L-shaped
blocks,” and the top ® can be the knee of the red “ L-shaped
block.” This configuration corresponds to xi = 1. (The
empty cell at the (3,5) position of Fig. 10(b) will play a key
role.) On the other hand, in Fig. 10(c), the top ® must be
the knee of the red L-shaped block, and the middle ® and
bottom ® can be the knees of red L-shaped blocks. This
corresponds to xi = 0.

Clause cj ∈ {c1, c2, . . . , cm} is transformed into the clause
gadget as illustrated in Fig. 11, which is composed of four
circled numbers and 11 arrows. Let cj = {xi1 , xi2 , xi3}. If
xi1 = xi2 = xi3 = 0, there is no way to place an L-shaped
block of size 6 (see Fig. 12(a)). However, if at least one of
the three variables xi1 , xi2 , and xi3 is 1, there is a solution
(see Figs. 12(b)–(h)).

6

3

3

3

x 

x 

x i1

i2

i 3

Figure 11: Clause gadget of Sashigane transformed
from cj = {xi1 , xi2 , xi3}.

If cj consists of two literals, then the corresponding clause
gadget is Fig. 13. The gadget of Fig. 13 is essential, since it
is known that 3SAT with exactly three occurrences
per variable is polynomial-time solvable if every clause cj
has three literals [21].

Fig. 14(a) is the connection gadget. If the leftmost ® is
the knee of an L-shaped block (see Fig. 14(b)), the remaining
circled numbers ® must become knees of L-shaped blocks.
On the other hand, if the leftmost ® is the knee of a L-shaped
block (see Fig. 14(c)), the remaining circled numbers ® can
be knees of L-shaped blocks.

If you want the distance between two circled numbers ® to
be odd (see Fig. 15(a)), then two circled numbers ¯ are used
in a connection gadget. Four and six orange L-shaped blocks
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Figure 12: (a) If xi1 = xi2 = xi3 = 0, there is no way
to place an L-shaped block of size 6. (b)–(h) If at least
one of the three variables xi1 , xi2 , and xi3 is 1, there is
a solution.

191



CCCG 2019, Edmonton, Canada, August 8–10, 2019

(c)

(d) (e)

63

3

63

3

(a)

63

3

3

3

6

(b)

63

3

x   = 0

x   = 0
i1

i2 x   = 0

x   = 1
i1

i2

x   = 1

x   = 0
i1

i2 x   = 1

x   = 1
i1

i2

x 

x 

i1

i2

Figure 13: Clause gadget for cj = {xi1 , xi2}, which con-
sists of only two literals.
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Figure 14: (a) Connection gadget. (b) Signal “xi = 0”
is transmitted to the right. (c) Signal “xi = 1.”

in Figs. 15(b) and 15(c), respectively, will be explained in the
next paragraph. Figures 16(a,c,e) and 16(b,d,f) are the right
and left turn gadgets, respectively.

Figure 17 is a Sashigane puzzle transformed from C =
{c1, c2, c3, c4}, and U = {x1, x2, x3, x4}, where c1 =
{x1, x2, x3}, c2 = {x1, x2, x4}, c3 = {x1, x3, x4}, and c4 =
{x2, x3, x4}. In this figure, there are six large white ar-
eas separated by connection, variable, and clause gadgets.
Those white areas can be filled up with l1 × 2 and l2 × 3
rectangles (see Fig. 18). Here, l1 × 2 and l2 × 3 rectangles
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Figure 15: Connection gadget of odd length.
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Figure 16: Right and left turn gadgets.

are composed of two and three L-shaped blocks, where l1 ≥ 3
and l2 ≥ 4, respectively. Orange L-shaped blocks were used
in Figs. 15 and 16 so that white areas of Fig. 18 can be filled
up with rectangles of width 2 and 3. From this construction,
the instance C of PLANAR 3SAT is satisfiable if and only
if the corresponding Sashigane puzzle has a solution.

192



30th Canadian Conference on Computational Geometry, 2019

63

3

3 3 3

3
3

3

3 33 33 3

3
3

3
3

3
3

3
3

3

3

3

3
3

3

3

33

33

3

33

3333

3

3

3333333

3

3

3

3

6

3

3

3

33333333

3

333

333333 33 3 344 33

3

33

3
3

3
3

333333333333333333

3
3

3
3

3

3 33

3

3

3 4 4 3 3

3

3

3333

3

3 3 3 3 3 3 3 3

344

3

333

3
3

3

3
3

33

33

33

3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3

3

3 34 4 3

3

3

3

3

333

3

3

3

33

3
3

3

33

3

3

3

3

3

33

3

3

33

3

3

3

33

3 3 3

33

3

3 3

33

3

33

x  = 12

x  = 02

x  = 11

c2

c1

c3

c4

6

3

3

3

3

x  = 01

6
3

3

3

x  = 02 3

x  = 11

x  = 13
6

3

3

3

x  = 03

x  = 13

3
x  = 14

6

3

3

3

x  = 04

x  = 14

334 43 3

3
4

4
3

3

3

3

3 3

3
4

4
3

3
4

4
3

3
3

3

3 3

3

3 3

3

33

3
3

3
3

3
3

3
3

3
3

3

3
3

3

3
3

3

3

3

3

3
3

3 3

3 3 3

3
3

3
3

3
3

3
3

3
3

3

3

3

3
3

3
3

3
3

3
3

3
3

4
4

63

3

3

3
3

4
4

3
3

3

3

3

6

3

3

3

3

3

3

3

3

Figure 17: A Sashigane puzzle transformed from C = {c1, c2, c3, c4}, where c1 = {x1, x2, x3}, c2 = {x1, x2, x4},
c3 = {x1, x3, x4}, c4 = {x2, x3, x4}. From the solution of the puzzle, one can see that the assignment (x1, x2, x3, x4) =
(0, 1, 0, 0) satisfies all clauses of C.

193



CCCG 2019, Edmonton, Canada, August 8–10, 2019

3 33 33 333

3

333

3

3

3333

3 3 3 3 3 3 3 3 3

3
3

3
3

3 34 3

3

3

333

33 3 3

3

x  = 11
6

3

3

3

3

x  = 01

x  = 11

3 3

3
4

4
3

3
3

3

3 3

3

3
3

3
3

3
3

3
3

4
4

3

3

3

3

43

3

3

3
4

4
3

3

3

Figure 18: Enlarged illustration of variable gadget x1 and its surroundings of Fig. 17. White areas of Fig. 17 are
filled with l1 × 2 and l2 × 3 rectangles, where l1 ≥ 3 and l2 ≥ 4.
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Constrained Orthogonal Segment Stabbing

Sayan Bandyapadhyay∗ Saeed Mehrabi†

Abstract

Let S and D each be a set of orthogonal line segments
in the plane. A line segment s ∈ S stabs a line seg-
ment s′ ∈ D if s ∩ s′ 6= ∅. It is known that the problem
of stabbing the line segments in D with the minimum
number of line segments of S is NP-hard [8]. However,
no better than O(log |S ∪ D|)-approximation is known
for the problem. In this paper, we introduce a con-
strained version of this problem in which every horizon-
tal line segment of S ∪D intersects a common vertical
line. We study several versions of the problem, depend-
ing on which line segments are used for stabbing and
which line segments must be stabbed. We obtain sev-
eral NP-hardness and constant approximation results
for these versions. Our finding implies, the problem
remains NP-hard even under the extra assumption on
input, but small constant approximation algorithms can
be designed.

1 Introduction

Let S and D be two sets of orthogonal line segments
in the plane. In this paper, we study the orthogonal
segment stabbing problem, where the goal is to find a
minimum-cardinality subset S′ ⊆ S such that every line
segment in D is stabbed by at least one line segment in
S′. A line segment s ∈ D is stabbed by a line segment
s′ ∈ S if and only if s ∩ s′ 6= ∅. Let H and V denote
the set of input horizontal and vertical line segments,
respectively, and n = |H t V |1.

The orthogonal segment stabbing problem was stud-
ied by Katz et al. [8] who proved that the problem is
NP-hard even in the case when S contains only verti-
cal line segments and D contains only horizontal line
segments, i.e, S = V and D = H. Notice that the prob-
lem is trivial when S,D ⊆ V or S,D ⊆ H. Moreover,
an O(log n)-approximation algorithm for the problem is
straightforward (by reducing the problem to set cover).
To the best of our knowledge, no other approximation or
inapproximabilty results are known for the general ver-
sion of the problem. However, two special versions of
the problem have been studied very recently. Bandya-

∗Department of Computer Science, University of Iowa, Iowa
City, USA. sayan-bandyapadhyay@uiowa.edu.
†School of Computer Science, Carleton University, Ottawa,

Canada. saeed.mehrabi@carleton.ca.
1Throughout the paper we use t to denote disjoint union.

S

D H V H t V

H Polytime
NP-hard NP-hard

(trivial) PTAS [2] PTAS [2]

V
NP-hard1

Polytime PTAS [2]
PTAS [2] (trivial)

H t V 5-approx. NP-hard
NP-hard

7-approx.

PTAS 2-approx. (3 + ε)-approx.

Table 1: A summary of our results for the (S,D)-
stabbing problem. Each row corresponds to a set S
and each column corresponds to a set D. (1 when each
horizontal line segment must be intersected by exactly
one selected line segment)

padhyay and Basu Roy [2] studied a related art gallery
problem, and from their work it follows that one can get
a PTAS for the orthogonal segment stabbing problem if
S ⊆ H or S ⊆ V . Mehrabi [11] considered the version
where no two horizontal (resp. vertical) line segments
intersect each other (i.e., the intersection graph of the
line segments in S ∪D is bipartite, but S,D ⊆ H t V ),
and obtained a constant approximation.

In this paper, we introduce a constrained version of
the orthogonal segment stabbing problem in which ev-
ery horizontal line segment intersects a vertical line.
More formally, for S,D ⊆ H t V , we define the (S,D)-
stabbing problem to be the problem of stabbing all the
line segments in D with the minimum number of line
segments in S with the constraint that all the line seg-
ments in H intersect a vertical line Lv. In this work,
we study different versions of the (S,D)-stabbing prob-
lem. Considering these versions, we obtain the following
results (see Table 1 for a summary of our results).

• The (H,V )-stabbing, (H,H t V )-stabbing, (H t
V, V )-stabbing and (H t V,H t V )-stabbing prob-
lems are all NP-hard.

• There exists an O(n6)-time 5-approximation al-
gorithm, and a local-search based PTAS for the
(H t V,H)-stabbing problem.

• There exists an O(n5)-time 2-approximation algo-
rithm for the (H t V, V )-stabbing problem.
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• There exists an O(n6)-time 7-approximation algo-

rithm, and an nO( 1
ε2

)-time (3 + ε)-approximation
algorithm (for any ε > 0) for the (H t V,H t V )-
stabbing problem.

• The (V,H)-stabbing problem is NP-hard when each
horizontal line segment must be stabbed by exactly
one line segment.

The (S,D)-stabbing problem is closely related to
the minimum dominating set problem on axis-parallel
polygonal chains in the plane. Among the previous
work, the papers of Bandyapadhyay et al. [1] and
Chakraborty et al. [3] are perhaps the most related
to ours, as they consider the minimum dominating set
problem on the intersection graph of “L-shapes” such
that each L intersects a vertical line. The former showed
that this problem is APX-hard, and an 8-approximation
algorithm for the problem was given by the latter. For
more related work, see [1, 3] and the references therein.

Organization. In Section 2, we define some notations
that we use throughout the paper, and make a few ob-
servations that will be useful later. Then, we discuss
our hardness results in Section 3, and the approxima-
tion results in Sections 4 and 5. The proofs of the results
marked with (∗) are given in the appendix due to space
constraints.

2 Preliminaries

For a point p, let xp and yp be its x- and y-coordinates,
respectively. For a horizontal line segment h and a
vertical line segment v that intersect each other, let
I(h, v) denote their intersection point. The y-coordinate
(resp., x-coordinate) of a horizontal (resp., vertical) line
segment is defined to be the y-coordinate (resp., x-
coordinate) of its endpoints. For a horizontal line seg-
ment h with left endpoint p, call the line y = yp, de-
noted by L(h), the line-extension of h. Consider the
line-extension L(h). Let V ′ be any subset of vertical
line segments that intersect L(h). For v, v′ ∈ V ′, v and
v′ are called consecutive w.r.t. V ′ if there is no other
line segment v1 ∈ V ′ such that I(L(h), v1) lies in the
open interval (I(L(h), v), I(L(h), v′)). We say a set of
line segments S1 hits a set of line segments S2 if for any
line segment s ∈ S2, there is a line segment s′ ∈ S1 such
that s′ stabs s; i.e, s ∩ s′ 6= ∅.

Our PTAS is based on the local search technique,
which was introduced to computational geometry inde-
pendently by Chan and Har-Peled [4], and Mustafa and
Ray [12]. Consider a minimization problem in which the
objective is to compute a feasible subset A of a ground
set S whose cardinality is minimum over all such feasible
subsets of S. Moreover, it is assumed that computing
some initial feasible solution and determining whether
a subset A ⊆ S is a feasible solution can be done in

polynomial time. The local search algorithm for a min-
imization problem is as follows. Fix some parameter
k, and let A be some initial feasible solution. Now, if
there exist A′ ⊆ A, M ⊆ S \ A such that |A′| ≤ k,
|M | < |A′| and (A \A′) ∪M is a feasible solution, then
we set A = (A \ A′) ∪M . The above is repeated until
no such “local improvement” is possible and we return
A as the final solution.

Let B and R be the solutions returned by the algo-
rithm and an optimum solution, respectively. The fol-
lowing theorem establishes the connection between local
search technique and obtaining a PTAS.

Theorem 1 ([4, 12]) Consider the solutions B and R
for a minimization problem, and suppose that there ex-
ists a planar bipartite graph H = (B ∪R, E) that satis-
fies the local exchange property: for any subset B′ ⊆ B,
(B \ B′) ∪ NH(B′) is a feasible solution, where NH(B′)
denotes the set of neighbours of B′ in H. Then, the local
search algorithm yields a PTAS for the problem.

The following simple observation will be useful in the
next sections.

Observation 1 (∗) Suppose D = D1 tD2. If there is
an α-approximation algorithm A1 for (S,D1)-stabbing
that runs in f(n) time and a β-approximation algo-
rithm A2 for (S,D2)-stabbing that runs in g(n) time,
then there is an (α+ β)-approximation algorithm A for
(S,D)-stabbing that runs in f(n) + g(n) time.

3 Hardness Results

In this section, we first prove that the (H t V,H t V )-
stabbing problem is NP-hard, and then we will show
how to use or modify the construction for proving the
hardness of other variants claimed in Table 1 except
(V,H)-stabbing. To prove the NP-hardness of (V,H)-
stabbing, we will show a completely different reduction
from the Positive Planar Cycle 1-In-3SAT problem [5].
Note that NP-hardness of any of these variants does not
directly imply the NP-hardness of any other variant. In
the following, we first give some definitions and then we
describe the reduction.

Consider an instance I of the 3SAT problem with n
variables and m clauses. The instance I is called mono-
tone if each clause is monotone; that is, each clause
consists of only positive literals (called positive clauses)
or only negative literals (called negative clauses). The
3SAT problem is NP-hard even when restricted to mono-
tone instances [7].

We can associate a bipartite variable-clause graph
GI = (V,E) with I, where the vertices in one partition
of GI correspond to the variables in I and the vertices
in the other partition of GI correspond to the clauses
of I. Each clause vertex is adjacent to the variable ver-
tices it contains. The instance I is called planar if GI
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C1

C2C3

`

u

v

w

x

Figure 1: An instance of the planar 3SAT in the comb-
shaped form of Knuth and Raghunathan [9]. Crosses on
the edges indicate negations; e.g., see C2 = (u ∨ v ∨ x).

is planar; it is known that the Planar 3SAT problem
is NP-hard [10]. Moreover, when I is an instance of
the Planar 3SAT problem, Knuth and Raghunathan [9]
showed that GI can be drawn on a grid such that all
variable vertices are on a vertical line ` and clause ver-
tices are connected from left or right of that line in a
comb-shaped form without any edge crossing. More-
over, in such a drawing of GI , each variable vertex is
drawn as a point in the plane and each clause vertex is
drawn as a vertical line segment that is spanned from its
lowest variable to its highest variable. More precisely,
if a clause C contains three variables u, v and w such
that v is between u and w on `, then the clause vertex
is drawn as a vertical line segment s : xs× [yu, yw]. The
clause vertex is then connected to its three variable ver-
tices using horizontal line segments. See Figure 1 for an
example. In the Planar Monotone 3SAT problem, for
any instance I, GI can be drawn as described above.
Moreover, all positive clauses (resp., negative clauses)
lie to the left (resp., right) of the vertical line `. de
Berg and Khosravi [6] showed that Planar Monotone
3SAT is NP-hard.

Reduction. We reduce the Planar Monotone 3SAT
problem to the (H t V,H t V )-stabbing problem. For
the rest of this section, let I be an instance of the Pla-
nar Monotone 3SAT problem with n variables and m
clauses. First, we consider a planar monotone drawing
of the variable-clause graph GI . As mentioned before,
this is similar to the non-crossing comb-shaped form of
Knuth and Raghunathan [9], where (i) variable vertices
are all on the vertical line ` : x = 0, (ii) the clause ver-
tices are drawn as vertical line segments as described
above, and (iii) all the positive clauses (resp., negative
clauses) are to the left (resp., right) of `. Next, we re-
place each variable vertex v with three horizontal line
segments vl, vr and s(v). First, vl : [xs, 0] × yv (resp.,
vr : [0, xs′ ] × yv), where s (resp., s′) is the vertical line
segment corresponding to the left-most positive (resp.,
right-most negative) clause that contains v. Moreover,

s s′

v

`

s′s
s(v)

`

v
vl

vr

Figure 2: A variable v with all the clauses that contain
a literal of v (top). The three horizontal line segments
vl, vr and s(v) corresponding to v (bottom).

s(v) : [−ε, ε] × yv for some ε > 0 such that s(v) does
not intersect any vertical line segment corresponding to
a clause. See Figure 2 for an example. This forms the
set of horizontal line segments. Finally, we take the line
segments corresponding to clause vertices as the set of
vertical line segments. This concludes our instance I ′

of the (H t V,H t V )-stabbing problem. Clearly, ev-
ery horizontal line segment intersects the vertical line `.
Also, there are exactly 3n horizontal line segments and
m vertical line segments in I ′, and the instance I ′ can
be constructed in polynomial time.

Lemma 2 (∗) The instance I is satisfiable if and only
if the instance I ′ has a feasible solution of size n, where
n is the number of variables in I.

By Lemma 2, we have the following theorem.

Theorem 3 The (H t V,H t V )-stabbing problem is
NP-hard.

We prove the other NP-hardness results claimed in
Table 1 in the appendix.

4 (H t V,H)-Stabbing

In this section, we design approximation algorithms for
(H t V,H)-stabbing.

4.1 A 5-approximation for (H t V,H)-stabbing

Our algorithm is based on a reduction to three simpler
problems via LP. The approach is very similar to the
one used in [3]. Recall that Lv is the common verti-
cal line that the horizontal segments intersect. Let V (l)
and V (r) be the vertical line segments that lie on the
left and right of Lv, respectively. For simplicity, sup-
pose V = V (l) t V (r). Fix an optimum solution OPT.
Let H1 (resp. H2) be the set of horizontal line seg-
ments that get hit by V (l) (resp. V (r)) in OPT. Note
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that the line segments in H3 = H \ (H1 ∪ H2) get hit
by horizontal line segments in OPT. If we knew the
three sets H1, H2 and H3, we could solve three subprob-
lems (V (l), H1)-stabbing, (V (r), H2 \H1)-stabbing and
(H,H3)-stabbing, and return the union of these three
solutions. It is not hard to see that the returned solu-
tion has size |OPT|. We do not know those three sets,
but one can guess (modulo constant approximation)
these sets from a fractional LP solution to (H t V,H)-
stabbing.

For an LP or ILP M , let OPT(M) be its optimum
cost. First, we consider the ILP (denoted by ILP1) of
(H t V,H)-stabbing. For each line segment j ∈ H t V ,
we take a standard 0-1 variable yj denoting whether j
is chosen in the solution or not. For i ∈ H, Let V (l)i

(resp. V (r)i and Hi) be the line segments in V (l) (resp.
V (r) and H) that stab i. Following is the LP relaxation
of the ILP.

minimize
∑

j∈HtV
yj (LP1)

subject to
∑

j∈V (l)i

yj +
∑

j∈V (r)i

yj

+
∑

j∈Hi

yj ≥ 1 ∀i ∈ H

yj ∈ [0, 1] j ∈ H t V

We first solve this LP to obtain a fractional optimal
solution y∗ = {y∗j : j ∈ H t V }. Let Hl = {i ∈ H :∑

j∈V (l)i y
∗
j ≥ 2

5}, Hr = {i ∈ H :
∑

j∈V (r)i y
∗
j ≥ 2

5},
and Hh = {i ∈ H :

∑
j∈Hi y∗j ≥ 1

5}. Now, consider the
following ILPs.

minimize
∑

j∈V (l)

yj (ILP2)

subject to
∑

j∈V (l)

yj ≥ 1 ∀i ∈ Hl

yj ∈ {0, 1} j ∈ V (l)

minimize
∑

j∈V (r)

yj (ILP3)

subject to
∑

j∈V (r)

yj ≥ 1 ∀i ∈ Hr

yj ∈ {0, 1} j ∈ V (r)

minimize
∑

j∈H
yj (ILP4)

subject to
∑

j∈H
yj ≥ 1 ∀i ∈ Hh

yj ∈ {0, 1} j ∈ H

Note that the problems corresponding to ILP2 and
ILP3 are precisely the problem of stabbing horizontal
rays using vertical line segments [8]. Also, ILP4 is cor-
responding to the stabbing problem of horizontal line
segments using horizontal line segments where all line
segments intersect Lv. By definition of Hl, Hr and Hh,
there must be a feasible solution for each of these three
ILPs. We use the algorithm in [8] to obtain optimum so-
lutions S1 and S2 for ILP2 and ILP3, respectively. Also,
an optimum solution S3 of ILP4 can be obtained using
a simple greedy selection scheme. Finally, we return the
solution S1 ∪ S2 ∪ S3.

It is not hard to see that S1∪S2∪S3 hits H. Next, we
argue that |S1∪S2∪S3| ≤ 5 ·OPT. Let LP2 (resp. LP3
and LP4) be the LP relaxation of ILP2 (resp. ILP3
and ILP4). Consider the optimum solution y∗ = {y∗j :
j ∈ H t V } of LP1. First, we have the following simple
observation.

Observation 2 OPT(LP2) ≤ 2.5 · ∑j∈V (l) y
∗
j ,

OPT(LP3) ≤ 2.5 · ∑j∈V (r) y
∗
j , and OPT(LP4)

≤ 5 ·∑j∈H y∗j .

From the work of [3], it follows that the integrality
gap of the stabbing problem of horizontal rays using
vertical line segments is 2. In particular, their result
can be summarized as follows.

Lemma 4 [3] OPT(ILP2) ≤ 2 · OPT(LP2) and
OPT(ILP3) ≤ 2 · OPT(LP3).

We will use Lemma 4 to prove our approximation
bound. Before that we prove the following lemma.

Lemma 5 OPT(ILP4) ≤ OPT(LP4).

Proof. Given a fractional solution S to LP4, we show
how to round it to an integral solution S′ such that the
cost of S′ is at most the cost of S. First, we partition
the set H to a collection of subsets such that each subset
contains line segments having the same y-coordinates.
Then, we round the subsets independent of each other.
Consider a particular subset T and a line segment h ∈
Hh whose y-coordinate is the same as that of the line
segments in T . If there is no such h, we set the y-
values of all line segments in T to 0. Otherwise, as S
is a feasible solution,

∑
j∈T yj ≥ 1. We pick any line

segment h1 from T arbitrarily, set its y-value to 1, and
set the y-values of all remaining line segments in T to 0.
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As h1 hits all line segments in T , it is a feasible solution
for this subset. Hence, the lemma follows. �

Lemma 6 |S1 ∪ S2 ∪ S3| ≤ 5 · OPT.

Proof. First note that |S1 ∪ S2 ∪ S3| = OPT(ILP2) +
OPT(ILP3) + OPT(ILP4). From Lemmas 4 and 5,
it follows that |S1 ∪ S2 ∪ S3| ≤ 2 · OPT(LP2) + 2 ·
OPT(LP3) + OPT(LP4). Then, as the sets V (l), V (r)
and H are pairwise disjoint, by Observation 2, |S1∪S2∪
S3| ≤ 5 · OPT(LP1) ≤ 5 · OPT. �

To solve LP1 one can use the LP solver in [13] that
runs in O(n5) time. The algorithm to compute S1, S2

and S3 takes O(n6) time in total [8]. Hence, our ap-
proximation algorithm runs in O(n6) time.

Theorem 7 There is a 5-approximation for (HtV,H)-
stabbing that runs in O(n6) time.

4.2 A PTAS for (H t V,H)-stabbing

We want to hit all the line segments of H using a min-
imum size subset of H t V . We design a local search
based PTAS for this problem. Note that if a horizon-
tal line segment h1 in a solution hits a horizontal line
segment, then they must have the same y-coordinates,
and h1 hits all the line segments that have the same
y-coordinates as h1. Thus, for a subset S of horizon-
tal line segments with the same y-coordinates, we can
identify one of them (say h) and assume that if the line
segments in S are being hit by a horizontal line segment,
then that line segment is h. We preprocess the set H
to compute a subset H ′ so that for each subset S of
horizontal line segments with the same y-coordinates,
|H ′ ∩ S| = 1. Thus, we want to find a minimum size
subset of H ′ t V that hit all the line segments in H.

We use a standard local search algorithm as the one in

[1], which runs in nO( 1
ε2

) time. Let B (blue) and R (red)
be the local and global optimum solutions, respectively
and w.l.o.g., assume B ∩ R = ∅. Then, by Theorem
1, to say that the local search algorithm is a PTAS it
is sufficient to prove the existence of a bipartite local
exchange graph G = (B,R, E) that is also planar. Note
that G = (B,R, E) is a local exchange graph if for each
h ∈ H, there exists s1 ∈ B, s2 ∈ R such that s1∩s2∩h 6=
∅ and (s1, s2) ∈ E. We will construct a plane graph
G = (B,R, E) in the following, which satisfies the local
exchange property.

For each line segment h ∈ H ′ ∩ (B ∪ R), we select
the intersection point h ∩ Lv to draw the vertex for h.
For each line segment v ∈ V ∩ (B ∪ R), we select v
itself to draw the vertex for v. Later we will contract
each such v to a single point. For each red (resp. blue)
h ∈ H ′∩R (resp. h ∈ H ′∩B), let v1 and v2 be the first
line segments of color blue (resp. red) on the left and
right of Lv, respectively that intersect the line-extension

L(h). Note that v1 and v2 might not exist. We add two
edges (h, v1) and (h, v2) (or horizontal line segments),
between h∩Lv and I(L(h), v1) and between h∩Lv and
I(L(h), v2), respectively. For each h ∈ H ′ \ (B ∪R), let
V ′ be the line segments inR∪B that intersect L(h). We
add an edge between each consecutive (w.r.t. V ′) pair
of line segments (v, v′) such that v ∈ R and v′ ∈ B. In
particular, we draw a horizontal line segment between
I(L(h), v) and I(L(h), v′).

Note that each edge of G is a horizontal line segment
and any pair of those can be drawn in a non-overlapping
manner. Also, an input vertical segment can intersect
any such edge only at one of its vertices. Thus, the
planarity of the graph follows. Lastly, we contract each
vertical line segment v to a point, which does not violate
the planarity. Now, consider any line segment h1 ∈
H. Suppose h1 is hit by a horizontal line segment h ∈
R ∪ B. W.l.o.g., let h ∈ R. Let v1 and v2 be the
first line segments of color blue on the left and right
of Lv, respectively that intersect L(h). Then, either
v1 or v2 must hit h1, as h1 intersects the line Lv. As
we add the edges (h, v1) and (h, v2), the local exchange
property holds for h1. Now, suppose h1 does not get
hit by a horizontal line segment in R ∪ B. Let V ′ be
the line segments in R ∪ B that intersect L(h1). Then,
there must be two consecutive (w.r.t. V ′) vertical line
segments v ∈ R and v′ ∈ B both of which hit h1. As we
add the edge (v, v′), the local exchange property holds
for h1 in this case as well. It follows that the local search
algorithm is a PTAS.

Theorem 8 There is a (1 + ε)-approximation for (H t
V,H)-stabbing that runs in nO( 1

ε2
) time for any ε > 0.

Remark. One can show that (H t V,H)-stabbing is
a special case of (V,H)-stabbing. Construct an in-
stance I ′ of (V,H)-stabbing from any given instance I
of (H t V,H)-stabbing by taking the vertical and hor-
izontal segments in I along with some special vertical
segments. For each maximal cluster of horizontal seg-
ments having same y-coordinates, add one special ver-
tical segment such that the only segments it intersects
are the segments in the cluster. Then, given a solution
for one instance, a solution for the other of the same
size can be computed in polynomial time. As (V,H)-
stabbing admits a PTAS [2], one can also obtain a PTAS
for (H tV,H)-stabbing using this alternative approach.

5 (H t V, V )-Stabbing and (H t V,H t V )-Stabbing

In this section, we obtain approximations for (HtV, V )-
stabbing and (H t V,H t V )-stabbing.

5.1 A 2-approximation for (H t V, V )-stabbing

First, we assume that the line segments of V are lying
only on the right side of Lv. We design a polynomial
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Figure 3: An example demonstrating a subproblem
(i, j, k, k′) with i = 8, j = 2, k = 10 and k′ = 9. The line
segments in V (i, j, k′) are shown using dashed (green)
line segments. The dotted (red) line segments either in-
tersect hi+1 or has index more than 9, and thus are not
in V (i, j, k′).

time algorithm for this case, and later we will show how
to obtain a 2-approximation for the general case of (Ht
V, V )-stabbing by using this algorithm as a subroutine.
Now, as the line segments of V are lying only on the
right side of Lv, w.l.o.g., we can assume that the y-
coordinates of the line segments in H are distinct. Also,
for simplicity, we assume that the endpoints of all the
line segments are distinct.

Our algorithm is based on dynamic programming.
Let h1, h2, . . . , ht be the line segments in H in increas-
ing order of their y-coordinates. Also, let v1, v2, . . . , vm
be the line segments in V in non-decreasing order of
their x-coordinates. If two vertical line segments have
the same x-coordinates, order them in decreasing order
of y-coordinates of their bottom endpoints. Now, we
describe the subproblems we consider. Each subprob-
lem (i, j, k, k′) is defined by four indexes i, j, k and k′,
where 1 ≤ j ≤ i ≤ t, and 1 ≤ k, k′ ≤ m. Let H(i, j) =
{hi, hi−1, . . . , hj}. Also, let Vl = {v1, v2, . . . , vl}, and
V (i, j, l) be the line segments of Vl each of which in-
tersects at least one line segment in H(i, j) and does
not intersect hi+1 or hj−1 (if exists). In subproblem
(i, j, k, k′), we would like to hit V (i, j, k′) using a mini-
mum size subset of H(i, j)tVk (see Figure 3). We define
f(i, j, k, k′) to be the size of an optimum solution of the
subproblem (i, j, k, k′). Note that we are interested in
computing f(t, 1,m,m).

We use the following recursive structure to compute
f(i, j, k, k′). Let v be the line segment in V (i, j, k′) hav-

ing the maximum index. Now, there can be two cases.
v gets hit by a horizontal line segment in optimum so-
lution or v gets hit by only vertical line segments in the
optimum solution. For the first case, we guess a line
segment hi′ that hits v. Let k′1 be the maximum index
of the vertical line segments in V (i, j, k′) that intersect
at least one line segment in H(i, i′+1) and do not inter-
sect hi+1 or hi′ . Similarly, let k′2 be the maximum index
of the vertical line segments in V (i, j, k′) that intersect
at least one line segment in H(i′−1, j) and do not inter-
sect hi′ or hj−1. Then, the two new subproblems that
we need to solve are (i, i′+ 1, k, k′1) and (i′− 1, j, k, k′2).
For the second case, we guess the maximum index l of
the line segments in Vk that hit v in the optimum solu-
tion. Let k′3 be the maximum index of the vertical line
segments in V (i, j, k′) that does not intersect vl. From
the definition of v and the fact that x-coordinates of
v and vl are same, it follows that there is no line seg-
ment in V (i, j, k′) with index larger than k′3 that does
not intersect vl. Thus, the new subproblem that we
need to solve is (i, j, l− 1, k′3). Note that the number of
guesses for hi′ and vl is O(n). Thus, to solve (i, j, k, k′)
the total number of subproblems that we need to solve
is O(n). Using a dynamic programming based scheme
these subproblems can be evaluated easily. Since the
number of distinct subproblems (i, j, k, k′) is O(n4), all
the subproblems can be solved in O(n5) time.

(H t V, V )-stabbing. Let V (l) and V (r) be the ver-
tical line segments that lie on the left and right of Lv,
respectively. Set S = HtV , D1 = V (l) and D2 = V (r).
Then, note that the problem (S,D1)-stabbing is same
as (H t V (l), D1)-stabbing. Similarly, (S,D2)-stabbing
is same as (H t V (r), D2)-stabbing. Thus, we can use
the above algorithm to solve these two problems, and
hence there exists exact algorithms for (S,D1)-stabbing
and (S,D2)-stabbing. From Observation 1, we obtain
the following theorem.

Theorem 9 There is a 2-approximation for (HtV, V )-
stabbing that runs in O(n5) time.

(H t V,H t V )-stabbing. Set S = H t V , D1 = H
and D2 = V . Then, we know that there are two algo-
rithms for the (S,D1)-stabbing problem: an O(n6)-time
7-approximation algorithm and a PTAS. Moreover, we
have an O(n5)-time 2-approximation algorithm for the
(S,D2)-stabbing problem. Therefore, by Observation 1,
we have the following theorem.

Theorem 10 There is a 7-approximation for (H t
V,HtV )-stabbing that runs in O(n6) time and a (3+ε)-

approximation that runs in nO( 1
ε2

) time for any ε > 0.
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Appendix

Proof of Observation 1

Proof. We show the existence of such an algorithm A for
the (S,D)-stabbing problem. Given an instance of the
(S,D)-stabbing problem, consider an algorithm A that uses
A1 to compute a solution for (S,D1)-stabbing and uses A2

to compute a solution for (S,D2)-stabbing. Then, it returns
the union of these two solutions as its solution. Clearly, the
running time of A is then f(n) +g(n) as claimed. Moreover,
since the size of an optimum solution for each of the (S,D1)-
stabbing and (S,D2)-stabbing problems is at most the size
of an optimum solution for (S,D)-stabbing and D1∩D2 = ∅,
we get the desired approximation factor. �

Proof of Lemma 2

Proof. First, suppose that there exists an assignment that
satisfies all clauses in I. We construct a feasible solution
S for I ′ as follows. For each variable v, if v is set to true
(resp., false), then we add the line segment vl (resp., vr)
to S. Clearly, |S| = n and every horizontal line segment is
stabbed by some line segment in S. Now, take any vertical
line segment s ∈ I ′. If s corresponds to a positive (resp.,
negative) clause C, then at least one of the variables v in C
is set to true (resp., false) and so we have added vl (resp.,
vr) to S. So, every line segment in I ′ is stabbed by some
line segment in S.

Now, suppose that there exists a feasible solution S for I ′

such that |S| = n. We assume w.l.o.g. that s(v) /∈ S for all
variables v of I; this is because we can always replace such
a line segment s(v) with vl, and still have a feasible solution
for I ′ with the same size n. Since |S| = n, we must have
vl ∈ S or vr ∈ S for all variables v of I, because if there is a
variable v for which vl /∈ S and vr /∈ S, then no line segment
in S can dominate s(v) — a contradiction to feasibility of
S. This implies that exactly one of vl and vr is in S for all
variables v of I, and so no vertical line segment can be in
S, as |S| = n. We now obtain a true assignment for I as
follows. For each variable v, we set v to true (resp., false) if
vl ∈ S (resp., vr ∈ S). To see why this is a true assignment
for I, take any clause C and let s ∈ S be a line segment that
dominates the vertical line segment corresponding to C. If
C is a positive (resp., negative) clause, then we have set the
variable corresponding to s to true (resp., false) and so C is
satisfied. �

Other NP-Hardness Results

Consider the construction in Section 3. Observe that the
set S in the proof of Lemma 2 consists of only horizontal
line segments; that is, the problem is NP-hard even if we are
restricted to selecting a minimum number of horizontal line
segments only to stab all line segments.

Theorem 11 The (H,HtV )-stabbing problem is NP-hard.

The construction can be modified to show the hardness
of the (H,V )-stabbing and (H t V, V )-stabbing problems.
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To this end, for every variable vertex v, we remove the hor-
izontal line segment s(v) and instead add a small vertical
line segment s′(v) such that it intersects vl and vr only. (To
this end, we can e.g. extend vr slightly to the left of ` and
place s′(v) to the left of ` and very close to it.) Considering
the resulting set of line segments to be an instance of the
(H,V )-stabbing problem, one can prove a result similar to
Lemma 2: the first direction is true as every vertical line seg-
ment is stabbed by some horizontal line segment. Moreover,
we need to stab the small vertical line segment s′(v), for ev-
ery variable vertex v, which leads to a truth assignment for
the instance I.

We notice that this also shows the NP-hardness of the
(H t V, V )-stabbing problem. This is because the vertical
line segments are pairwise disjoint; hence, given a feasible
solution for the (H tV, V )-stabbing problem, we can obtain
a feasible solution of the same size by replacing each verti-
cal line segment by a horizontal one. Hence, we have the
following theorem.

Theorem 12 The (H,V )-stabbing problem is NP-hard.
Moreover, the (H t V, V )-stabbing problem is also NP-hard.

Now, we show that the (V,H)-stabbing problem is NP-
hard when each horizontal line segment must be stabbed by
exactly one line segment. We show a reduction from the
following variant of the 3SAT problem, which was shown to
be NP-hard by Chaplick et al. [5]. In an instance I of the
Positive Planar Cycle 1-In-3SAT problem, we have n vari-
ables and m clauses together with an embedding of GI +C,
where C is a cycle through all clause vertices. Moreover,
each clause contains exactly three variables and all literals
are positive. The problem is to decide whether I is satisfi-
able; here, being satisfiable means whether there exists an
assignment of the variables such that exactly one variable
in each clause is true. Notice that the problem remains NP-
hard if we are also given an integer 1 ≤ k ≤ n and the prob-
lem is to decide if there exists an assignment of the variables
such that at most k variables are set to true and exactly one
variable in each clause is true.

Reduction. Given an instance of the Positive Planar Cy-
cle 1-In-3SAT problem, consider the embedding of GI + C.
We first transform the embedding into another one in which
the cycle C is a half-circle and all the clauses are positioned
on the vertical diameter of this half-circle. Let ` be the ver-
tical line through the diameter. Consider the clause vertices
on ` from top to bottom. Next, we transform the embed-
ding into a “comb-shaped” form, where clause vertices are
drawn as horizontal line segments and variable vertices are
drawn as vertical line segments. We do this transformation
in such a way that the vertical line segment corresponding
to a vertex v passes through v and spans from the top-most
clause to the bottom-most clause that contain it. More-
over, the horizontal line segment corresponding to a clause
C passes through C and spans from the left (resp., right)
to the left-most (resp., right-most) variable vertex that it
contains. This ensures that the horizontal line segment cor-
responding to a clause C intersects exactly those vertical
line segments that correspond to variables that C contain.
Notice that this is similar to the “comb-shaped” form of

Knuth and Raghunathan [9] except the position of variable
and clause vertices are swapped. The set of all vertical and
horizontal line segments forms our instance I ′ of the (V,H)-
stabbing problem. Observe that I ′ consists of n vertical and
m horizontal line segments, and that it can be constructed
in polynomial time.

Lemma 13 The instance I is satisfiable with k variables set
to true if and only if there exists a feasible solution of size k
for I ′.

Proof. First, suppose that I is satisfiable with k variables
set to true. Then, we select the k vertical line segments cor-
responding to these variables as the solution for I ′. Each
horizontal line segment s of I ′ is stabbed by exactly one
selected line segment: the one that satisfies the clause corre-
sponding to s. Now, suppose that I ′ has a feasible solution
S of size k. Notice that each line segment of S is vertical and
so we set to true exactly those variables that correspond to
the line segments in S. Clearly, k variables are set to true.
Moreover, since S is a feasible solution for I ′, each horizontal
line segment is stabbed by exactly one vertical line segment;
that is, exactly one variable per clause is set to true. �

By Lemma 13, we have the following theorem.

Theorem 14 The (V,H)-stabbing problem is NP-hard
when every horizontal line segment must be stabbed by ex-
actly one line segment.
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Watchtower for k-crossing Visibility

Yeganeh Bahoo∗ Prosenjit Bose§ Stephane Durocher∗∗

Abstract

Given a 1.5D terrain T , consisting of an x-monotone
polygonal chain with n vertices in the plane, and a pos-
itive integer k, we propose an algorithm to place one
point, called a watchtower, whose vertical height above
T is minimized, such that every point x on T is k-
crossing visible from the watchtower w. That is, the line
segment from w to any point x on T crosses T at most
k times. Our algorithm runs in O((n2 + h) log n) time,
where h denotes the number of vertices on the bound-
ary of the k-kernel of T . For arbitrary k, h ∈ O(n4),
and for k = 2, h ∈ O(n2). We present an O(n3)-time
algorithm for the discrete version of the problem, in
which the watchtower is restricted to being positioned
over vertices of T .

1 Introduction

A terrain T in R2 is an x-monotone polygonal chain
consisting of a sequence of vertices v0, v1, . . . , vn−1, each
of which is a point in R2, such that vi is to the left of
vj for all i < j and vivi+1 is an edge for i ∈ {0, . . . , n−
2}. See Figure 1. As defined by Chang et al. [5], “two
paths [polygonal chains], P and Q, are weakly disjoint
if, for all sufficiently small ε > 0, there are disjoint paths
P̃ and Q̃ such that dF (P, P̃ ) < ε and dF (Q, Q̃) < ε”,
where dF (A,B) denotes the Fréchet distance between
A and B. As also defined by Chang et al. [5], “two
paths [polygonal chains] cross if they are not weakly
disjoint.” We say two polygonal chains P and Q cross
k times, if there exist partitions P1, . . . , Pk of P and
Q1, . . . , Qk of Q such that Pi and Qi cross, for all i ∈
{1, . . . , k}. Two points p and q are k-crossing visible
if and only if the line segment pq crosses T at most k
times. When k = 0, k-crossing visibility corresponds to
the traditional definition of visibility.

A watchtower w is a point on or above T . Given a
terrain T and a positive integer k, the goal in the 1-
watchtower problem is to place a watchtower w with
minimum height on or above T (length of the vertical
line segment from w to T ) such that the entire terrain T

∗Department of Computer Science, University of Manitoba,
bahoo@cs.umanitoba.ca

§School of Computer Science, Carleton University,
jit@scs.carleton.ca

∗∗Department of Computer Science, University of Manitoba,
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p′
q′

p
q

Figure 1: The points p and q mutually 2-crossing visible,
while p′ and q′ are not.

is k-crossing visible from w. This definition can be gen-
eralized to the m-watchtower problem where the goal
is to assign positions to a set W = {w1, . . . , wm} of m
watchtowers, such that each wi is a point on or above
T , and for each point p on T , there exists a watchtower
w ∈W such that p is k-crossing visible from w.
The watchtower problem presents itself in two forms:
discrete and continuous. In the discrete version, the
watchtower must be located on a vertical line through
a vertex of the terrain, while in the continuous version
the watchtower can be located anywhere above the ter-
rain. Solutions to the discrete and continuous watch-
tower problems can vary significantly. Figure 2 shows
an instance for which the solution to the continuous 1-
watchtower problem has height zero (on the terrain),
whereas the solution to the discrete 1-watchtower prob-
lem on the same terrain requires a watchtower to be
positioned significantly higher.
This paper examines algorithms for the 1-watchtower
problem, for both the discrete and continuous cases, un-
der k-visibility. We also describe faster algorithms for
the case k = 2 and k = 0.

2 Related Work

The original terrain watchtower problem was introduced
by Sharir for polyhedral terrains [11]. The minimum
height for one watchtower can be found in O(n log n)
time for both the continuous and discrete problems un-
der 0-crossing visibility on an x-monotone polyhedral
terrain in R3 [12].
Bespamyatnikh et al. [4] proposed an O(n4)-time al-
gorithm for the discrete 2-watchtower problem under
0-crossing visibility on a 2.5D terrain. They also gen-
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h1

h2

a

b

c

h3

d

v

Figure 2: When k = 2, the solution of the 1-watchtower
problem for the continuous version is much smaller than
the discrete version. The points b and d represent the
locations of the watchtower in the continuous and dis-
crete versions, respectively (suppose h3 < h1). In the
continuous version, the tower is located on the edge of
the terrain with height zero, while in the discrete version
it must be located above the terrain with height h3, sig-
nificantly bigger than zero. Notice that the points below
d cannot see the edges adjacent to the vertex v.

T

hT ′

T ′

Figure 3: The shaded region is a simple polygon T ′

constructed for a given terrain.

eralized their approach to the continuous version of the
problem with assumptions on the time required to solve
a specific cubic equation with three bounded variables.
Under the assumption that the equation can be solved
in O(f3) time, their approach takes O(n4 + n3f3) time.
Using parametric search, they show that the discrete
and continuous versions of the problem can be solved in
O(n3 log2 n) and O(n4 log2 n) time, respectively. Ben-
Moshe et al. [2] improved the time to O(n3/2

√
m′(n))

for the discrete 2-watchtower problem, where m′(n) de-
notes the time required to multiply two n × n matri-
ces, resulting in a time of O(n2.37+ε) using the cur-
rent fastest matrix multiplication algorithm [8]. Using
parametric search, Agarwal et al. [1] improved the time
complexity of the discrete and continuous 2-watchtower
problems for 0-crossing visibility to O(n2 log4 n) and
O(n3α(n) log3 n) respectively, where α(n) denotes the
inverse Ackermann function.
The watchtower problem generalizes to the setting of
k-crossing visibility for any k. We consider the problem
of placing one watchtower. In Section 3, we present an
algorithm for the continuous problem, and then propose
an algorithm for the discrete problem in Section 4. For
both algorithms we describe how the running time can
be decreased when k = 2 and k = 0.

3 The Continuous Case

In this section, we solve the continuous 1-watchtower
problem under k-visibility for general k, and then de-
scribe how the running time can be reduced when k = 2
and k = 0.

Consider a simple polygon T ′, bounded from above
by a horizontal line segment hT ′ that lies above T , and
on its sides by vertical line segments aligned with the
respective left and right endpoints of T ; see Figure 3.
We first find the k-kernel of T ′. The k-kernel of a given
polygon P is the set of all points p such that every point
in P is k-crossing visible from p; see Figure 4. The algo-
rithm of Evans and Sember [6] finds the k-kernel of T ′

in O(n2 log n+h) time, where h denotes the complexity
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Figure 4: 2-kernel

(the number of boundary vertices) of the k-kernel. The
k-kernel consists of O(n4) disjoint simple polygons. The
worst-case number of vertices of the k-kernel is Θ(n4).
For k = 2, the complexity of the k-kernel is Θ(n2), and
for k = 3, the complexity of the k-kernel is O(n4) and
Ω(n2) [6].
The lower envelope of the portion of the k-kernel above
T is the locus of feasible locations for the top of the
watchtower from which the entire terrain T is k-crossing
visible. Finding the minimum-length vertical line seg-
ment between this lower envelope and T yields the opti-
mal solution for the 1-watchtower problem; see Figure 6.
Notice that given line segments s1 and s2 that intersect
a vertical line, the distance between s1 and s2 along the
vertical line is minimized at a vertex of s1 or a vertex
of s2. Hence, to find the optimal height for the continu-
ous 1-watchtower problem, it suffices to examine vertical
line segments from the vertices of the lower envelope of
the k-kernel to T , and vertical line segments from the
vertices of T to the lower envelope of the k-kernel. The
minimum length of these line segments is the minimum
height of the continuous 1-watchtower problem.
The minimum height of a watchtower can be found by
partitioning the edges of the k-kernel into those that
lie above T and those that lie below T . Following this
partition, the lower envelope of the edges above T is
computed. By sweeping a vertical line across T and
the lower envelope, we stop at all vertices to evaluate
the distance on the sweep line between these two x-
monotone chains, maintaining the minimum distance
thus far. These steps can be implemented in a single
sweep using a modification of the algorithm of Bentley
and Ottmann [3]. At each event during the sweep, it
suffices to measure the distance along the sweep line
between T and the closest line segment above T . If this
distance is less than the previously recorded minimum,
we update the minimum distance and the current x-
coordinate of the sweep line. Observe that no two edges
of the k-kernel cross, and that no two edges of T cross.
Furthermore, if any edge of the k-kernel crosses T , then
this point of intersection corresponds to the location of
a watchtower of height zero: this is the solution, and

Ω(n) Ω(n)

Ω(n) Ω(n)

Figure 5: The 4-kernel of a monotone chain has Ω(n4)
vertices. There are Ω(n2) cells in the arrangement of
dotted lines that form the v-regions of the vertices on
the terrain. These lines have Ω(n2) points of intersec-
tion.

the algorithm terminates. Consequently, the number of
intersection events processed is at most 1. Since the
number of edges in the k-kernel is h ∈ O(n4) and the
number of edges in T is n, the total running time of the
algorithm is O((n2 + h) log n)).

Although we seek the k-kernel in a restricted type of
polygon, i.e., a monotone polygon, the k-kernel for a
monotone polygon has Θ(n4) complexity in the worst
case when k ≥ 4; see Figure 5. The complexity of the
k-kernel when k = 3 is unknown [6]. When k = 2 its
complexity is O(n2). Since the watchtower must be lo-
cated above the terrain, it must be inside T ′.
When k = 0, the 0-kernel corresponds to the kernel
of the polygon T ′. This kernel is a convex polygon
with O(n) vertices from which the entire polygon is 0-
crossing visible. Additionally, the kernel is the feasible
region for the watchtower, and can be determined in
O(n) time [9, 10]; see Figure 6. As mentioned above, to
find the solution for the continuous 1-watchtower prob-
lem, it is sufficient to examine the vertical line segments
from the vertices of the kernel to T , and the vertical
line segments from the vertices of T to the kernel. The
boundary of the 0-kernel is an x-monotone chain con-
sisting of O(n) vertices given in order. The terrain T is
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d

Figure 6: The shaded region is the intersection of the
visible part of the plane for each vertex when k = 0;
dotted lines show the boundaries of some of these re-
gions.

an x-monotone chain of n vertices given in order. By
merging the two sets of sorted vertices of T and of the
kernel in O(n) time, for each vertex in the merged sorted
list the corresponding edge intersected by the vertical
line segment can be found in O(1) time by comparing
the current vertex against the previous vertex in the list.
If the previous vertex is on the same chain, then the
current vertex intersects the same edge as the previous
vertex. Otherwise, if the previous vertex is not on the
same chain, then the edge that starts from the previous
vertex is the intersected edge. At each step, the min-
imum vertical line segment encountered is maintained.
Thus, the minimum length segment can be found in
O(n) time.
When k = 2, the boundary of the 2-kernel has O(n2)

vertices [6]. Consequently, we can find the minimum
length vertical line segment between the 2-kernel and
the terrain T in O(n2 log n) time, so the continuous
1-watchtower problem for 2-visibility can be solved in
O(n2 log n) time.

Theorem 1 The continuous 1-watchtower problem can
be solved in O((n2+h) log n) time under k-crossing vis-
ibility, where h ∈ O(n4) is the size of the k-kernel. For
k = 0 and k = 2, the continuous 1-watchtower problem
can be solved in O(n) and O(n2 log n) time, respectively.

4 The Discrete Case

In this section, we propose an O(n3)-time algorithm for
the discrete k-crossing visible 1-watchtower problem on
a terrain T .
As defined by Evans and Sember [6], “The v-region for
vertex v of a polygon P , is the set of points q for which
q is k-visible to every point of P on ray → qv”. The
boundary of each v-region is a simple polygon with O(n)

e

i

Hi

V1

V2

V3

Figure 7: The v-regions and their intersection with Hi

for three vertices V1, V2 and V3 are shown in dashed,
dotted, dashed and dotted respectively.

vertices [6]. Computing the v-region of each vertex of
the polygon takes O(n log n) time. We compute the v-
region for each vertex of T ′ in O(n log n) time per ver-
tex using the algorithm of Evans and Sember [6], using
O(n2 log n) total time. The intersection of v-regions of
the polygon P is the k-kernel of the polygon P [6]. In
other words, the intersection of v-regions of the vertices
of P is the locus for the watchtower.

Observation 1 The intersection of the v-regions of the
vertices of T corresponds to the set of feasible locations
for the top of the watchtower.

Proof. The intersection of the v-regions is the k-kernel
of T ′ [6], which is the region where the entire T ′ in-
cluding T is k-crossing visible from. So, T is k-crossing
visible from a watchtower located in this region. �

In the discrete problem, the watchtower must be lo-
cated on a vertical line emanating from a vertex of the
terrain. Consider a vertical line passing through a ver-
tex of the terrain. We find the intersection of the v-
regions of the vertices of T with this vertical line.

Lemma 2 Any vertical line crosses the boundaries of
the v-regions of the vertices of T O(n2) times.

Proof. The number of vertices on the boundary of each
v-region is O(n). So each v-region may intersect a ver-
tical line O(n) times. As there exist n v-regions, so the
number of intersections between v-regions and any given
vertical line is O(n2). �

Let Vi denote the v-region of vertex vi in T . We have
the following lemma:

Lemma 3 The intersection of any v-region with any
vertical line is a set of at most n disjoint intervals on
the line, where the topmost interval is open.
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Proof. Considering a bounding box around T ′. The
v-region of a vertex vi is a closed Jordan curve with
O(n) complexity. The intersection between the vertical
line and the inside of this closed Jordan curve is a set
of O(n) intervals. The last interval is open as after
moving sufficiently high above the terrain T all of T
will be visible while looking toward the vertex vi. �

Consider a vertical line `i passing through a given
vertex vi of T , and the intersections with the v-regions
V1, . . . , Vn for the vertices v1, . . . , vn of T . Let each v-
region be determined by a specific color i. As a result,
we have n different colors of intervals on the line `i.
Each color is a set of O(n) pairwise disjoint intervals.
If the optimal watchtower lies on this vertical line, it is
in the interval which intersects all n v-regions with the
lowest y-coordinate. We define depth-n intervals as the
intervals on `i on which all n v-regions intersect.

Lemma 4 The minimum height of a watchtower lo-
cated above the vertex vi is the closest depth-n interval.

Proof. Intervals with the same color do not intersect
each other. So, the maximum number of intersection
is n where n v-regions intersect. So, a depth-n inter-
val is in the k-kernel and T is k-crossing visible from
such intervals. Among all such depth-n intervals we
look for the one that has the smallest distance from the
terrain. �

As a result of Lemma 4, we can remove the color on
the intervals. This transforms the problem to that of
finding the depth-n intervals among O(n2) intervals.

Lemma 5 Given a v-region of a vertex of the terrain
T , finding and sorting the intersections of this v-region
with a given vertical line takes O(n).

Proof. We can find the intersection of a v-region with
the vertical line `i in O(n) time. This gives a set of O(n)
intervals on `i. We can sort these intervals in O(n) time
as the v-region is a Jordan arc [7]. �

We find the sorted list of the intersections of each
polygon Vi with a line `i in O(n2) time by Lemma 5.
So we have n sorted lists each containing O(n) intervals.
Let these lists be labeled as L1, L2, ..., Ln. We have the
following lemma:

Lemma 6 The deepest interval with the minimum
height for a set of O(n2) intervals on a given line `i
can be found in O(n2) time.

Proof. As mentioned in Lemma 5, each set of n inter-
vals in the list Li can be sorted in linear time. There
exist n lists, so it takes O(n2) time to sort all L1, . . . , Ln.
Consider two list L1 and L2. First, we find the inter-
sections between L1 and L2. Given two sets of sorted

`i

vi

`i

vi

(a) (b)

Figure 8: a. Colored intervals on a vertical line `i. b.
Intervals can be considered as a set of O(n2) intervals
without color.

intervals X and Y , their intersection can be found in
O(|X|+ |Y |+h), where h denotes the number of output
intervals [13]. As X and Y are of size O(n) for the lists
L1 and L2. h is also of size O(n). This is because if
an interval in L1 intersects m intervals of L2, remaining
intervals in L1 can intersect at most n−m+2 intervals
in L2. As a result, finding the intersection between L1

and L2 takes O(n) time; let the output list be called
L′
1. Next, we find the intersection of L′

1 and L3 (called
L′
2) in O(n) time. Repeating this process, the intersec-

tion between L′
n−1 and Ln results in the intersections

of L1, L2, ..., Ln. There are n steps, each taking O(n)
time. The algorithm takes O(n2) total time. �

Theorem 7 The discrete 1-watchtower problem can be
solved in O(n3) time under k-crossing visibility.

Proof. There are n vertices in T corresponding to n
vertical lines as the candidates for the location of the
watchtower. By Lemmas 4 and 6, finding the minimum
height of a watchtower located at the vertex vi takes
O(n2) time. So, the total required time is O(n3).

�

Considering 0-crossing visibility, the kernel is the po-
tential location of the top of the watchtower as described
for the continuous version. The difference between the
discrete and continuous versions is that in the discrete
version, the algorithm restricts the possible watchtowers
to those whose x-coordinates coincide with a vertex of
T . As a result, the discrete 1-watchtower problem under
0-crossing visibility can also be solved in O(n) time.
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a

b

c
d

e

`

Figure 9: Going up and losing visibility: On point a,
the entire terrain T is 2-crossing visible. At point b, the
rightmost edge of T is not 2-crossing visible anymore.
At point c, the entire terrain T becomes 2-crossing visi-
ble, while on d, the leftmost edge of T is not 2-crossing.
At point e, T is 2-crossing visible again.

In the case of 2-crossing visibility, we apply the same
approach as for the continuous version. The key differ-
ence is that only the vertical line segments emanating
from vertices of the terrain are of interest as the possi-
ble location for the watchtower. As a result, the discrete
version of the 2-watchtower problem can also be solved
in O(n2 log n) time.

4.1 Comparison between k-visibility and 0-visibility

As mentioned, both the discrete and continuous versions
of the 1-watchtower problem for 0-crossing visibility can
be solved in O(n) time, while for k-crossing visibility the
time complexity increases significantly when k > 0. The
main reason is the fact that when k 6= 0, the k-kernel
can be disconnected. Under 0-visibility, increasing the
height of a watchtower always increases its visibility;
that is, if p and q are two points on a vertical line above
T , where p lies above q, then the region of T visible
to q is contained in the region of T visible to p. This
property does not hold when k > 0; q could see all of T
(i.e., q is in the k-kernel), whereas p does not see all of
T , even though p lies above q. See Figure 9.

5 Possible Directions for Future Research

The 1-watchtower problem generalizes to the m-
watchtower problem, where instead of positioning a sin-
gle watchtower to guard the terrain T , an algorithm
must select positions for m watchtowers. The goal is
to minimize the maximum height of any watchtower,

w1 w2

Figure 10: Even when k = 0 in the 2-watchtower prob-
lem, the x-coordinates of watchtowers do not coincide
with those of vertices of the terrain, vertices of the k-
kernel, nor of the intersections of the Θ(n2) lines deter-
mined by pairs of vertices of the terrain.

while ensuring that each point on T is k-crossing visible
from at least one watchtower. To solve the continuous 1-
watchtower problem, it suffices to consider candidate lo-
cations for the watchtower whose x-coordinate coincides
with that of a vertex of T or a vertex of the k-kernel of
T . This property is not true in general for the continu-
ous m-watchtower problem, even when m = 2; see Fig-
ure 10. It remains open to find an efficient algorithm to
solve the (discrete or continuous) m-watchtower prob-
lem under k-crossing visibility, even for m = 2.
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Rock Climber Distance: Frogs versus Dogs∗

Hugo A. Akitaya† Leonie Ryvkin‡ Csaba D. Tóth†§

Abstract

The classical measure of similarity between two polygo-
nal chains in Euclidean space is the Fréchet distance,
which corresponds to the coordinated motion of two
mobile agents along the chains while minimizing their
maximum distance. As computing the Fréchet distance
takes near-quadratic time under the Strong Exponen-
tial Time Hypothesis (SETH), we explore two new dis-
tance measures, called rock climber distance and k-
station distance, in which the agents move alternately
in their coordinated motion that traverses the polygonal
chains. We show that the new variants are equivalent
to the Fréchet or the Hausdorff distance if the number
of moves is unlimited. When the number of moves is
limited to a given parameter k, we show that it is NP-
hard to determine the distance between two curves. We
also describe a 2-approximation algorithm to find the
minimum k for which the distance drops below a given
threshold.

1 Introduction

Recognizing similarity between geometric objects is a
classical problem in pattern matching, and has recently
gained renewed attention due to its applications in arti-
ficial intelligence and robotics. Statistical methods and
the Hausdorff distance have proved to be good similarity
measures for static objects, but are insensitive to spatio-
temporal data, such as individual trajectories or clusters
(flocks) of trajectories. The Fréchet distance (defined
below) is considered to be one of the best similarity mea-
sures between curves in space. Between two polygonal
chains with a total of n vertices, the Fréchet distance
can be computed in O(n2 polylog n) time [4, 14]. Un-
der the Strong Exponential Time Hypothesis (SETH),
there is a lower bound of Ω(n2−δ), for any δ > 0, for
computing the Fréchet distance [12], or even approxi-
mating it within a factor of 3 [16]. Without SETH, the
current best lower bound for the time complexity under
the algebraic decision tree model is Ω(n log n) [13].

Applications, however, call for efficient algorithms for
massive trajectory data. This motivates the quest for
new variants of the Fréchet distance that may bypass

∗Research supported in part by NSF CCF-1422311 & 1423615.
†Dept. Comp. Sci., Tufts University, Medford, MA, USA.
‡Dept. Mathematics, Ruhr University Bochum, Germany
§Dept. Mathematics, CSUN, Los Angeles, CA, USA.

some of its computational bottlenecks but maintain ap-
proximation guarantees.

In this paper, we introduce the rock climber dis-
tance. It combines properties of the continuous and the
discrete Fréchet distance, and is closely related to the
recently introduced k-Fréchet distance [2]. The classic
Fréchet distance corresponds to coordinated motion,
where two agents follow the polygonal paths P andQ, so
that they minimize the maximum distance between the
agents (intuitively, the agents are a man and a dog, and
they minimize the length of the leash between them).
The discrete Fréchet distance considers discrete mo-
tion on the vertices of the two chains (i.e., walking a
frog [24], pun intended). The rock climber distance
corresponds to a coordinated motion of two agents along
P and Q that is continuous, but only one agent moves
at a time, hence it can be described by an axis-parallel
path in a suitable parameter space (the so-called free
space diagram, described below).

Definitions Given two polygonal chains, parameter-
ized by piecewise linear curves, P : [0, 1] → R2 and
Q : [0, 1]→ R2, the Hausdorff distance is defined as

δH(P,Q) = max{ max
s∈[0,1]

min
t∈[0,1]

‖P (s)−Q(t)‖,

max
t∈[0,1]

min
s∈[0,1]

‖P (s)−Q(t)‖}.

and the Fréchet distance is defined as

δF(P,Q) = inf
σ,τ

max
t∈[0,1]

‖P (σ(t))−Q(τ(t))‖,

where σ, τ : [0, 1] → [0, 1] range over all orientation-
preserving homeomorphisms of [0, 1]. The standard ma-
chinery for finding nearby points in the two polygonal
chains, introduced by Alt and Godau [4] uses the so-
called free space diagram. For every ε > 0, the free
space is defined as

Fε(P,Q) = {(s, t) ∈ [0, 1]2 : ‖P (s)−Q(t)‖ ≤ ε}.

Note that Fε(P,Q) ⊂ [0, 1]2, where a point (s, t) ∈
[0, 1]2 corresponds to the positions P (s) and Q(t) on
the two chains. The Fréchet distance between P and
Q is at most ε if and only if the free space contains a
strictly x- and y-monotone path from (0, 0) to (1, 1);
namely, γ : [0, 1]→ [0, 1]2, γ(t) = (σ(t), τ(t)).
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We define further terms connected to the free space
diagram below: A component of a free space dia-
gram is a connected subset c ⊆ Fε(P,Q). A set S of
components covers a set I ⊆ [0, 1]P of the parameter
space (corresponding to the curve P ) if I is a subset
of the projection of S onto said parameter space, i.e.,
∀x ∈ I : ∃c ∈ S, y ∈ [0, 1]Q : (x, y) ∈ c. Covering on the
second parameter space is defined analogously.

Rock Climbers Distance. Assume that two rock
climbers each choose a route on a vertical wall, rep-
resented by polygonal chains P and Q. They secure
each other with a rope: While one endpoint of the rope
is firmly attached to the rock, the other endpoint may
move. Both climbers must be secured at all times, and
so only one climber can move at a time. The rock
climber distance is the minimum length of a rope that
allows them to traverse the routes P and Q, that is,

δrock(P,Q) = inf
γ

max
t∈[0,1]

‖P (σ(t))−Q(τ(t))‖, (1)

where γ : [0, 1]→ [0, 1]2, γ(t) = (σ(t), τ(t)), ranges over
all x- and y-monotonically increasing axis-parallel paths
from (0, 0) to (1, 1).

We show that δrock(P,Q) = δF(P,Q) (cf. Theorem 5),
albeit the number of turns of the path γ may far exceed
the number of vertices of P and Q. This indicates that
the number of axis-parallel segments in γ is a crucial
parameter. For every k ∈ N, we define δrock(k, P,Q) by
equation (1) with the additional condition that the path
γ consists of at most k line segments.

Rock Climber Distance with k Stations. The main
focus of this paper is a variant of the rock climber dis-
tance, where the number of axis-parallel segments is a
fixed parameter k, but these segments need not form
a continuous path from (0, 0) to (1, 1). Assume that
a rock climber club decides to install permanent safety
ropes along the routes P and Q for training purposes.
Each rope has one fixed endpoint on P or Q, and its
other endpoint can move freely on some subcurve of the
other polygonal chain (Q or P , respectively). The mo-
bile endpoint of a rope, however, cannot pass through
the fixed endpoint of another rope. The club decides
to install k ∈ N identical ropes: What is the minimum
length of a rope that allows safe traversal on both P and
Q? More formally, we arrive at the following definition.

Definition 1 For two polygonal chains, P and Q, and
an integer k ∈ N, the k-station distance, denoted
δstation(k, P,Q), is the infimum of all ε > 0 such that
there exist two subdivisions 0 = a0 < a1 < . . . < ap = 1
and 0 = b0 < b1 < . . . < bq = 1 into a total of p+ q = k
intervals such that

min
j∈{1,...,q}

min
s∈[ai−1,ai]

‖P (s)−Q(bj)‖ ≤ ε for i = 1, . . . , p;

min
i∈{1,...,p}

min
t∈[bj−1,bj ]

‖P (ai)−Q(t)‖ ≤ ε for j = 1, . . . , q.

Every subcurve P [ai−1, ai] of P has some closest point
Q(bj(i)) in Q; and every subcurve Q[bj−1, bj ] of Q has
a closest point P (bi(j)) in P . In the free space diagram
Fε(P,Q), where ε = δstation(k, P,Q), the union of hori-
zontal segments [ai−1, ai]×{bj(i)} and vertical segments
{ai(j)}× [bj−1, bj ] projects surjectively to the unit inter-
val [0, 1] on each coordinate axis.

Fréchet Distance with k Jumps. The k-station
distance can also be considered as a variant of
the k-Fréchet distance, introduced by Buchin and
Ryvkin [18] (see also [2]). Intuitively, it measures the
similarity between two polygonal chains after k “muta-
tions.” Formally, δcut(k, P,Q) is the infimum of ε > 0
such that P and Q can each be subdivided into k sub-
curves, Pi and Qi (i = 1, . . . , k), where δF(Pi, Qπ(i)) ≤ ε
for some permutation π : [k] → [k]. Importantly, the
chains P and Q can be subdivided at any point, not
only at vertices. Determining the minimum k ∈ N for
which δcut(k, P,Q) ≤ ε for a given ε is NP-hard, and
conjectured to be ∃R-hard. The k-station distance can
be considered as a restricted version of the k-Fréchet
distance, where either Pi or Qπ(i) is required to be a
single point (i.e., a trivial curve) for i = 1, . . . , k. By
definition, we have δcut(k, P,Q) ≤ δstation(k, P,Q) for
all k ∈ N.

Unit Disk Cover (UDC). The rock climber k-station
distance is also reminiscent of the unit disk cover prob-
lem: Given a point set S ⊂ R2, find a minimum set
D of unit disks such that S ⊂ ⋃D. When S is finite,
UDC is known to be NP-hard [21], one can find a 4-
approximation in O(n log n) time [11]. In the Discrete
Unit Disk Cover problem, S is finite, and the disks are
restricted to a finite set of possible centers [10]; the dis-
cretized version admits a PTAS via local search [29, 30].
These results extend to the cases where S is confined
to a narrow strip [22], or S is a finite union of line
segments [9]. Finding the minimum k ∈ N such that
δstation(k, P,Q) ≤ 1 can be considered as a variant of
UDC, where P (resp., Q) must be covered by disks cen-
tered at Q (resp., P ), and each disk can cover at most
one contiguous arc of a curve.

Our Results. We prove the following results.

1. We show that δrock(P,Q) = δF(P,Q) and
δstation(P,Q) = δH(P,Q) for a sufficiently large k
(that depends on P and Q). It follows that for any
two polygonal chains, P and Q, there exists a posi-
tive integer k such that δcut(k, P,Q) ≤ δF(P,Q).
The first identity implies that δrock(P,Q) can
be computed in O(n2

√
log n(log log)3/2) time [14],

where P and Q jointly have n vertices (Section 2).
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2. We prove that it is NP-complete to decide whether
δstation(k, P,Q) ≤ ε for two given polygonal chains,
P and Q, and parameters k and ε > 0 (Section 3).

3. We also give a 2-approximation algorithm for find-
ing the minimum k ∈ N such that δstation(P,Q, k) ≤
ε for given polygonal chains P and Q, and a thresh-
old ε > 0. We reduce the problem to a vari-
ant of the set cover problem over axis-parallel line
segments, for which a greedy strategy yields a 2-
approximation (Section 4).

Further Related Previous Work. Alt, Knauer, and
Wenk [5] compared the Hausdorff to the Fréchet dis-
tance and discussed κ-bounded curves as a special in-
put instance. In particular, they showed that for con-
vex closed curves Hausdorff distance equals Fréchet dis-
tance. For curves in one dimension Buchin et al. [13]
proved equality of Hausdorff and weak Fréchet distance
using the well-known Mountain Climbing theorem [23].
Recently, Driemel et al. [20] gave bounds on the VC-
dimension of curves under Hausdorff and Fréchet dis-
tances. Buchin [17] characterized these measures in
terms of the free space, which motivated the study of
the variants of the k-Fréchet distance; see also Har-Peled
and Raichel [25] for a treatment using product spaces.
The k-station distance is also related to partial curve
matching, studied by Buchin, Buchin, and Wang [15],
who presented a polynomial-time algorithm to compute
the “partial Fréchet similarity.” A variation of this sim-
ilarity was considered by Scheffer [31].

2 Relations to Other Distance Measures

In this section, we compare the rock climber distance
and the k-station distance to the Fréchet and Hausdorff
distances, as well as the cut distance.

Preliminaries. Let P : [0, 1]→ R2 and Q : [0, 1]→ R2

two piecewiese linear curves. That is, there are subdi-
visions 0 = a0 < a1 < . . . < am = 1 and 0 = b0 < b1 <
. . . < bn = 1 such that P,Q are linear on each subin-
terval [ai−1, ai] and [bj−1, bj ], respectively. Recall that
for every ε > 0, the free space is defined as Fε(P,Q) =
{(s, t) ∈ [0, 1]2 : ‖P (s)−Q(t)‖ ≤ ε}, which is a subset of
the configuration space U = [0, 1]2. We can subdivide
U into mn cells of the form Ci,j = [ai−1, ai]× [bj−1, bj ],
for i = 1, . . . ,m and j = 1, . . . , n. It is known that
Ci,j ∩ Fε(P,Q) = Ci,j ∩ Ei,j , where Ei,j is either an
ellipse or a slab parallel to the diagonal of Ci,j (in
case P ([ai−1, ai]) and Q([bj−1, bk]) are parallel line seg-
ments).

Geometric Properties. We prove a few elementary
properties for monotone curves passing through a cell

of the free space diagram. We start with an easy obser-
vation. Omitted proofs are available in the full paper [3].

Lemma 2 Let E be an ellipse with maximal curvature
κ. Then for every point p ∈ ∂E, there are horizontal
and vertical segments Hp and Vp, respectively, such that
p ∈ Hp ⊂ E, p ∈ Vp ⊂ E, and ‖Hp‖+ ‖Vp‖ ≥ 2/κ.

Lemma 3 Let C be an axis-aligned rectangle and E an
ellipse such that C∩E 6= ∅. Let α : [0, 1]→ C∩E be an
x- and y-monotone increasing curve. Then there exists
an x- and y-monotone increasing curve β : [0, 1]→ C ∩
E such that β(0) = α(0), β(1) = α(1), and (the image
of) β is a polygonal chain consisting of a finite number
of axis-parallel edges.

For a set S ⊂ R2, let projx(S) and projy(S) denote the
orthogonal projection of S onto the x- and the y-axis,
respectively.

Lemma 4 Let C be an axis-aligned rectangle and E
an ellipse such that C ∩ E 6= ∅. Then there exists a
finite set S of axis-parallel line segments in C ∩E such
that projx(C ∩ E) = projx(

⋃S) and projy(C ∩ E) =
projy(

⋃S).

Relation to the Fréchet Distance. We show that the
rock climber distance equals the Fréchet distance.

Theorem 5 For two polygonal chains, P and Q, it
holds that δrock(P,Q) = δF(P,Q).

For two polygonal chains, P and Q, with a
total of n segments, δF(P,Q) can be computed
in O(n2

√
log n(log log)3/2) time [14]. Consequently,

δrock(P,Q) can be computed in the same time, regard-
less of the complexity of the path γ in Fε+δ(P,Q).

Relation to the Hausdorff and k-Fréchet Distances.
The k-station distance between P and Q equals their
Hausdorff distance for a sufficiently large integer k.

Theorem 6 For two polygonal chains, P and Q,
and for ε > 0, there exists a k ∈ N such that
δstation(k, P,Q) = δH(P,Q).

Remark. In the proofs of Theorems 5 and 6 (see [3]),
we “inflate” the free space Fε(P,Q) into Fε+δ(P,Q),
δ > 0, to avoid the case that P and Q contain parallel
segments at distance ε. This step is necessary, as the
free space Fε(P,Q), where ε = δF(P,Q), need not con-
tain an axis-parallel path from (0, 0) to (1, 1). In the
simplest example, P and Q are two parallel segments:
The free space consists only of the straight line segment
at the diagonal of [0, 1]2.

Figure 1 shows an example where three segments in P
are parallel to two segments in Q at distance ε apart. It
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P

Q

ε

a a′

b

Figure 1: To project onto intervals a and a′ we need to
use the two straight line components above them, but
then b has two preimages for its projection.

is impossible to cut P and Q into k ∈ {2, 3} pieces such
that δcut(k, P,Q) ≈ δH(P,Q). However, if we allow an
arbitrarily large k ∈ N, it is possible to place multiple
cuts within a tiny distance in order to make sure that
both parameter spaces can be covered by tiny slices of
components.

Remark. For two polygonal chains, P and Q, with a
total of n segments, the free space Fε(P,Q) is bounded
by N = O(n2) line segments and elliptical arcs for ev-
ery ε > 0. Mitchell et al. [27, 28] proved that the recti-
linear link distance between two points in a rectilinear
polygonal domain with N vertices can be computed in
O(N logN) time. Perhaps this method can be adapted
to decide whether the rectilinear link distance between
(0, 0) and (1, 1) in the free space Fε(P,Q) does not ex-
ceed a given parameter in time polynomial in k and n.
One could then find the infimum of ε > 0 such that
Fε(P,Q) contains such a path with k or fewer links by
parametric search [32], and compute δrock(k, P,Q) in
polynomial time.

3 NP-Hardness

The k-station distance raises several optimization prob-
lems.

• Can we find the minimum ε > 0 such that
δstation(k, P,Q) ≤ ε for two polygonal chains P and
Q, and an integer k?

• Can we find the minimum k ∈ N for a given thresh-
old ε > 0?

In this section, we show that the decision versions of
these problems are NP-hard. That is, it is NP-hard to
decide whether δstation(k, P,Q) ≤ ε. Our reduction will
produce weakly simple polygonal chains P and Q. A
polygonal chain is weakly simple if its vertices can be
moved by some arbitrary small amount to produce a
Jordan arc [1, 19].

We reduce from Planar-Rectilinear-3SAT which
is NP-complete [26]. An instance of Planar-
Rectilinear-3SAT is defined by a boolean formula Φ

in 3-CNF with n variables and m clauses. The formula
is accompanied by a planar rectilinear drawing of the
bipartite graph between variables and clauses in an in-
teger grid where all variables are represented by points
on the x-axis, and edges do not cross this axis. The
problem asks whether there is an assignment from the
variable set to {true, false} such that Φ evaluates to
true.

Theorem 7 It is NP-hard to decide whether
δstation(k, P,Q) ≤ ε for given k > 0 and ε > 0,
even when P and Q are weakly simple polygonal chains.

Proof. We present here only an overview of the proof.
The details are available in the full paper [3]. Given an
instance A of Planar-Rectilinear-3SAT, we build
an instance B of our problem producing two polygonal
chains, P and Q, as shown in Figure 2. The chain P
(Q) is represented by a blue (red) curve. Black edges
represent overlap between P and Q. We set ε := 1, and
design P and Q so that the length of almost every edge
is an integer. That allows us to compute locally opti-
mal solutions along the black edges that require a con-
sistent choice of station placement alternating between
blue and red stations, which in turn establishes a lower
bound on the number of stations. We set the parameter
k so that every solution must meet that lower bound.
In the variable gadget, a concatenation of literal gad-
gets (Figure 3 (a)) must alternate consistently in order
to achieve this lower bound. The choice of whether to
start with a blue or a red station encodes the truth value
of the variable. The separation gadget (Figure 3 (c))
allows choosing truth values for each variable indepen-
dently. In the clause gadget (Figure 3 (d)) a subchain
of Q (near p5) can be covered by a blue station of the
alternation of a literal gadget if the literal evaluates to
true. If all literals in the clause evaluate false, then
either an additional station is needed or ε has to be in-
creased. Hence, δstation(k, P,Q) ≤ ε if and only if the
instance A admits a positive solution. �

4 Approximation Algorithms

In this section, we show that for two polygonal chains,
P and Q, and a threshold ε > 0, we can approximate
the minimum k ∈ N for which δstation(k, P,Q) ≤ ε up
to a factor of 2. Recall that δstation(k, P,Q) ≤ ε if and
only if there exist a set S of k axis-parallel line seg-
ments in the free space Fε(P,Q) such that projx(

⋃S) =
projx(Fε(P,Q)), projy(

⋃S) = projy(Fε(P,Q)), and the
projections of the segments onto the two coordinate axes
have pairwise disjoint relative interiors.

The condition that the projections of segments in S
are interior-disjoint is crucial. Without this condition,
the problem would be separable, and we could find an
optimal solution efficiently: Let OPTx be a minimum
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x5x1

x2

x3

x4

Figure 2: Reduction from the instance (x1 ∨ x3 ∨ x5) ∧ (x1 ∨ x5) ∧ (x2 ∨ x3 ∨ x4). The segments in the x-axis
corresponding to the five variables are shown in green.

(a) (b) (c) (d)

p1
p2

p5

p3

p4

Figure 3: (a) Literal, (b) negation, (c) separation, and
(d) clause gadgets.

cardinality set of horizontal segments in Fε(P,Q) such
that projx(

⋃
OPTx) = projx(Fε(P,Q)), and OPTy a

minimum set of vertical segments in Fε(P,Q) such that
projy(

⋃
OPTy) = projy(Fε(P,Q)).

Observation 1 The set S = OPTx ∪ OPTy is
a minimum set of axis-parallel segments such that
projx(

⋃S) = projx(Fε(P,Q)), and projy(
⋃S) =

projy(Fε(P,Q)).

Proof. Suppose OPTx∪OPTy is not minimal, i.e., there
exists a smaller such set S ′ of axis-parallel segments
whose x- and y-projection equals that of Fε(P,Q). Par-
tition S ′ into subsets of horizontal and vertical seg-
ments, say S ′x and S ′y. Then |S|′ < |OPTx| + |OPTy|
implies |S ′x| < |OPTx| or |S ′y| < |OPTy|, contradicting
the minimality of OPTx or OPTy. �

Given a set of axis-parallel line segments, we can elim-
inate intersections between the relative interiors of their
x- and y-projections at the expense of increasing the
number of segments by a factor of at most 2.

Lemma 8 There exists a set S of at most 2(|OPTx|+
|OPTy|) axis-parallel segments in Fε(P,Q) such
that projx(

⋃S) = projx(Fε(P,Q)), projy(
⋃S) =

projy(Fε(P,Q)), and the projections of the segments
onto the two coordinate axis have pairwise disjoint rel-
ative interiors.

Proof. We may assume, by truncating the segments in
OPTx and OPTy, if necessary, that the x-projections
of segments in OPTx are interior-disjoint, and the
y-projections of segments in OPTy are also interior-
disjoint. Then the supporting line of each horizon-
tal segment in OPTx intersects the interior of at most
one vertical segment in OPTy, and vice versa. Conse-
quently, the supporting lines of the segments in OPTx
(resp., OPTy) jointly subdivide the segments in OPTy
(resp., OPTx) into at most |OPTx| + |OPTy| pieces.
The total number of resulting axis-parallel segments is
2(|OPTx|+ |OPTy|), as required. �

It remains to show how to compute OPTx and OPTy
efficiently. We first observe that a greedy strategy finds
OPTx (resp., OPTy) from a set of maximal horizontal
(resp., vertical) segments in Fε(P,Q).

A Greedy Strategy. Input: A set H of horizontal line
segments in R2. Output: a subset S ⊂ H such that
projx(

⋃S) = projx(
⋃H). Initialize S := ∅; and let L

be a vertical line through the leftmost points in
⋃H.

Let L− be the closed halfplane on the left of L. While
projx(

⋃S) 6= projx(
⋃H), do: Let s ∈ H be a segment

whose left endpoint is in L− and whose right endpoint
has maximal x-coordinate. Put S ← S∪{s}; let L←the
vertical line through the right endpoint of s, and H ←
{h ∈ H : h 6⊂ L−}.

Observation 2 Given a set H of horizontal segments,
the above greedy algorithm returns a minimum subset
S ⊂ H such that projx(

⋃S) = projx(
⋃H).

Proof. At each iteration of the while loop, we maintain
the following invariant: S is a minimal subset of H such
that projx(

⋃S) = projx((
⋃H) ∩ L−). �

The implementation of the above greedy algorithm is
straightforward when H is finite. However, the set H of
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maximal horizontal segments in the free space Fε(P,Q)
may be infinite.

Lemma 9 Let P and Q be polygonal chains with m
and n segments, respectively, and let ε > 0. Then a set
OPTx can be computed in output-sensitive O((|OPTx|+
m)n) time.

Proof. Let H be the set of maximal horizontal seg-
ments in the free space Fε(P,Q). To implement the
greedy algorithm above, we describe a data structure
that supports the following query: Given a vertical line
L, find a segment s ∈ H whose left endpoint is in L−

and whose right endpoint has maximal x-coordinate.
Recall from Section 2 that the parameter space [0, 1]2

is subdivided into mn axis-parallel cells Ci,j . In each
cell, Ci,j ∩ Fε(P,Q) = Ci,j ∩ Ei,j , where Ei,j is either
an ellipse or a slab parallel to the diagonal of Ci,j .

Let a vertical line L be given, and assume that it
intersects the cells Ci,j , for j = 1, . . . , n. In each of these
n cells, compute the intersections `i,j = L ∩ Ci,j ∩Ei,j ,
and the set Ri,j of points in Ci+1,j ∩ Ei,j that can be
connected to `i,j by a horizontal line segment within
Ci,j ∩ Ei,j . If none of the sets Ri,j touches the right
edge of the cell Ci,j , then take a rightmost point r in⋃n
j=1Ri,j , and report a maximal horizontal line segment

in Fε(P,Q) whose right endpoint is r; this takes O(n)
time. Otherwise consider the vertical line L′ passing
through the right edges of the cells Ci,j (j = 1, . . . , n);
and let `′i,j = L′∩Ri,j . We can repeat the above process
in cells Ci+1,j (j = 1, . . . , n) with lines `′i,j in place of
`i,j . Ultimately, we find a rightmost point r ∈ Fε(P,Q)
that can be connected to a point in L within Fε(P,Q).

Each query L takes O(n) time if it finds r within
a cell Ci,j stabbed by L; and O(nt) time if it finds r
in a cell Ci+t,j for some t = 1, . . . ,m − i. Since the
x-coordinates of the query lines are strictly increasing,
the total running time for |OPTx| queries isO((|OPTx|+
m)n) time, as claimed. �

Theorem 10 Let P and Q be polygonal chains with
m and n segments, respectively, and let ε > 0.
Then we can approximate the minimum k such that
δstation(k, P,Q) ≤ ε within a factor of 2 in output-
sensitive O(k(m+ n) +mn) time.

Proof. Compute the free space Fε(P,Q) in O(mn)
time. If projx(Fε(P,Q)) 6= [0, 1] or projy(Fε(P,Q)) 6=
[0, 1], then report that δstation(k, P,Q) > ε for ev-
ery k ∈ N. Otherwise, compute OPTx and OPTy by
Lemma 9 in O(mn + |OPTx|n + m|OPTy|) time. We
have k ≤ |OPTx|+ |OPTy| by Observation 1. Lemma 8
yields a set S of at most 2(|OPTSx| + |OPTSy|) axis-
parallel segments in Fε(P,Q) such that projx(

⋃S) =
projx(Fε(P,Q)), projy(

⋃S) = projy(Fε(P,Q)), and the
projections of the segments onto the two coordinate

axes have pairwise disjoint relative interiors. In par-
ticular, δstation(|S|, P,Q) ≤ ε, and so k ≤ |S| ≤ 2k,
as required. The running time of our algorithm is
O(mn+ |OPTx|n+m|OPTy|) ⊂ O(mn+k(m+n)). �

5 Conclusion

We have introduced the rock climber distance
δrock(k, P,Q) and the k-station distance δstation(k, P,Q)
between two polygonal chains in the plane. The rock
climber distance combines properties of the continuous
and discrete Fréchet distance: It corresponds to a coor-
dinated motion of two agents traversing the two chains
where only one agent moves at a time. Our results raise
several open problems, we present some of them here.

• Can we efficiently approximate δstation(k, P,Q) for
a given k and given polygonal chains P and Q?

• In Section 4, we described a 2-approximation al-
gorithm for finding the minimum k for which
δstation(k, P,Q) ≤ ε. Can the approximation ratio
be improved? Does the problem admit a PTAS?

0 1

1

Figure 4: An instance of the compatible axis-parallel
segment cover problem. A solution of size 10, is shown
in red (bold).

• A discretization of the previous problem leads to
the compatible axis-parallel segment cover
problem: Instead of the free space Fε(P,Q), we
are given a set F ⊂ [0, 1]2 as a union of n axis-
aligned line segments, and ask for the minimum
k ∈ N such that F contains k axis-parallel line seg-
ments whose vertical and horizontal projections, re-
spectively, have pairwise disjoint relative interiors,
and jointly cover the unit interval [0, 1]. See Fig. 4.
The conditions on disjoint relative interiors is cru-
cial, and can be formulated as a geometric set cover
problem with conflicts [8], or with unique cover-
age [6, 7]. Our NP-hardness and 2-approximation
results extend to this problem. Can the approxima-
tion ratio be improved? Is the problem APX-hard?
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Discrete Planar Map Matching

Bin Fu∗ Robert Schweller∗† Tim Wylie∗†

Abstract

Route reconstruction is an important application for
Geographic Information Systems (GIS) that rely heavily
upon GPS data and other location data from IoT de-
vices. Many of these techniques rely on geometric meth-
ods involving the Fréchet distance to compare curve sim-
ilarity. The goal of reconstruction, or map matching, is
to find the most similar path within a given graph to a
given input curve, which is often approximate location
data. This process can be approximated by sampling
the curves and using the discrete Fréchet distance. Due
to power and coverage constraints, the GPS data itself
may be sparse causing improper constraints along the
edges during the reconstruction if only the continuous
Fréchet distance is used. Here, we look at two varia-
tions of discrete map matching: one constraining the
walk length and the other limiting the number of ver-
tices visited in the graph. We give an efficient algorithm
to solve the question based on walk length showing it is
in P. We prove the other problem is NP-complete and
the minimization variant is APX-hard while also giving
a parameterized algorithm to solve the problem.

1 Introduction

There are many important applications related to GIS
systems due to the proliferation of GPS enabled devices
and the continued development of IoT devices. Route
reconstruction is the process of finding the most likely
path of an object based on the GPS data and the pos-
sible pathways. For instance, GPS data may indicate a
car was driving through buildings, and we want to fit
the data to the road network to recreate the most likely
path of the car.

Route reconstruction depends greatly on what met-
ric is used to determine how close the reconstructed
path is. The two main methodologies are those based
on geometric methods and Global Weight Optimiza-
tion. However, the methodologies can also be classi-
fied based on the problem definition where we have lo-
cal/incremental methods, global methods, and statisti-
cal methods. These can be extended to include topo-
logical and geological conditions, current weather and

∗Department of Computer Science, University of Texas - Rio
Grande Valley
†This author’s research was supported in part by National Sci-

ence Foundation Grant CCF-1817602.

traffic conditions, speed limits, and other variables that
can produce more optimal routes [17, 23]. Here, we fo-
cus on global geometric methods, and assume we have
all of the data as input to find an optimal solution.

One popular means of measuring this fit is the Fréchet
distance. Finding a path in a graph given a polygonal
curve is also referred to as map matching. Map match-
ing with respect to the Fréchet distance was first posed
by Alt et. al. [6] as follows: Let G = (V,E) be an undi-
rected connected planar graph with a given straight-line
embedding in R2 and a polygonal line P . Find a path
Q in G which minimizes the Fréchet distance between
P and Q. They give an efficient algorithm which runs
in O(pq log q) time and O(pq) space where p is the num-
ber of line segments of P and q is the complexity of G.
This allows for vertices and edges to be traversed multi-
ple times. Maheshwari et al. improved the running time
for the map matching problem for complete graphs [19].
The original algorithm decides it in O(pn2 log n), where
n is the number of vertices in the graph, and their new
algorithm solves it in O(pn2). We refer to this problem
(in a complete graph) as the set-chain matching prob-
lem, which was studied in more detail in [1, 2, 3, 25].

There has been work that yields better performance
with certain types of curves, with dual simplification for
an approximate result, with bounded simplification of
one of the chains, and in graphs with certain properties,
[8, 11, 12, 14]. With map matching, for the weak Fréchet
distance, the bounds have been lowered further to O(pq)
[13], and the problems can be defined with a smaller
error bound [24].

All this work has focused on the continuous Fréchet
distance, which assumes that every point along the
curve is meaningful. In reality, all GPS data is dis-
crete, and these approaches smooth the data. There
are some methods optimized for low-sampling-rate data
[17], but even these assume some maximum time be-
tween samples (less than five minutes). Our goal is to
analyze data where samples may be hours apart and can
not be reasonably smoothed. There are many instances
where you may not have GPS data, such as power con-
straints (low battery), or coverage issues (no towers),
or required disconnects (airline travel). In these cases,
you only connect to a cell tower or satellite intermit-
tently, and thus the resulting polygonal curve is only
meaningful at the nodes.

Another application where map matching algorithms
are useful are discretizations of any continuous data.
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Examples include cartography applications, schematic
maps, or polygon simplification [7, 16, 21].

Our Results. We introduce two additional variants of
discrete map matching. We show that minimizing the
resulting path is polynomial. We then show that re-
stricting the set of vertices used from the graph is NP-
complete and the minimization variant is APX-hard.
We give a positive result based on a separator that yields
a polynomial time algorithm under more realistic input
assumptions (similar to those in [7]).

2 Preliminaries

The discrete Fréchet distance was originally defined by
Eiter and Mannila in 1994 [15], and was further ex-
panded on theoretically by Mosig et al. in 2005 [22].

Given two polygonal curves, we define the discrete
Fréchet distance as follows. We use d(a, b) to repre-
sent the Euclidean distance between two points a and
b, but it could be replaced with other distance measures
depending on the application.

Definition 1 The discrete Fréchet distance, dF , be-
tween two polygonal curves f : [0,m] → Rk and g :
[0, n]→ Rk is defined as:

dF (f, g) = min
σ:[1:m+n]→[0:m],
β:[1:m+n]→[0:n]

max
s∈[1:m+n]

{
d
(
f(σ(s)), g(β(s))

)}

where σ and β range over all discrete non-decreasing
onto mappings of the form σ : [1 : m+ n]→ [0 : m], β :
[1 : m+ n]→ [0 : n].

The continuous Fréchet distance is typically explained
as the relationship between a person and a dog con-
nected by a leash walking along the two curves and try-
ing to keep the leash as short as possible. However, for
the discrete case, we only consider the nodes of these
curves, and thus the man and dog must “hop” along
the nodes. Figure 1 shows this relationship between the
two and how with enough evenly sampled points on the
two curves, the resulting discrete Fréchet distance can
closely approximate the continuous Fréchet distances.

With a dynamic programming solution for finding
the discrete Fréchet distance between two polygonal
curves with m and n nodes, Eiter and Mannila proved
that O(mn) was possible [15]. Recently, a slightly sub-
quadratic algorithm was discovered by Agarwal et al.
showing the discrete Fréchet distance can be computed
in O(mn log logn

logn ) time [4].

Bringmann and Mulzer [10] recently showed the there
is no strongly subquadratic algorithm for the discrete
Fréchet distance unless the strong exponential time hy-
pothesis (SETH) fails [9].

(a) (b)

Figure 1: Figures (a) and (b) show the relationship
between the discrete and continuous Fréchet distance
where p is the point on the line closest to a2 for the
continuous and the dotted line represents the closest
discrete distance from a2 (using only nodes). (a) the
curves have fewer nodes and a larger discrete Fréchet
distance, while (b) has the same paths with more nodes,
and thus provides a better approximation.

2.1 Discrete Map Matching

The definition of discrete map matching follows and we
discuss two variants that we consider in this work.

Definition 2 (Discrete Map Matching)
Instance: Given a simple connected planar graph G =
(V,E) embedded in R2, a polygonal curve P in Rd (d ≥
2), an integer K ∈ Z+, and an ε > 0.
Problem: Does there exist a walk Q in G with vertices
chosen from V ′ where V ′ ⊆ V , such that T ≤ K and
dF (P,Q) ≤ ε where T is defined as either

• T = |Q|, where the size of the chain is being re-
stricted, or

• T = |V ′|, where the number of vertices in the graph
is restricted (a vertex visited multiple times in the
walk only counts as one).

We look at the analogous variants of the set-chain
matching problems (rather than a graph they find a
path through a set of points) [1, 2, 3, 19, 25]: the Non-
unique map matching problem constrains either the
curve (NMMC-k) or the set of vertices used (NMMS-
k). There is a variant where the vertices in the walk
must also form a path, which is Unique map matching
(UMM-k), and was shown to be NP-complete simul-
taneously in [20, 26] with extended stronger results in
[16]. Note that when the vertices are unique the two
decision problems (|Q|,|V ′|) are equivalent. For refer-
ence, the naming convention is (U)nique/(N)on-unique
(M)ap (M)atching with a k (S)ubset/(C)hain.

3 Non-unique Map Matching With Restricted
Length (NMMC)

Here, we discuss discrete map matching concerned with
the length of the path through the graph. As the
NMMC problem restricts the length of Q, the problem
is similar to the set-chain variant (NSMC) [25] and has
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a similar optimal substructure. The recurrence to find
the minimum size of Q (in number of vertices), is given
in Equation 1. The recurrence uses a 2D table M of size
|V | × |P | where the first column is initialized to one if
d(vk, p1) ≤ ε where 1 ≤ k ≤ |V |, and the values are set
to ∞ otherwise. N(v) stands for the neighborhood of
vertex v, which is the set of adjacent vertices in G.

The recurrence minimizes the number of vertices used
while going from p1 to p|P |. This is done by ensuring
that for each pi, 1 ≤ i ≤ |P |, we mark all vertices v
with d(v, pi) ≤ ε and that v is adjacent to at least one
vertex used in the walk so far, i.e., there is a v′ where
d(v′, pi−1) ≤ ε and there is an edge between v and v′.

M [i, j]=min





M [i, j-1], if d(vi, pj) ≤ ε,M [i, j-1] 6=∞
min

vk∈N(vi)
M [k, j-1]+1, if d(vi, pj) ≤ ε

∞, if d(vi, pj) > ε

(1)

This algorithm works for any graph with the worst
case being a complete graph, which is equivalent to the
discrete set-chain matching variant [25] and has com-
plexity O(|P |(|V | + |E|)). Each vertex v only looks at
its neighbor set, N(v), and since a planar graph has
fewer edges, the algorithm has a faster runtime. A pla-
nar graph has |E| = 3(|V |− 2) = O(|V |), yielding a run
time of O(|P ||V |) for planar graphs.

Theorem 1 The discrete Non-unique Map Matching
(NMMC) problem restricting the number of nodes in the
output polygonal curve Q (vertices in the walk) can be
solved in O(|P |(|V |+ |E|)) time for general graphs, and
O(|P ||V |) time for planar graphs.

The optimal walk can be extracted by a simple back-
tracking algorithm. Find the minimum value in the last
column, and the index of that row is the last vertex of
the walk. Then, continually look at the previous column
and find either the same row (same value), or look at
all neighbors of that vertex and find a row with a value
that is one less than the current value.

4 Discrete Non-unique Map Matching with Re-
stricted Set (NMMS)

Discrete map matching concerned with restricting the
number of vertices of the graph that the walk uses is
an interesting problem related to coverage. Imagine a
route reconstruction problem looking at cellphone tower
coverage. If we wanted to know whether it was possible
that the driver connected to fewer than k towers, this is
equivalent to NMMS. On a complete graph, this is the
same as discrete unit disk cover [25], and thus NMMS is
asking a DUDC question related to planar connectivity

(a) Vertex Gadget (b) Connecting Edge

Figure 2: (a) The vertex gadget replaces a vertex with 4
vertices and three connecting locations. (b) Edge Con-
necting two vertex gadgets. Note that there is no re-
striction requiring the edges to be straight, just that
the distance bounds are maintained.

between the disks. Section 4.1 shows NMMS is NP-
complete, and Section 4.2 shows the minimization vari-
ant is APX-hard. We give a polynomial result related
to real-world application constraints in Section 4.3.

4.1 Reduction Overview

NMMS on a complete graph is equivalent to Non-Unique
Set Matching with a fixed set for some k (NSMS), which
is NP-complete [25]. On a planar graph the problem is
different since our walk through the graph is limited by
its neighbors and the planarity of the graph. We show
that the problem is NP-complete via a reduction from
Planar Vertex Cover with max degree three (PVC3),
which was shown to be NP-complete in [18] and shown
to be APX-hard in [5]. For Planar Vertex Cover we are
given a planar graph G = (V,E) and an integer Kvc as
input. For this special case we know that deg(v) ≤ 3 ∀
v ∈ V . We want to know if there is a vertex cover of G
of size at most Kvc.

We use several gadgets to transform an instance of
PVC3 into an instance of NMMS. Since we are moving
from a graph to a geometry problem, we use a planar
embedding of the graph. Let Gs be a planar embedding
of the graph G where each edge has length greater than
5ε. This ensures our geometric gadgets work correctly
for any given ε > 0.

The reduction is going to make a new graph and a
polygonal curve that will visit each edge of G exactly
twice by creating a doubly-connected edge list (Section
4.1.2). The gadgets that replace each vertex and edge
of G (Section 4.1.1) ensure that this walk is possible.

4.1.1 Gadgets

Each vertex in Gs is replaced with the vertex gadget
shown in Figure 2a, which consists of four vertices and
three edges connecting them. The edge lengths are ex-
actly ε in length. The central vertex represents the orig-
inal vertex while the other three will be used to connect
edges. We replace each edge by three additional vertices
and six edges that connect two vertex gadgets (Figure
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(a) Edge Gadget (b) Edge-Cross Gadget

Figure 3: (a) An edge gadget includes the two connected
vertex gadgets and the connecting edges between them,
and then also has a piece of the polygonal curve. The
circles represent an ε-ball around each node of the curve
to show which vertices in the graph are within ε. It
begins on one “side” of the edge and ends on the other
“side.” (b) The edge-cross gadget is an edge gadget that
has the polygonal curve ending on the same side of the
edge gadget that it began.

(a) Walk through vi (b) Walk through vj

Figure 4: The two possible walks through an edge gad-
get connecting vertices vi and vj . (a) A walk through
the edge gadget that uses the center vertex of vi. (b)
A walk through the edge gadget that uses the center
vertex of vj .

2b). Note that the new edges can be arbitrarily placed
in the plane as necessary as long as the relationship be-
tween the three center vertices is maintained. Since we
know the max degree of any vertex in Gs is three, we can
connect up to three edge gadgets to each vertex gadget.
We now have a new graph G′s = (V ′, E′) with exactly
|V ′| = 4|V |+ 3|E|, and |E′| = 3|V |+ 6|E|.

For the full edge gadget, we add a polygonal curve to
each edge, as shown in Figure 3a. We discuss connect-
ing these into one curve later; for now we focus on a
single edge. If we walk through the graph following the
polygonal curve, and minimize the number of vertices
used, then there are only two possible walks. Assume
we begin at the lower left edge vertex (on the variable
gadget). We must either follow the walk shown in Fig-
ure 4a or the one in 4b. Both walks use only 7 vertices,
and this is minimal for any edge gadget. This means
we must use the center vertex representing vi or vj for
every edge eij . We could use both, but we only have to
use one, and either will work. In this way, we have a
vertex “covering” that edge. The same vertex could be
used for all three edge gadgets.

The edge gadget ends the walk on the opposite side of
the edge from where it started, which can be a problem
(explained later). Thus, we finish the edge gadget with a

(a) Walk through vi

(b) Walk through vj

Figure 5: The two possible walks through an edge-
cross gadget connecting vertices vi and vj . (a) A walk
through the edge-cross gadget that uses the center ver-
tex of vi. (b) A walk through the edge-cross gadget that
uses the center vertex of vj .

crossover that allows the walk to cross back to the other
side of the edge. Figure 3b shows this construction.
Figures 5a and 5b show the two possible walks through
the edge. Thus, every edge gadget needs a minimum of
8 vertices for a walk following the curve.

4.1.2 Connecting Gadgets

To connect all of the small polygonal curves into a sin-
gle curve, we need a walk that traverses every edge in
our original graph at least once, and it may traverse an
edge multiple times. The edge-traversal algorithm (Al-
gorithm 1) ensures we go through every edge exactly
twice (an example is shown in Figure 6). This gener-
ates a doubly connected edge-list (DCEL).

Algorithm 1 (Generate DCEL)
Input: Graph G = (V,E)
Output: Sequence of edges

• Compute a minimum spanning tree M of G and
pick a vertex v.

• Create a path P around M by visiting each edge
twice with the path in a counter-clockwise manner.

• At each vertex vi ∈ P , add any edge e{vi,vj} twice
to the edge sequence if it is not part of P .
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(a) Example graph
(b) Spanning tree and
traversal

(c) Final edge traversal

Figure 6: (a) An example planar graph with max vertex
degree three. (b) A random MST with a traversal going
through all vertices and going through all edges of the
MST twice. (c) Adding in all other edges by following
the path and inserting the missing edges into the path
at each vertex.

(a) Right Turn (b) Left Turn

Figure 7: Assuming we are coming from the left-
most vertex gadget. (a) Two edge-cross gadgets con-
nected by a vertex gadget turning right. (b) Two edge-
cross gadgets connect its left and thus making a left
turn. After we cross the first edge, we must cross
back to the other side in order to turn left, so those
three nodes in the curve are repeated in reverse order:
〈p1, . . . , pi, pi+1, . . . , pi+6, . . . pF 〉 s.t. the locations of pi
and pi+6, pi+1 and pi+5, and pi+2 and pi+4 are the same.

With this walk, connect the polygonal curve segments
and adjust each segment whenever we cross the same
edge twice (the number of times we will visit the same
edge) or we need to cross to the other side of an edge
(to finish on the opposite side). With the crossovers,
Figure 7 shows how to make right and left turns.

4.1.3 Complexity

The new graph has |V ′| = 4|V |+ 3|E|, and the number
of edges |E′| = 3|V |+ 6|E| with an optimal walk using
K = 7|E| − |d2| − 3|d3| + Kvc where di = {vj |vj ∈
V, deg(vj) = i}, i.e., di is the set of all vertices from V
with degree i. Since adjacent edges on the vertex gadget
share vertices, we must subtract these for vertices of
degree 2 and 3 in the original graph.

Theorem 2 Discrete non-unique map matching with
T = |V ′| (NMMS) is NP-complete.

Proof. The graph G has a vertex cover of size Kvc if
and only if there exists a walk Q in G′s with P such that
Q only passes through K = 7|E| − |d2| − 3|d3| + Kvc

vertices and dF (P,Q) ≤ ε.
Given the graph G, the given construction allows a

walk to pass through an edge gadget with a minumum
of 7 vertices. Since six of these must be used for every
edge giving 7|E|−|d2|−3|d3| vertices, the crossing vertex
comes from one of the two vertex gadgets, but either
can be used. Thus, every edge must have one of the
two center vertex gadget vertices, which can be used for
the adjacent edges as well. Thus, it is a vertex cover
equivalent meaning Kvc vertices are sufficient.

Given an instance of G′s and P . A walk must pass
through 7|E|−|d2|−3|d3| vertices. The additional vertex
needed for each edge-cross gadget constitutes a single
vertex associated with an adjacent edge in G. Thus, it
would be a vertex cover.

For membership in NP, if given a set V ′ of vertices,
take the induced subgraph of G of the vertices from V ′

and let it be G′. The problem then becomes equivalent
to NMMC over G′ with k = |P |, which is polynomial.
Finally, we check the discrete Fréchet distance in poly-
nomial time. �

4.2 APX-hardness

Here we show that the minimization variant of the prob-
lem is APX-hard with an L-reduction from PVC3. An
L-reduction is an approximation-preserving reduction
when both problems are minimization problems.

Definition 3 (L-reduction) Let A and B be opti-
mization problems and cA and cB their respective cost
functions. A pair of functions f and g is an L-reduction
if all of the following conditions are met:

• f and g are computable in polynomial time,

• if x is an instance of problem A, then f(x) is an
instance of problem B,

• if y′ is a solution to f(x), then g(y′) is to x,

• there exists a positive constant α such that
OPTB(f(x)) ≤ αOPTA(x),

• there exists a positive constant β such that for every
solution y′ to f(x),
|OPTA(x)− cA(g(y′))| ≤ β|OPTB(f(x))− cB(y′)|.

Theorem 3 Minumum discrete non-unique map
matching with T = |V ′| (Min NMMS) is APX-hard.

Proof. We show this via an L-reduction. Let f be the
L-reduction from PVC3 to NMMS using the described
construction above. For every vertex cover Vc of size
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Kvc of graph G = (V,E) for PVC3, there is a vertex
walk Q in our new graph G′s = (V ′, E′) using K ′ =
7|E|−|d2|−3|d3|+Kvc vertices such that dF (P,Q) ≤ ε.

We construct our walk Q as a sequence of vertices
from G′s. Let {Q} denote the vertices in the walk, i.e.,
|{Q}| = K ′. Then for every vertex cover Vc ⊂ V of G
we construct the walk Q with {Q} ⊂ V ′ of G′s = f(G)
of size K ′. Since G has bounded degree 3, it is clear that
3Kvc ≥

∑
v∈Vvc

deg(v) ≥ |E| ≥ |V |. We can see that
K ′ = 7|E| − |d2| − 3|d3| + Kvc ≤ 7|E| + Kvc ≤ 22Kvc.
We can replace |E| with 3Kvc. Thus, the first property
of an L-reduction is satisfied with α = 22. K ′ ≤ 22Kvc.

Conversely, given a walk Q with {Q} ⊂ V ′ of G′s =
f(G) of size K ′, we transform it back into a vertex cover
Vvc ⊂ V of size Kvc of graph G as follows. We look
at each variable gadget (any subgraph with one vertex
with exactly 3 adjacent vertices of distance ε in the em-
bedding as shown in Figure 2a). For every one of these
central vertices, if the vertex is included in the walk Q,
then we include it in Vvc. Observe this will give a vertex
cover for G since the walk must include either vi or vj
from the two variable gadgets on either side of an edge
gadget. Note that Kvc ≤ K ′−7|E|+ |d2|+3|d3|. Given
any walk in the graph requires all the vertices except
those that would be part of a vertex cover, we get that
f is an L-reduction with β = 1. �

4.3 Positive Result Based on a Separator

Here, we develop an FPT algorithm for the NMMS
problem based on a divide and conquer approach with
a graph separator, which is a set of vertices that, if re-
moved, disconnect the graph. Let balld(p, ε) be the ball
in Rd with center p ∈ Rd and radius ε.1

Definition 4 ((ε, c)-local property) A polygonal
curve P = 〈p1, p2, . . . , pn〉 on a plane satisfies the
(ε, c)-local property if for every pi, the circle with
center at pi and radius ε does not contain any pj with
|i− j| > c.

Definition 5 ((ε, c, u)-local property) An input
polygonal curve P = 〈p1, p2, . . . , pn〉 and planar graph
G = (V,E) satisfy the (ε, c, u)-local property if

1. The curve P satisfies the (ε, c)-local property, and

2. For every point p ∈ Rd, the ball with center at p
and radius ε contains at most u points in V .

Theorem 4 Assume that c and u are integer param-
eters. There is a O(n1+u log c) time algorithm for
the Discrete Map Matching with restricted set prob-
lem (NMMS) when the input P = 〈p1, p2, . . . , pn〉 and
G = (V,E) satisfy the (ε, c, u)-local property.

1Given we are looking at planar embeddings, if we restrict the
polygonal curve to be in R2, it is equivalent to look at the circle
with radius ε centered at p ∈ R2.

Proof. Consider the case that the input is a polygonal
curve satisfying the (ε, c)-local property, and an arbi-
trary graph. Let S = {pbn2 c+i : i ∈ [0, c− 1]}.

By brute force, iterate over all possible matchings be-
tween the c points in S, and at most u possible points
in V ∩ ball(pi, ε). The number of possible matchings
between the points in S and the points in V is at
most cu. For each such matching, we recurse on the
two separated portions of P induced by the respective
separator. This yields a divide and conquer algorithm
that has time complexity T (n) = 2cuT (n2 ). Solving
this recurrence equations yields a time complexity of
O(n(cu logn)) = O(n1+u log c). �

Corollary 1 Assume that c and ε are fixed. Then there
is a polynomial time algorithm if input P is a polygonal
curve satisfying the (ε, c)-local property, and input G is
a grid graph on the plane.

Proof. Suppose the input graph is a grid graph and ε
is fixed. Each vertex vi in the curve P can only select
at most u = π(ε+

√
2/2)2 grid points with distance ε to

match. The result follows from Theorem 4. �

5 Conclusion and Future Work

In this work we introduce variants of discrete map
matching and show that given different constraints the
problem is tractable or APX-hard. When the length
of the walk is restricted, we show the problem is decid-
able in O(|P ||V |) time. For the variant restricting the
number of vertices usable in the graph, after proving it
is APX-hard, we give an FPT algorithm based on the
structure of P and its relationship to the graph. Given
the application of route reconstruction, this is a rea-
sonable practical constraint. Our work leads to many
open questions such as FPT algorithms based on differ-
ent parameters of the input curve or graph beyond ours,
and possible approximation algorithms. Is there a good
constant factor approximation for minimum NMMS?

Another direction of research is to extend and gener-
alize discrete map matching. Our problem definitions
ignore all nodes in the graph outside the reach of the
polygonal curve. To fully realize route reconstruction
on large graphs, the problem should only ensure that at
least one node is visited within the range of each node
of the curve, but also accounts for and attempts to min-
imize paths through vertices that are not in range. This
is similar to TSP with neighborhoods, except that the
order of the neighborhoods is given. This is also similar
to Group Steiner Tree and facility location problems.

Finally, what are the problem complexities under the
continuous Fréchet distance, and are there better ap-
proximations or algorithms?
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ETH-Tight Algorithms for Geometric Network Problems
Using Geometric Separators∗

Mark de Berg†

Many well-known optimization problems on graphs,
including Independent Set, Hamiltonian Cycle,
and the Traveling Salesman Problem (tsp) are np-
hard. Hence, we do not expect to have polynomial-time
algorithms for solving these problems exactly. However,
we may still be able to develop so-called subexponential
algorithms, that is, algorithms whose running time is of
the form 2o(n), where n is the input size. This turns
out to be the case for many problems (including the
ones mentioned above) when the input graph is pla-
nar. In particular, Independent Set and Hamilto-
nian Cycle can be solved in 2O(

√
n) time on n-vertex

planar graphs. The fact that many problems on pla-
nar graphs admit algorithms with 2O(

√
n) running time

has been dubbed the square-root phenomenon. A main
tool behind this phenomenon is the famous Planar Sep-
arator Theorem, which states that for any planar graph
G = (V,E) there is a subset S ⊂ V of O(

√
n) vertices

whose removal splits G into connected components of
size at most 2n/3.

In the first part of my talk I will discuss some recent
work [1] that extends these results to certain classes of
geometric intersection graphs. The intersection graph
induced by a set V of geometric objects is the graph
G = (V,E) whose vertices correspond to the objects
in V and where E = {(o, o′) ∈ V × V : o ∩ o′ 6= ∅}. In
other words, there is an edge between two objects if and
only if they intersect each other. Disk graphs and unit-
disk graphs—here the objects in V are (unit) disks in
the plane—are well know examples of geometric inter-
section graphs. Disk graphs generalize planar graphs,
because any planar graph can be realized as the inter-
section graph of a set of disks. (Actually, any planar
graph is the intersecting graph of a set of disks with dis-
joint interiors.) Disk graphs can have arbitrarily large
cliques and so they do not have small separators. Still,
as I will explain in the talk, there is a “clique-based”
separator for disk graphs (and, more generally, for in-
tersection graphs of so-called fat objects) that makes it
possible to solve Independent Set on disk graphs in
2O(

√
n) time. When the disks are similar in size, then

∗This work was supported by the NETWORKS project,
funded by the Netherlands Organization for Scientific Research
NWO under project no. 024.002.003
†Department of Computer Science, TU Eindhoven,

M.T.d.Berg@tue.nl

using these clique-based separators even leads to algo-
rithms with 2O(

√
n) running time for many other classic

graph problems as well. This running time is ETH-
tight : unless the Exponential-Time Hypothesis fails—
the Exponential-Time Hypothesis (ETH) states that 3-
sat on n variables cannot be solved in 2o(n) time—there
can be no algorithm that solves these problems on unit-
disk graphs in 2o(

√
n) time. The algorithms as well as

the ETH-based lower bound generalize to Rd, where the

running times becomes 2O(n1−1/d).
In the second part of the talk I will focus on Eu-

clidean tsp, where we want to find a shortest tour
visiting a given set P of n points in the plane (or in
some higher-dimensional space). The celebrated Help-
Karp dynamic-programming algorithm solves tsp on
general weighted graphs in O(n22n) time, and assum-
ing ETH no subexponential algorithms is possible. For
the Euclidean tsp, however, there are algorithms with
nO(

√
n) = 2O(

√
n logn) running time. I will explain a re-

cent result [2] which improves this to 2O(
√
n), which is

ETH-tight. In Rd the running time becomes 2O(n1−1/d),
which is also ETH-tight. The algorithm is based on a
new “distance-based” separator theorem for point sets.
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Minimum Ply Covering of Points with Disks and Squares

Therese Biedl∗ Ahmad Biniaz† Anna Lubiw‡

Abstract

Following the seminal work of Erlebach and van
Leeuwen in SODA 2008, we introduce the minimum
ply covering problem. Given a set P of points and a
set S of geometric objects, both in the plane, our goal
is to find a subset S′ of S that covers all points of P
while minimizing the maximum number of objects cov-
ering any point in the plane (not only points of P ). For
objects that are unit squares and unit disks, this prob-
lem is NP-hard and cannot be approximated by a ratio
smaller than 2. We present 2-approximation algorithms
for this problem with respect to unit squares and unit
disks. Our algorithms run in polynomial time when the
optimum objective value is bounded by a constant.

Motivated by channel-assignment in wireless net-
works, we consider a variant of the problem where the
selected unit disks must be 3-colorable, i.e., colored by
three colors such that all disks of the same color are pair-
wise disjoint. We present a polynomial-time algorithm
that achieves a 2-approximate solution, i.e., a solution
that is 6-colorable.

We also study the weighted version of the problem in
dimension one, where P and S are points and weighted
intervals on a line, respectively. We present an algo-
rithm that solves this problem in O(n + m + M)-time
where n is the number of points, m is the number of
intervals, and M is the number of pairs of overlapping
intervals. This repairs a solution claimed by Nandy,
Pandit, and Roy in CCCG 2017.

1 Introduction

Motivated by interference reduction in cellular net-
works, Kuhn et al. [11] introduced Minimum Member-
ship Set Cover (MMSC) as a combinatorial optimiza-
tion problem. The input to this problem consists of a
set U of elements and a collection S of subsets of U ,
whose union contains all elements of U . The member-
ship [11] of an element u ∈ U with respect to a sub-
set S′ of S is the number of sets in S′ that contain u.
The goal is to find a subset S′ of S that covers all ele-
ments of U and that minimizes the maximum member-
ship of elements in U . The MMSC problem is closely

∗University of Waterloo, biedl@uwaterloo.ca
†University of Waterloo, ahmad.biniaz@gmail.com
‡University of Waterloo, alubiw@uwaterloo.ca

related to the well-studied Minimum Set Cover prob-
lem in which the goal is to find a minimum cardinality
subset S′ of S that covers all elements of U . By a re-
duction from the minimum set cover problem, Kuhn et
al. [11] showed that the MMSC problem is NP-complete
and cannot be approximated, in polynomial time, by a
ratio less than lnn unless NP ⊂ TIME

(
nO(log logn)

)
,

where n := |U | is the number of elements. They also
presented an O(lnn)-approximation algorithm for the
MMSC problem by formulating it as a linear program.

The geometric version of the MMSC problem and its
variants attracted considerable attention following the
seminal work of Erlebach and van Leeuwen in SODA
2008; e.g., see [1, 2, 9, 10, 12, 15]. The input of the
geometric MMSC problem consists of a set P of points
and a set S of geometric objects both in the plane. The
goal is to find a subset S′ of S such that (i) S′ covers
all points of P , i.e., the membership of every point is
at least 1, and (ii) S′ minimizes the maximum mem-
bership of points of P . Erlebach and van Leeuwen [6]
proved that the geometric MMSC problem is NP-hard
for unit disks and for axis-aligned unit squares, and does
not admit a polynomial-time approximation algorithm
with ratio smaller than 2 unless P=NP. For unit squares,
they presented a 5-approximation algorithm that takes
polynomial time if the optimal objective value (i.e., the
maximum membership) is bounded by a constant. To
the best of our knowledge, no O(1)-approximation algo-
rithm is known for unit disks.

p

S′

Figure 1: The ply of S′ is 3.

In some applications, e.g. interference reduction in
cellular networks, it is desirable to minimize the mem-
bership of every point in the plane, not only points of P .
Thus we study a version of the geometric MMSC prob-
lem in which we want to find a subset S′ of S that covers
all points of P and minimizes the maximum member-
ship of all points of the plane (not only points of P ).
We refer to this version of the problem as minimum ply
covering (MPC). The ply [5] of a set S′ is defined to be
the maximum membership of points of the plane with
respect to S′. With this definition, the MPC problem
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asks for a subset S′ with minimum ply that covers P .
In Figure 1 the membership of input points with respect
to S′ is at most 2 (see point p), while the ply of S′ is 3
(see the shaded area).

By a simple modification of the hardness proof of [6],
we show (in Appendix A) that the MPC problem is NP-
hard, for both unit squares and unit disks, and does
not admit polynomial-time approximation algorithms
with ratio smaller than 2 unless P=NP. As our main
result, we present 2-approximation algorithms for the
MPC problem on unit squares and unit disks. Both al-
gorithms run in polynomial time if the optimal objective
value (i.e., the minimum ply) is bounded by a constant.

Motivated by channel-assignment in wireless net-
works, where the use of 3 channels is a standard prac-
tice, we study a variant of the MPC problem on unit
disks where we want the solution to be 3-colorable, i.e.,
to be partitioned into three subsets such that the disks
in each subset are pairwise disjoint (each subset has ply
1). See [3] for a justification of the importance of 3 chan-
nels. We present a polynomial-time 2-approximation
algorithm for this version as well.

We also revisit the weighted version of the geomet-
ric MMSC problem in dimension one, where P and
S are points and weighted intervals on the real line,
respectively. This problem was previously claimed
solved by Nandy, Pandit, and Roy [13], who referred
to the problem as “minimum depth covering”. We
point out a mistake in their algorithm. We present an
O(n+m+M)-time algorithm that solves this problem
optimally, where n is the number of points, m is the
number of intervals, and M is the number of pairs of
overlapping intervals. Our algorithm can be adapted in
a simple way to solve the MPC problem on weighted
intervals within the same time bound.

2 Minimum Ply Covering with Unit Squares

In this section we study the MPC problem on unit
squares. We are given a set P of n points and a set S of
m axis-aligned unit squares, both in the plane. We as-
sume that unit squares are closed (contain their bound-
aries) and have side length 1. Our goal is to find a subset
S′ of S with minimum ply that covers all points of P .
This problem cannot be approximated in polynomial-
time by a ratio smaller than 2; see Appendix A. We
present a 2-approximation algorithm that takes polyno-
mial time if the minimum ply is bounded by a constant.
In the rest of this section we assume that the minimum
ply is bounded by `.

We partition the plane into horizontal slabs of height
2; this is a standard initial step of many geometric cov-
ering algorithms. We may assume that no point of P or
edge of a square in S lies on the boundary of any slab.
Let H1, H2, . . . denote the slabs from bottom to top.

For j ∈ {1, 2, . . . }, let Pj be the points of P in Hj and
let Sj be the set of squares that intersect Hj . Note that
if there exists a solution S∗ for the MPC problem then
S∗ ∩ Sj covers all points in Pj and has ply at most `,
and thus S∗ ∩ Sj is a solution for the MPC problem on
input instance Pj and Sj that has ply at most `. Our
approach is therefore to solve MPC for this input in-
stance, i.e., for slab Hj . If this fails for some j, then the
MPC problem on P and S has no solution with ply `.
If this succeeds for all j, then we set S′ =

⋃
j S
′
j , where

S′j is the solution for slab Hj . Certainly all points of P
are covered. Any square in S′ belongs to solutions of
at most two consecutive slabs Hj and Hj+1. Thus, any
point in the plane is covered by squares of at most two
solutions S′j and S′j+1, and hence is covered by at most
2` squares of S′. Therefore, the ply of S′ is at most 2`.

In the rest of this section we show how to solve the
MPC problem for every slab Hj . To simplify our de-
scription we assume that the left and right sides of all
squares in Sj have distinct x-coordinates and no point
lies on the left or right side of a square; we will describe
later how to handle coinciding x-coordinates. We par-
tition the plane into vertical strips by lines through left
and right sides of all squares in Sj . Let t0, t1, . . . , tk de-
note these vertical strips, ordered from left to right. We
consider every strip as an open set, i.e., the vertical line
between ti−1 and ti belongs to neither of them. The
leftmost strip t0 is unbounded to the left and the right-
most strip tk is unbounded to the right. Since |Sj |6m,
we have k62m. The following lemma is important for
our strategy to solve the problem.

Lemma 1 Let S∗j ⊆Sj be any solution, with ply at most
`, for the MPC problem. The number of squares in S∗j
that intersect any strip ti is at most 3`.

Hj

ti

a

b

c

l

2

Proof. Let l be a vertical line in the
interior of ti. Let a and b be the inter-
section points of l with the upper and
lower boundaries of the slab Hj , and let
c be the midpoint of the line segment
ab; see the figure to the right. Notice
that |ac| = |bc| = 1. Because of this,
and since no square has its left or right
side in the interior of ti, it follows that every square in
S∗j that intersects ti contains at least one of the three
points a, b and c. Therefore, if more than 3` squares
of S∗j intersect ti, then by the pigeonhole principle one
of the three points lies in more than ` squares of S∗j , a
contradiction. �

Based on Lemma 1, we construct a directed acyclic
graph G such that any solution S∗j corresponds to a path
from the source vertex to the sink vertex in G. Then we
will find a path in G which will correspond to a solution
with ply at most `. Now we describe the construction of
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G. For every ti, with i ∈ {0, . . . , k}, we define a set Vi of
vertices as follows: For every subset Q ⊆ Sj , containing
at most 3` squares that intersect ti, we add a vertex
vi(Q) to Vi if the following conditions hold:

(i) the squares in Q cover all points in ti ∩ Pj ,

(ii) the ply of Q is at most ` (i.e. every point in R2 is
in at most ` squares of Q).

Since no square intersects t0 and tk, we have V0 =
{v0(∅)} and Vk = {vk(∅)}. The vertices v0(∅) and vk(∅)
are the source and sink vertices of G. The vertex set of
G is the union of the sets Vi. The edge set of G consists
of directed edges from the vertices in Vi to the vertices
in Vi+1 defined as follows. For every i ∈ {0, . . . , k − 1}
and for every vertex vi(Q) ∈ Vi we add three directed
edges from vi(Q) to the following three vertices in Vi+1

(provided they exist):

1. the vertex vi+1(Q′) with Q′ = Q,

2. the vertex vi+1(Q′) with Q′ = Q \ {q}, where q is
the square whose right side is on the left bound-
ary of ti+1 (by our assumptions this is unique); see
Figure 2(a),

3. the vertex vi+1(Q′) with Q′ = Q ∪ {q}, where q
is the square whose left side is on the left bound-
ary of ti+1 (by our assumptions this is unique); see
Figure 2(b).

This the end of our construction of G. Observe that
in all cases sets Q and Q′ differ by at most one square,
and Q ⊆ Q′ and/or Q ⊇ Q′.

Hj

ti ti+1

s1

q

s2

(a)

Hj

ti ti+1

s1

s2

s3

q

(b)

Figure 2: Construction of G. The representation of
an edge from vi(Q) to vi+1(Q′) in two cases where in
(a) Q = {s1, s2, q} and Q′ = {s1, s2}, and in (b) Q =
{s1, s2, s3} and Q′ = {s1, s2, s3, q}.

Consider any path δ from v0(∅) to vk(∅) in G. Let S′j
be the union of all sets Q corresponding to the vertices
of δ. Our algorithm outputs S′j as a solution of the MPC
problem on Pj and Sj . The following claim proves the
correctness of our algorithm.

Claim 1 If the MPC problem on Pj and Sj has a solu-
tion with ply at most `, then there exists a path δ from
v0(∅) to vk(∅) in G. If there exist such a path δ, then
the set S′j is a solution with ply at most `.

Proof. For the first direction, consider a solution S∗j
with ply at most `. For 0 6 i 6 k, let Q∗i be the squares
of S∗j that intersect ti. Observe that any point of Pj

that lies in ti is covered by a square that intersects ti.
Thus Q∗i covers all points in ti. Since the ply of S∗j is at
most `, the set Q∗i has at most 3` squares by Lemma 1.
Therefore, Q∗i satisfies conditions (i) and (ii) and thus
vi(Q

∗
i ) is a vertex ofG. Since (by our initial assumption)

no two squares begin or end at the same x-coordinate,
Q∗i and Q∗i+1 differ by at most one square, and thus
there is an edge from vi(Q

∗
i ) to vi+1(Q∗i+1) in G. Since

this holds for every i, the solution S∗j can be mapped
to the path v0(∅), v1(Q∗1), . . . , vk−1(Q∗k−1), vk(∅) in G.
Therefore, δ exists.

For the other direction, observe that the edges of G
only connect the vertices of adjacent strips. Thus, δ
contains exactly one vertex, say vi(Qi), for each strip ti,
with 0 6 i 6 k. With this notation, we have that S′j =⋃

iQi. By condition (i) the set Qi covers all points of
Pj that lie in ti. By our assumption of no coinciding x-
coordinates, every point of Pj lies in some (open) strip,
and thus S′j covers all points of Pj . Now we verify the

ply of S′j . To that end, fix an arbitrary point p ∈ R2

and notice that p can be in some strip ti or on the
boundary between two strips ti and ti+1. If p is in ti,
then by condition (ii) it has membership at most ` in
Qi. Therefore it also has membership at most ` in S′j
because by our definition of edges no square in S′j \Qi

can intersect ti. Assume now that p lies on the boundary
between ti and ti+1. Any square of S′j that contains p
must belong to Qi or Qi+1 (or both). Furthermore, by
our construction of G, we have Qi ⊆ Qi+1 or Qi ⊇ Qi+1.
Since p has membership at most ` in both Qi and Qi+1

(by condition (ii)), the membership of p in S′j is at most
`. Therefore, the ply of S′j is at most `. �
Remark 1. Our algorithm does not use the fact that
elements of S are squares, but only uses that they have
unit height. Therefore the algorithm extends to axis-
aligned unit-height rectangles.

Remark 2. The case
where sides of squares
and/or input points have
coinciding x-coordinates
can be handled by a sym-
bolic perturbation. At
any x-coordinate X we order first all the left sides of
squares at X, breaking ties by their y-ordering; then
the input points at X; and finally, all the right sides of
squares at X, breaking ties by their y-ordering; see the
figure to the right for illustration.

For the running time to solve the problem in Hj , set
nj = |Pj | and mj = |Sj |. Recall that every vertex of
G corresponds to a set Q of at most 3` squares by our
construction, and thus there are O(m3`

j ) such sets Q.
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This and the fact that each set Q could be used repeat-
edly among O(mj) strips, imply that G has O(m3`+1

j )
vertices. Since every vertex has at most three outgoing
edges, the number of edges of G is also O(m3`+1

j ). By
an initial sorting of the points of Pj and the squares of
Sj with respect to the y-axis, conditions (i) and (ii) can
be verified in O(`+ nj) time for each vertex. A path δ
can be found in time linear in the size of G. Thus, the
total running time to solve the MPC problem in slab
Hj is O((`+ nj) ·m3`+1

j ).

Theorem 2 There exists a polynomial-time algorithm
that solves the problem of minimum ply covering of
points in a slab of height two with unit-height rectangles,
provided that the optimal objective value is constant.

As discussed at the beginning of this section, the
union of the solutions of all slabs is a 2-approximate
solution for the original problem of covering n points in
the plane with m unit squares. Since every point be-
longs to exactly one slab and every square belongs to
at most two slabs, this 2-approximate solution can be
computed in

∑
(`+ nj) ·m3`+1

j = O((`+n) · (2m)3`+1)
time, where the sum runs over all slabs. The following
theorem summarizes our result.

Theorem 3 There exists a polynomial-time 2-
approximation algorithm that solves the problem of
minimum ply covering of points with unit-height rect-
angles, provided that the optimal objective value is
constant.

3 Minimum Ply Covering with Unit Disks

In this section we study the MPC problem on unit disks,
i.e., disks with diameter 1. Given a set P of n points
and a set S of m unit disks, both in the plane, the
goal is to find a subset S′ of S, with minimum ply,
that covers all points of P . This problem cannot be ap-
proximated in polynomial-time by a ratio better than
2; see Appendix A. We present a 2-approximation algo-
rithm that takes polynomial time if the minimum ply is
bounded by a constant. In the rest of this section we
assume that the minimum ply is bounded by `. Our al-
gorithm is a modification of that of unit squares. After
a suitable rotation of the plane we assume that in the
set consisting of points of P together with the leftmost
and rightmost points of disks in S, no two points have
the same x-coordinate.

As in the previous section we partition the plane into
horizontal slabs of height 2. Then we solve the MPC
problem in every slab Hj by constructing a directed
acyclic graph G. Let Pj be the set of points in Hj , and
let Sj be the set of all disks that intersect Hj . We par-
tition the plane into vertical strips t0, . . . , tk by vertical
lines through the leftmost and rightmost points of disks

in Sj . The only major change to the algorithm of the
previous section is the definition of vertices of G, be-
cause Lemma 1 does not hold for unit disks. For unit
disks we have the following helper lemma.

Lemma 4 Let S∗j ⊆ Sj be any solution, with ply at
most `, for the MPC problem. Then for any strip ti at
most 8` disks in S∗j intersect ti.

y

(−1
2 , −3

2

)

(
1
2 ,

3
2

)
R

Hj 2
x

Proof. After a suitable trans-
lation assume that Hj has y-
range [−1,+1], and assume
that the y-axis lies in ti. Any
disk s ∈ Sj that intersects
ti must also intersect the y-
axis because boundaries of ver-
tical strips are defined by verti-
cal lines through leftmost and
rightmost points of disks in Sj .
It follows that the center of s must lie within a rect-
angle R with corners (± 1

2 ,± 3
2 ); see the figure to the

right. The rectangle R can be covered by eight unit
disks {D1, . . . , D8} that are centered at eight points
{p1, . . . , p8} = {(± 1

4 ,± 3
8 ), (± 1

4 ,± 9
8 )} respectively—the

red points in the figure. Thus, the center of s lies in a
disk Di, for some i ∈ {1, . . . , 8}, and hence at distance
at most 1

2 from pi. This implies that pi ∈ s. Thus,
each disk in Sj that intersects ti contains at least one
of the points {p1, . . . , p8}. Since S∗j has ply at most `,
each point pi lies in at most ` disks of S∗j . Therefore, at
most 8` disks of S∗j intersect ti. �

For every strip ti we introduce a set Vi that contains
vertices vi(Q), for all sets Q of at most 8` disks that (i)
intersect ti, (ii) cover all points of Pj in ti, and (iii) have
ply at most `. Then we connect the vertices of Vi to the
vertices of Vi+1 in a similar fashion as for unit squares.

Using Lemma 4, we can claim (similar to that of unit
squares) that any path from the source to the sink in
G corresponds to a solution with ply at most ` for the
MPC problem with input Pj and Sj . Therefore, we can
compute in O((`+nj) ·m8`+1

j ) time a solution with ply

at most ` for every slab, and in O((` + n) · (2m)8`+1)
time a 2-approximate solution for the original problem.
The following theorem summarizes our result.

Theorem 5 There exists a polynomial-time 2-
approximation algorithm that solves the problem of
minimum ply covering of points with unit disks,
provided that the optimal objective value is constant.

3.1 3-Colorable Unit Disk Covering

Now we study the 3-colorable unit disk covering prob-
lem. Given a set P of n points and a set S of m unit
disks, both in the plane, the goal is to find a subset S′

of S that covers all points of P and such that S′ can be
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partitioned into {S′1, S′2, S′3} where the disks in each S′a,
a ∈ {1, 2, 3}, are pairwise disjoint, i.e., the ply of each
S′a is 1. Although at first glance this problem seems to
be a special case of the MPC problem with ply ` = 3,
they are different because there are in-
put instances that have a solution with
ply at most 3 but do not have any 3-
colorable solution; see for example the
input instance in the figure to the right.
In Appendix B we present a polynomial-time algorithm
that achieves a 2-approximate solution, i.e., a solution
that is 6-colorable. This algorithm is a modified version
of the algorithm of Section 3.

Theorem 6 There exists a polynomial-time 2-
approximation algorithm for the 3-colorable covering
problem of points in the plane with unit disks.

4 Minimum Membership and Minimum Ply Cover-
ings with Weighted Intervals

Nandy, Pandit, and Roy [13] studied the geometric
MMSC problem in dimension one, where P is a set of n
points and S is a set of m closed intervals, both on the
real line. By formulating this problem as a maximum
independent set problem, they solved it in O(n + m)
time, provided that the points of P and the endpoints
of intervals are given in sorted order.

Nandy et al. [13] also studied the weighted version
of the geometric MMSC problem in dimension one. In
this version every interval has a weight, and the mem-
bership of a point p is defined as the sum of the weights
of the intervals in S′ that cover p. They claimed an
O(nm log n)-time algorithm that solves this version of
the problem. However, as we point out in Appendix
C, their algorithm does not always find the optimal so-
lution. We present here an algorithm that solves the
weighted version of the MMSC problem in dimension
one in O(n+m+M) time, where M 6

(
m
2

)
is the num-

ber of pairs of overlapping intervals, i.e., the number of
edges of the interval graph formed by the intervals in
S. As we will see later in Remark 3, our algorithm can
easily be modified to also solve the MPC problem on
weighted intervals in the same time.

Our algorithm—for the MMSC problem on weighted
intervals—creates a directed acyclic graph (DAG) such
that all optimal solutions correspond to directed paths
from the source to the sink. More precisely, we con-
struct a vertex-weighted DAG (because the intervals are
weighted), and then search for a bottleneck path from
the source to the sink; a bottleneck path is a path that
minimizes the maximum weight along the path. Such a
DAG could be obtained directly from Section 2, but we
introduce a new construction with better running time.

Let P be a set of n points and let S = {s1, . . . , sm} be
a set of m intervals on a line, where each si has weight

w(si). Assume that the points of P and the endpoints
of intervals in S are given in sorted order from left to
right. In the remainder of this section we show how
to transform our problem, in O(n + m + M) time, to
an instance of the bottleneck path problem in a DAG
of size O(m + M). The bottleneck path problem in a
DAG can be solved in linear time. For simplicity of
our description we assume points of P and endpoints of
intervals of S have distinct x-coordinates; this can be
achieved by a symbolic perturbation similar to that of
Remark 2 in Section 2.

Draw vertical lines through the endpoints of intervals
in S to partition the plane into vertical strips t0, . . . , tk
(ordered from left to right). Notice that k 6 2m, the
leftmost strip t0 is unbounded to the left, and the right-
most strip tk is unbounded to the right. Also t0 and
tk have no points in them. See Figure 3. For every
i ∈ {1, . . . , k}, all points of P in strip ti belong to the
same set of intervals. Thus, it suffices to keep only one of
the points in each strip ti and discard the other points.
This can be done in O(n + m) time. Thus, we assume
that n 6 2m−1. We say that an interval s is dominated
by an interval r if r starts before s and ends after s. The
following lemma has been proved in [13].

Lemma 7 There exists an optimal solution in which
no interval is dominated by some other interval, and no
vertical line intersects more than two intervals.

Based on this lemma, it suffices to search for an opti-
mal solution S∗ ⊆ S such that the interior of every strip
ti intersects at most two intervals of S∗; see Figure 3.
We therefore endow our DAG, denoted by G, with the
following three types of vertices, corresponding to the
intersection of strips by 0, 1, or 2 intervals, respectively.

• For every strip ti that contains no points of P , create
a vertex v0(ti) with weight 0. Choosing v0(ti) in our
path will correspond to having 0 intervals cover the
interior of ti. Vertices v0(t0) and v0(tk) will be the
source and sink vertices of our graph.

• For every interval q and for every strip ti that is
intersected by q, create a vertex v1(q, ti). Choos-
ing v1(q, ti) in our path will correspond to choos-
ing interval q and choosing no other interval that
intersects ti. If some point of P is in ti, then set
w(v1(q, ti)) = w(q), otherwise set w(v1(q, ti)) = 0.

• For every two overlapping intervals q and r, with
q starting before r starts and also ending before r
ends, create a vertex v2(q, r). Choosing v2(q, r) in
our path will correspond to choosing intervals q and
r. If there is a point of P in the intersection of q and
r, then set w(v2(q, r)) = w(q) + w(r), otherwise set
w(v2(q, r)) = 0.
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r5

t0 t1 t2

r1

r2

r3

r4

r6
r7

v0(t0) v1(r2, t2) v2(r2, r3) v1(r3, t7)

t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

v1(r3, t6) v2(r3, r5) v1(r5, t10) v0(t11) v1(r7, t12) v0(t14)v1(r7, t13)v0(t1)

Figure 3: Correspondence between an optimal solution ({r2, r3, r5, r7}) and a bottleneck path from v0(t0) to v0(t14).

We define edges as follows. Consider each i < k and
the strip ti. The right boundary of ti exists since some
interval has an endpoint there. Assume first that this
was a left endpoint, so there exists an interval r whose
left endpoint lies on the right boundary of ti (and r
is unique by our assumption). Then we add the edges
listed in Figure 4(a), adding only those where the ver-
tices exist. If instead some interval s has its right end-
point at the right boundary of ti, then we add the fol-
lowing edges listed in Figure 4(b) (again, provided the
vertices listed there exist). Note that every vertex has
at most two outgoing edges.

v1(q, ti) → v1(q, ti+1)

ti ti+1

q

r

v0(ti) → v0(ti+1)

v1(q, ti) → v2(q, r)

v0(ti) → v1(r, ti+1)

(a)

v1(q, ti) → v1(q, ti+1)

ti ti+1

q

s

v0(ti) → v0(ti+1)

v2(s, q) → v1(q, ti+1)

v1(s, ti) → v0(ti+1)

(b)

Figure 4: The edges of G.

The construction of G implies the following claim.

Claim 2 The solutions that satisfy the constraints of
Lemma 7 are in one-to-one correspondence with the
paths from v0(t0) to v0(tk) in G. In particular, the bot-
tleneck path in G corresponds to an optimal solution of
the minimum membership covering problem for P and
S. See Figure 3 for an illustration.

Now we analyze the running time of our algorithm.
Since G is a DAG, a bottleneck path in G can be com-
puted in linear time on the size of G.

We claim that the size of G is O(m + M), where M
is number of edges in the interval graph defined by S.
Since every vertex has at most two outgoing edges, it
suffices to show that G has O(m + M) vertices. There
are at most 2m + 1 vertices of type v0 (one per strip).

Every vertex of type v2 is uniquely defined by two over-
lapping intervals, so there are at most M of them. To
bound the number of vertices of type v1, observe that
such a vertex is defined by an interval r and a strip ti
with 1 6 i < k. Let r′ be the interval that defines the
left boundary of ti; it might be the case that r′ = r. The
number of vertices for which r′ = r is at most 2m−1 be-
cause this happens (by the general position assumption)
only once per strip. Assume that r′ 6= r. Since r and
r′ intersect (at the left boundary of ti), it follows that
(r, r′) is an edge in the interval graph. Any such edge
can be charged at most 4 times, once at each of the left
and the right boundaries of r and r′. Thus, the number
of vertices for which r′ 6= r is at most 4M . Hence G has
size O(m + M) and the bottleneck path can be found
within the same time.

The linked-list representation of G can be obtained in
O(m+M) time by going through the strips from left to
right. This, together with the initial pruning of points
of P in O(n + m) time, implies that the total running
time of our algorithm is O(n+m+M).

Remark 3. We can solve the MPC problem on n points
and m weighted intervals in O(n + m + M) time; this
can be done by adjusting the weights of the vertices of
G and then finding a bottleneck path in the resulting
graph. We set the weight of every vertex v1(q, ti) to
w(q) regardless of whether ti contains a point of P or
not, and we set the weight of every vertex v2(q, r) to
w(q) + w(r) regardless of whether the intersection of q
and r contains a point of P or not.

Theorem 8 Both minimum membership and minimum
ply covering problems of n points with m weighted inter-
vals on the real line can be solved in O(n+m+M) time
whereM is the number of pairs of overlapping intervals,
provided that the input points and the endpoints of the
intervals are given in sorted order.
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us his PhD thesis. Therese Biedl and Anna Lubiw are
supported by NSERC. Ahmad Biniaz is supported by
NSERC Postdoctoral Fellowship.

231



CCCG 2019, Edmonton, Canada, August 8–10, 2019

References

[1] M. Basappa, R. Acharyya, and G. K. Das. Unit disk
cover problem in 2D. Journal of Discrete Algorithms,
33:193–201, 2015.

[2] A. Biniaz, P. Liu, A. Maheshwari, and M. H. M. Smid.
Approximation algorithms for the unit disk cover prob-
lem in 2D and 3D. Computational Geometry: Theory
and Applications, 60:8–18, 2017.

[3] P. Brass, F. Hurtado, B. J. Lafreniere, and A. Lubiw.
A lower bound on the area of a 3-coloured disk pack-
ing. International Journal of Computational Geometry
& Applications, 20(3):341–360, 2010.

[4] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit
disk graphs. Discrete Mathematics, 86(1-3):165–177,
1990.

[5] D. Eppstein and M. T. Goodrich. Studying (non-
planar) road networks through an algorithmic lens. In
Proceedings of the 16th ACM SIGSPATIAL Interna-
tional Symposium on Advances in Geographic Informa-
tion Systems, ACM-GIS, 2008.

[6] T. Erlebach and E. J. van Leeuwen. Approximating
geometric coverage problems. In Proceedings of the
19th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1267–1276, 2008.
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A NP-hardness

In this section we study the hardness of the MPC problem on
unit squares and unit disks. Erlebach and van Leeuwen [6]
proved that the MMSC problem, on both unit disks and unit
squares, is NP-hard and cannot be approximated by a ratio
smaller than 2. More precisely, they proved it is NP-hard to
decide whether or not a solution with membership 1 exists.
They use a reduction from the NP-complete problem of de-
ciding whether or not a planar graph G is 3-colorable. Their
reduction uses a rectilinear embedding of G in the plane;
see [15, Chapter 10] for details. By adjusting the gadgets in
their reduction we can show that the MPC problem on unit
squares and unit disks, with objective ply 1, is also NP-hard
and cannot be approximated by a ratio smaller than 2. We
sketch the reduction using our adjusted gadgets, and hence
prove the following theorem.

Theorem 9 It is NP-hard to decide whether or not there
exists a solution with ply one, for the minimum ply cover
problem on unit squares and on unit disks.

Since ply—of a set of squares or disks—is an integer, this
theorem implies that there is no polynomial-time approxi-
mation algorithm, with ratio smaller than 2, for the MPC
problem on unit squares and on unit disks, unless P=NP.

In the rest of this section we prove Theorem 9. Similar
to that of Erlebach and van Leeuwen [6], our proof uses
a reduction from the problem of 3-coloring a planar graph
G. We sketch this reduction for the MPC problem on unit
sqaures; the reduction for unit disks is analogous. We need
a few gadgets, their construction is described below.

Figure 5(a) shows the vertex gadget for every vertex v in
G. To cover the point pv, exactly one of the three squares
containing pv must be in the solution, and this corresponds
to assigning one of the three colors to v. Depending on this
choice, either 0, 1, or 2 points among the triple of points on
the right will also be covered. Figure 5(b) shows a trans-
port gadget, which transports a chosen color along a chain
of squares from left to right. The reader may verify that
this representation can be modified to bend around corners
to represent vertical transportations. Figure 5(c) shows a
gadget that duplicates a chosen color. We need one extra
gadget to make sure that two adjacent vertices u and v in G
will be assigned different colors. Figure 5(d) shows this gad-
get, assuming the color of u arrives from right and the color
of v arrives from left. If u and v have the same color, then
to cover a, b and c, we require overlapping squares, which
contradicts the ply being 1. If u and v have different colors,
then a, b, and c can be covered by three of the six dashed
disks. Therefore, our instance of the MPC problem has a
solution with ply 1 if and only if G is 3-colorable. Thus the
hardness of the 3-colorability problem implies the hardness
of the MPC problem. A similar construction of gadgets for
the NP-harness of the MPC problem on unit disks is shown
in Figure 6; the points b and c play the same role as in Fig-
ure 5(d), while a1, a2, a3 play the role of a. Therefore, the
above reduction proves Theorem 9.
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Figure 5: The NP-hardness of the MPC problem on unit squares: (a) the vertex gadget, (b) the transport gadget,
(c) the duplicate gadget, and (d) the color checking gadget.

B 3-Colorable Unit Disk Covering

In this section we present a polynomial-time 2-
approximation algorithm for the 3-colorable unit disk
cover problem, thereby proving Theorem 6.

Before presenting our algorithm we point out a related
problem that is the problem of coloring a unit disk graph
(the intersection graph of a set S of unit disks in the plane)
with k colors. This problem NP-hard for any k > 3 [4].
There are 3-approximation algorithms for this problem (see
e.g. [8, 14]), and a 2-approximation algorithm when the unit
disk graph has constant clique number (see [7, Chapter 4,
Proposition 4.8]). We note that this problem is also different
from our 3-colorable unit disk cover problem; for example if
all the disks in S have a common intersection and we place
our point set P in this intersection, then there exists a 1-
colorable solution for our problem, while the unit disk graph
is not (|S| − 1)-colorable. The NP-hardness of 3-coloring a
unit disk graph [4] immediately implies the NP-hardness of
the 3-colorable unit disk cover problem: every disk in the
reduction of [4, Theorem 2.1] covers a unique region of the
plane, so by placing points of P in those regions we can
enforce the solution S′ to contain all disks of S.

Now we present our algorithm, which is a modified version
of the algorithm of Section 3. Again we partition the plane
into horizontal slabs of height 2. Then for every slab Hj

we test the existence of a 3-colorable covering for points Pj

using disks in Sj . If this test fails for some j, then there is no
3-colorable solution for P and S. If this test is successful for
all j, then we assign colors 1, 2, 3 to solutions of H1, H3, . . .
and assign colors 4, 5, 6 to solutions of H2, H4, . . . . The
union of these solutions will be a 6-colorable solution for the

original problem.

After a suitable rotation we assume that in the set con-
sisting of points of P together with the leftmost and right-
most points of disks in S, no two points have the same x-
coordinate. To solve the problem for every Hj , as in Sec-
tion 3, we partition the plane into vertical strips t0, . . . , tk.
Then we construct a directed acyclic graph G such that any
path from the source to the sink in G corresponds to a 3-
colorable solution for Hj . Consider a 3-colorable solution
S∗ = S∗1 ∪ S∗2 ∪ S∗3 . The disks in each S∗a (for a = 1, 2, 3)
are pairwise disjoint, and thus each S∗a has ply 1. Therefore,
by Lemma 4 at most 8 disks in each S∗a intersect each strip
ti. Based on this, for every ti we introduce a set Vi contain-
ing vertices vi(Q1, Q2, Q3) for all sets Q1, Q2, and Q3 that
satisfy all following conditions:

(i) each of Q1, Q2, and Q3 contains at most 8 disks that
intersect ti,

(ii) the disks in each of Q1, Q2, and Q3 are pairwise dis-
joint, and

(iii) Q1 ∪Q2 ∪Q3 covers all points of Pj that lie in ti.

We connect a vertex vi(Q1, Q2, Q3) to a vertex
vi+1(Q′1, Q

′
2, Q

′
3) if one of the following conditions hold:

• for every index a in {1, 2, 3} we have Q′a = Qa, or

• for exactly one index a in {1, 2, 3} we have Q′a = Qa \
{d}, where d is the disk whose rightmost point is on
the left boundary of ti+1, and for every other index b
we have Q′b = Qb, or

• for exactly one index a in {1, 2, 3} we have Q′a = Qa ∪
{d}, where d is the disk whose leftmost point is on the
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Figure 6: Gadgets for the NP-hardness proof of the MPC problem on unit disks.

left boundary of ti+1, and for every other index b we
have Q′b = Qb.

We briefly justify that paths from the source to the sink
in G correspond to 3-colorable solutions. Fix a path δ. For
a = 1, 2, 3, let S′a be the union of the disks in all sets Qa

associated with vertices in δ. Condition (iii) ensures that
S′1 ∪ S′2 ∪ S′3 covers all points of Pj . Condition (ii) ensures
that the disks in each of S′1, S′2, and S′3 are pairwise disjoint.
Thus, S′1 ∪ S′2 ∪ S′3 is a 3-colorable solution. It remains to
verify the existence of such a path δ in G. Consider a 3-
colorable solution S∗ = S∗1 ∪ S∗2 ∪ S∗3 . For any a ∈ {1, 2, 3}
and i ∈ {0, . . . , k} let Qi

a be the disks in S∗a that intersect ti.
As discussed above, we have |Qi

a| 6 8. Thus, vi(Q
i
1, Q

i
2, Q

i
3)

is a vertex of G. By an argument similar to that of Sec-
tion 2, one can verify that S∗ can be mapped to a path in
G. Therefore, δ exists.

The running time analysis is similar to that of Section 3,
except here we consider 24 disks in every vertical strip (8
disks for every set Qi). Therefore the total running time of
our 2-approximation algorithm is O(nm25).

C Nandy, Pandit, and Roy’s Algorithm

We briefly review the algorithm of Nandy et al. [13], which
uses dynamic programming and proceeds as follows. Let
p1, p2, . . . , pn be the points of P from left to right, and let
s1, s2, . . . , sm be the intervals in S sorted from left to right
according to their right endpoints. (In the original presenta-
tion of this algorithm in [13], the points of P are ordered from

right to left and the intervals in S are also sorted from right
to left according to their left endpoints.) Let w(si) denote
the weight of si. For every k ∈ {1, . . . ,m} let Qk = (Pk, Sk)
be an instance of the problem, where Sk = {s1, . . . , sk} and
Pk is the set of points of P that lie on or to the left of the
right endpoint of sk. Note that Qm is the original prob-
lem. Now solve Q1, . . . , Qm in order, i.e., process interval sk
to find a solution S′k of Qk, using previously computed so-
lutions S′1, . . . , S

′
k−1 for subproblems Q1, . . . , Qk−1. Nandy

et al. claim that the following approach will find S′k:

(i) If Pk = Pk−1 then set S′k = S′k−1.

(ii) If Pk 6= Pk−1 and some points of Pk \ Pk−1 are not
covered by sk, then there is no solution for Qk, i.e., S′k
does not exist.

(iii) If Pk 6= Pk−1 and every point of Pk\Pk−1 is covered by
sk, then find the index i, with i ∈ {1, . . . , k − 1}, such
that S′i∪{sk} covers Pk and the membership of points
of Pk with respect to S′i ∪ {sk} is minimum. Then set
S′k = S′i ∪ {sk}.

There are two reasons why this algorithm is not correct.
First, item (i) does not consider sk, while in some cases we
may need to include it in the solution, for example if sk has
the minimum weight and covers all points in Pk. This may
perhaps be fixable with a minor change of formula, but there
is major issue in item (iii) which somehow breaks the hope
for any straightforward dynamic programming approach for
this problem.

Figure 7 shows an example with five points
p1, p2, p3, p4, p5, ordered from left to right, and four
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s3, 1
s4, 2

s2, 2s1, 2

p1 p2 p3 p4 p5

Figure 7: An instance for which the previous algorithm
does not compute an optimal solution. “s1, 2” indicates
that interval s1 has weight 2.

weighted intervals s1, s2, s3, s4, ordered according to their
right endpoints. The optimal solutions for Q1, Q2, Q3 are
S′1 = {s1}, S′2 = {s1, s2}, S′3 = {s1, s2}, with maximum
memberships 2, 2, 2. Notice that S′3 should not contain s3
because otherwise it should also contain s1 to cover p1, and
this will make the membership of p2 be w(s1) + w(s3) = 3.
The recursive computation in item (iii) considers as solution
for Q4 the candidates S′1 ∪ {s4}, S′2 ∪ {s4}, S′3 ∪ {s4}. The
first one is not valid (it does not cover p3) and the other
two have maximum membership w(s2) + w(s4) = 4 (this
membership is obtained by p4 which is covered by s2 and
s4). However, the set S′4 = {s1, s3, s4} is a solution for Q4

with maximum membership 3.
We are skeptical about using a straightforward dynamic

programming for solving the problem, because while S′4 is
the optimum solution for Q4, its induced solutions for Q2

and Q3 contain the superfluous interval s3. To use the dy-
namic programming approach, a more structured recursion
is needed, as described in Section 4.
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Distributed Unit Clustering

Kian Mirjalali∗ Seyed Ali Tabatabaee∗ Hamid Zarrabi-Zadeh∗

Abstract

Given a set of points in the plane, the unit cluster-
ing problem asks for finding a minimum-size set of unit
disks that cover the whole input set. We study the unit
clustering problem in a distributed setting, where input
data is partitioned among several machines. We present
a (3 + ε)-approximation algorithm for the problem in
the Euclidean plane, and a (4 + ε)-approximation algo-
rithm for the problem under general Lp metric (p ≥ 1).
We also study the capacitated version of the problem,
where each cluster has a limited capacity for covering
the points. We present a distributed algorithm for the
capacitated version of the problem that achieves an ap-
proximation factor of 4+ε in the L2 plane, and a factor
of 5 + ε in general Lp metric. We also provide some
complementary lower bounds.

1 Introduction

The exponential growth of data in real-world applica-
tions and the incapability of individual computers to
store and process the whole data have motivated the
research in the area of distributed algorithms. In this
paper, we study the distributed version of the following
unit clustering problem. Given a set of n points in the
plane, partition the points into clusters, each enclosable
by a unit disk, so as to minimize the number of clus-
ters used. An instance of the problem is illustrated in
Figure 1. The problem has applications in various areas
including image processing [14, 19] and wireless sensor
networks [18, 20].

The unit clustering problem is known to be NP-hard
in the Euclidean plane [11]. The first polynomial-time
approximation scheme (PTAS) for the problem was
given by Hochbaum and Maass [14]. The runtime of
the PTAS was later improved by Feder and Greene to

nO(1/ϵd−1) in any fixed d dimensions [10]. A PTAS for
the capacitated version of the problem is recently given
in [12]. Online variants of the problem are also studied
in the literature [6, 9].

For massive datasets, where no single machine can
store the whole data, distributed models such as
MapReduce have been introduced and extensively used
over the past decade [2, 4, 8, 13, 16]. In the distributed

∗Department of Computer Engineering, Sharif University of
Technology. Email: {mirjalali,satabatabaee}@ce.sharif.edu,
zarrabi@sharif.edu.

Figure 1: An instance of unit clustering.

unit clustering problem, the input set S is partitioned
among a set of machines, where each machine i has a
subset Si of the input, and the goal is to compute col-
laboratively a unit clustering of the whole set S =

∪
i Si.

The notion of composable coresets introduced in [15]
has been proved to be useful in designing distributed
algorithms that take O(1) rounds of MapReduce. In
this framework, each machine performs a computation
on its portion of data, and sends a small subset of its
data (called a coreset) to a central machine. The cen-
tral machine then composes the coresets and finds an
approximate solution based on the information carried
by the coresets. This framework has been successfully
used to derive approximation algorithms for several op-
timization problems [1, 3, 7, 17].

In this paper, inspired by the idea of composable
coresets, we design distributed algorithms for the ca-
pacitated and uncapacitated versions of the unit clus-
tering problem. For the uncapacitated version, we pro-
vide a (3+ε)-approximation algorithm in the Euclidean
plane, and a (4 + ε)-approximation algorithm in the
plane under general Lp metric, for any real number
p ≥ 1. For the capacitated version, we provide a (4+ε)-
approximation algorithm in the L2 plane, and a (5+ε)-
approximation algorithm under general Lp metric. We
also prove some lower bounds on the approximation fac-
tor and communication complexity of any distributed
algorithm for the problem under the composable coreset
framework. In particular, we show that the unit cluster-
ing problem in the Euclidean plane admits no compos-
able coreset with approximation factor better than 2.
Moreover, we show that the communication complexity
of our algorithms is optimal under this framework.

236



31st Canadian Conference on Computational Geometry, 2019

2 Preliminaries

Given a real number p ≥ 1, and two points a = (xa, ya)
and b = (xb, yb) in the plane, the distance of a and b
under Lp metric is defined as

dp(a, b) = p

√
|xa − xb|p + |ya − yb|p,

and d∞(a, b) = max(|xa − xb|, |ya − yb|). We refer to
the plane R2 in which Lp metric is the distance measure
as the Lp plane. Whenever we state a proposition for
all Lp metrics, p ≥ 1, we implicitly assume that L∞ is
also included.

For p ≥ 1 and r ≥ 0, an Lp disk of radius r is defined
as the set of points {a ∈ R2 | dp(a, c) ≤ r}, where c ∈ R2

is the center of the disk. An Lp disk of radius 1 is called
a unit Lp disk. Whenever the underlying metric Lp is
clear from the context, we simply use the terms disk
and unit disk.

Given a set of points in the plane under an Lp met-
ric, the unit clustering problem is to cover the points
by congruent disks of radius r, so as to minimize the
number of disks used. We refer to this problem as UCr.
Moreover, we denote by UCr(S) an optimal solution to
the UCr problem on an input set S. Whenever r = 1,
we drop r from the notation, and simply write UC and
UC(S), instead.

3 Covering Disks With Smaller Ones

In this section, we present some upper bounds on the
number of disks of radius r < 1 needed to cover a unit
disk. We will use the following well-known fact as an
ingredient: for any 1 ≤ p ≤ q, a unit Lp disk can be
covered by a unit Lq disk.

Lemma 1 Under any Lp metric, p ≥ 1, a unit disk can

be covered by ⌈2/r⌉2
disks of radius r, for 0 < r ≤ 1.

Proof. Let D be a unit Lp disk, and S be a unit L∞
disk covering D. As S is a square of side length 2, it can
be covered by ⌈2/r⌉2

squares of side length r. On the
other hand, each square of side length r can be covered
by an Lp disk of radius r, which completes the proof. □

According to Lemma 1, a unit disk in any Lp plane can
be covered by a constant number of smaller disks, when-
ever the radius of the smaller disks is fixed. The next
two lemmas provide tighter bounds on this constant.

Lemma 2 Under any Lp metric, p ≥ 1, a unit disk can
be covered by four disks of radius

√
2/2.

Proof. We prove the lemma in two cases:
Case 1: 1 ≤ p < 2. Let D be a unit Lp disk, and S be

a unit L2 disk covering D. As illustrated in Figure 2, S

can be covered by four diamonds (L1 disks) of diameter√
2. On the other hand, each of these four diamonds

can be covered by an Lp disk of radius
√

2/2. Hence,
four Lp disks of radius

√
2/2 can cover a unit Lp disk

in this case.
Case 2: p ≥ 2. Let D be a unit Lp disk, and S be

a square of side length 2 enclosing D. As illustrated in
Figure 3, S can be covered by four L2 disks of radius√

2/2. On the other hand, each of these four L2 disks
can be covered by an Lp disk of the same radius. There-
fore, four Lp disks of radius

√
2/2 can cover a unit Lp

disk in this case, which completes the proof. □

Figure 2: Four diamonds covering a disk.

Figure 3: Four disks covering a square.

It is worth noting that a unit L1 disk cannot be cov-
ered by less than four smaller L1 disks. Moreover, in
L2 metric, four disks of radius r <

√
2/2 cannot cover a

unit disk. Hence, in general Lp metric, both our bounds
of 4 and

√
2/2 are essentially tight. Nevertheless, for the

special case of L2 metric, it is possible to cover a unit
disk by a fewer number of smaller disks.

Lemma 3 In the L2 plane, a unit disk can be covered
by three disks of radius

√
3/2.

Proof. The proof is illustrated in Figure 4. □

4 Distributed Unit Clustering

In this section, we present a distributed approximation
algorithm for the unit clustering problem under any Lp

metric, p ≥ 1. The pseudo-code is presented in Algo-
rithm 1. The algorithm runs in two phases. In the first
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√

3
2 covering a unit disk.

phase, the i-th local machine (1 ≤ i ≤ m), processes
its input data Si and sends a subset Ti as a coreset to
the central machine. In the second phase, the central
machine combines the coresets obtained form local ma-
chines into a single set T , and computes a disk cover
C of T , which after a proper adjustment can cover the
whole input set.

Algorithm 1 Distributed Unit Clustering

1: Let r =
√

3/2 and δ = (1 − r)/2.

2: on each machine i (1 ≤ i ≤ m) in parallel do

3: Find an O(1)-approximation Ci to UCδ(Si).

4: For each disk D ∈ Ci, pick an arbitrary point in

Si ∩ D, and add it to a set Ti.

5: Send Ti to the central machine.

6: on the central machine do

7: Let T =
∪m

i=1 Ti.

8: Find a (1 + ε)-approximation C to UCr(T ).

9: Increase the radii of disks in C from r to 1.

10: return C.

Theorem 4 Algorithm 1 is a (3+ε)-approximation al-
gorithm for the unit clustering problem in the L2 plane,
and a (4 + ε)-approximation algorithm for the problem
under general Lp metric, p ≥ 1. The runtime of the
algorithm is O(n log n) + (mk)O(1/ε), and its communi-
cation complexity is O(mk), where n is the total number
of points, m is the number of machines, and k is the size
of an optimal solution.

Proof. Let S =
∪m

i=1 Si be the input set in the plane,
under a given Lp metric, p ≥ 1. We first prove that the
output of the algorithm, C, is a feasible solution, i.e.,
each point in S is covered by a disk in C. Fix a point
q ∈ Si ⊆ S. By our algorithm, q is covered by a disk of
radius δ in Ci. As we add one point from each disk in Ci

to Ti, there is point t ∈ Ti which is within distance 2δ
to q. On the other hand, each point of T is covered by
a disk of radius r in C. Let D be the disk in C covering
t. Therefore, the distance of t to the center of D is at

most r. As such, the distance of q to the center of D is
at most r +2δ = r+(1− r) = 1. Therefore, q is covered
by D after its radius is increased to one. Hence, C is a
feasible solution.

Now, we prove the approximation factor of the algo-
rithm. Let C∗ be an optimal solution to UC(S), and
C ′ be an optimal solution to UCr(T ). By Lemma 2,
each disk in C∗ can be covered by four disks of radius
r =

√
3/2 >

√
2/2. Therefore, there is a set of 4|C∗|

disks of radius r covering S. Since T ⊆ S, we have
|C ′| ≤ 4|C∗|. Moreover, the set C computed by the
algorithm is a (1 + ε)-approximation to C ′, and there-
fore we have |C| ≤ (1 + ε)|C ′| ≤ (4 + 4ε)|C∗|. By
re-adjusting ε properly (e.g., by running the algorithm
with ε′ = ε/4), we get an approximation factor of 4 + ε
for the problem, for any ε > 0. In the special case of
L2 metric, Lemma 3 states that each disk in C∗ can be
covered by three disks of radius r =

√
3/2, and hence,

the approximation factor of the algorithm is 3+ε in this
case.

The communication complexity of the algorithm cor-
responds to the size of T =

∪m
i=1 Ti. For 1 ≤ i ≤ m, let

C∗
i and C ′

i be optimal solutions to UC(Si) and UCδ(Si),
respectively. Since Si ⊆ S, we have |C∗

i | ≤ |C∗|.
Moreover, by Lemma 1, each unit disk in C∗

i can be
covered by a constant number of disks of radius δ,
and hence, |C ′

i| ≤ c · |C∗
i |, for some constant c ≥ 1.

On the other hand, each Ci is an α-factor approxi-
mation to C ′

i, for some constant α ≥ 1, and thus,
|Ci| ≤ α|C ′

i| ≤ αc|C∗
i | ≤ αc|C∗|. As |Ti| = |Ci|, we

have |T | =
∪m

i=1 |Ti| ≤ m · αc|C∗|. Since |C∗| = k, the
communication complexity of the algorithm is O(mk).

For the runtime, we note that a (1+ε)-approximation
to UC can be computed in nO(1/ε) time [10], and a
constant-factor approximation to UC can be obtained
in O(n log n) time [5]. The runtime of our algorithm on
the i-th machine is therefore O(|Si| log |Si|), which sums
to O(|S| log |S|) = O(n log n) on all local machines, and
amounts to |T |O(1/ε) = (mk)O(1/ε) on the central ma-
chine. □

5 Capacitated Unit Clustering

In this section, we consider the capacitated version of
the unit clustering problem, where each disk has a fixed
capacity L. We present a distributed approximation al-
gorithm for this version of the problem under any Lp

metric, p ≥ 1. The algorithm is presented in Algo-
rithm 2. The first phase of the algorithm is similar to
that of Algorithm 1, except that here, each point t ∈ Ti

is assigned a weight w(t) which specifies the number of
points t is representative for. These weights are then
used in the second phase to properly limit the number
of points assigned to each computed unit disk.
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Algorithm 2 Capacitated Unit Clustering

1: Let r =
√

3/2 and δ = (1 − r)/2.

2: on each machine i (1 ≤ i ≤ m) in parallel do

3: Find an O(1)-approximation Ci to UCδ(Si).

4: Assign each point of Si to one of its covering

disks in Ci, with ties broken arbitrarily.

5: For each disk D ∈ Ci, pick an arbitrary point

t ∈ Si ∩ D, set its weight w(t) to the number of

points assigned to D, and add t to Ti.

6: Send Ti to the central machine.

7: on the central machine do

8: Let T =
∪m

i=1 Ti.

9: Find a (1 + ε)-approximation C0 to UCr(T ).

10: Assign each point of T to one of its covering disks

in C0, with ties broken arbitrarily.

11: For each disk D ∈ C0, add ⌈w(D)/L⌉ copies of

D to a set C, where w(D) is the total weight of

points assigned to D.

12: Distribute point weights among their covering

disks in C, so that each disk receives weight ≤ L.

(A point weight may be split among two disks.)

13: Increase the radii of disks in C from r to 1.

14: return C.

Theorem 5 Algorithm 2 is a (4+ε)-approximation al-
gorithm for the capacitated unit clustering problem in
the L2 plane, and a (5+ε)-approximation algorithm for
the problem under general Lp metric, p ≥ 1. The run-
time of the algorithm is O(n log n) + (mk)O(1/ε), and
its communication complexity is O(mk), where n is the
total number of points, m is the number of machines,
and k is the size of an optimal solution.

Proof. Let S =
∪m

i=1 Si be the input set in the plane,
under a given Lp metric, p ≥ 1. First, notice that the
output of the algorithm, C, is a feasible solution. This
is because each point in S is within distance r + 2δ = 1
to the center of one of the disks in C, by an argument
similar to what we used in Algorithm 1. Moreover, by
our distribution of the weights among disks, no disk in C
receives more than L points. Therefore, C is a feasible
solution. The runtime and communication complexity
of the algorithm are also implied by the same arguments
used in the proof of Algorithm 1.

It only remains to prove the approximation factor of
the algorithm. Let C∗ be an optimal solution to the
capacitated unit clustering problem on the set S, and
let C ′ be an optimal solution to (uncapacitated) UC(S).
Note that |C ′| ≤ |C∗|. Moreover, |C∗| ≥ n/L, because
all n points in S are covered by |C∗| disks of capacity L.

According to the algorithm,

|C| =
∑

D∈C0

⌈w(D)/L⌉

≤
∑

D∈C0

(1 + w(D)/L)

= |C0| + n/L

≤ |C0| + |C∗|.

Moreover, according to the proof of Theorem 4, C0 is
a (4 + ε)-approximation to C ′ under general Lp metric,
and a (3 + ε)-approximation to C ′ under L2 metric.
Therefore, |C| ≤ (5 + ε)|C∗| in general Lp metric, and
|C| ≤ (4 + ε)|C∗| in the L2 plane, which completes the
proof. □

6 Lower Bounds

In this section, we provide lower bounds on the approx-
imation factor of any distributed algorithm for the unit
clustering problem in the L2 plane under the compos-
able coreset framework. We also prove a lower bound
on the communication complexity of the distributed al-
gorithms for the problem under this framework.

A coreset algorithm receives as input a sequence S
of points, and returns as output a subset of S, called a
coreset. We call a coreset algorithm rotation-invariant
if for a fixed sequence S of points, it always returns the
same coreset, even if the input is rotated in the plane.

Theorem 6 The unit clustering problem in the L2

plane admits no composable coreset with approximation
factor better than 2. If the underlying coreset algo-
rithm is rotation-invariant, the problem admits no α-
composable coreset, for any α < 3.

Proof. Let A be the coreset algorithm used by local
machines. Let S be a sequence of points evenly placed
on a circle of radius 1/2. We can pick S sufficiently large
so that |A(S)| < |S|. Then, by the pigeonhole principle,
there exist two distinct subsequences T1 and T2 of S
such that A(T1) = A(T2). Assume w.l.o.g. that a point
v ∈ S is in T1 but not in T2. Since A(T1) = A(T2),
we have v /∈ A(T1). Let C1 and C2 be two concentric
circles of radius 1 and 1+ε, respectively, for some ε > 0,
such that v is on the boundary of C2, while other points
lie inside C1 (see Figure 5). Let u be the point on the
boundary of C1 furthest away from v.

Consider an instance with two partitions S1 and S2

(on two separate machines), where S1 = {u} and S2

is either T1 or T2. If S2 = T1, at least two unit disks
are needed to cover all the points as d(u, v) > 2. On
the other hand, if S2 = T2, the whole input can be
covered by a single unit disk, C1. When A(S2) is sent to
the central machine, it cannot distinguish whether the
original set has been T1 or T2. Therefore, any solution
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C1

C2

Figure 5: A lower bound example with two partitions.

returned by it must have at least two unit disks to ensure
feasibility, causing an approximation factor of at least 2.

If A is rotation-invariant, we can obtain a stronger
lower bound as follows. Define m copies of S rotated
and evenly placed on the perimeter of C2, as shown in
Figure 6. Consider an input consisting of m partitions
S1, . . . , Sm where each partition corresponds to one of
these copies, and can be a rotated copy of either T1 or
T2. If all Si’s are of type T1 and m is sufficiently large,
then at least three unit disks are needed to cover all
the points, in particular, those on the perimeter of C2.
On the other hand, if all Si’s are of type T2, the whole
input can be covered by a single unit disk, C1. In both
cases, the composable coresets received by the central
machine are the same, since A(T1) = A(T2) in each
copy. Thus, the number of unit disks returned must be
at least 3 to make sure the output is feasible. Therefore,
the approximation factor cannot be better than 3. □

v1

S1

v2

v3

v4

v5

v6
S2

S3

S4

S5

S6

Figure 6: Data partitions on six machines.

The algorithms provided in this paper both have
O(mk) communication complexity. The following the-
orem shows that the communication complexity of our
algorithms is indeed optimal.

Theorem 7 Any distributed algorithm for the unit
clustering problem under the composable coreset frame-
work requires Ω(mk) communication, where m is the
number of machines, and k is the size of an optimal
solution.

Proof. Let Si be the set of points in the i-th machine
(1 ≤ i ≤ m), and let ki be the size of an optimal unit
clustering for Si. Suppose that all Si’s are far from
each other, so that no disk covering a point in Si can
cover a point in Sj , for j ̸= i. If the coreset sent by the
i-th machine contains less than ki points, the central
machine receives no enough information to cover all the
points in Si, and hence, the final solution will not be
feasible. Therefore, the number of points sent by the
i-th machine must be at least ki.

Now, consider the case where all machines have the
same set of points, and hence, ki = k for all 1 ≤ i ≤
m. By the argument provided above, each machine,
independently from the others, must send at least k
points to the central machine, and hence, the central
machine receives at least mk points in this case. □

7 Conclusions

In this paper, we studied the unit clustering problem
in a distributed settings, and presented approximation
algorithms for both capacitated and uncapacitated ver-
sions of the problem in general Lp metric, p ≥ 1. Our al-
gorithms can be implemented in O(1) rounds of MapRe-
duce. Moreover, the composable coresets provided in
this paper naturally lead to algorithms in the one-pass
streaming model. In higher dimensions, our algorithms
can be extended in a natural way to obtain constant
factor approximations in any fixed d dimensions. It is
interesting to see if the approximation factors of our
algorithms can be improved, in particular, in the capac-
itated version.
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Local Search for Geometric Partial Covering Problems

Tanmay Inamdar∗

Abstract

Partial Set Cover problem is a generalization of Set
Cover, where we are required to cover at least k out of
n elements in the given set system, using the minimum
number of sets. In geometric versions of Partial Set
Cover, the sets are induced by geometric objects, and
elements are points in Rd. For many such versions, the
previously best known approximation guarantees were
Ω(1). On the other hand, the Local Search technique
has been successful in obtaining PTASs 1 for related
problems such as Geometric Set Cover and Geometric
Maximum Coverage. Extending the analysis of Chaplick
et al. [5] for the latter problem, we show that Local
Search also gives a PTAS for various geometric versions
of Partial Set Cover.

1 Introduction

We start with the unweighted Partial Set Cover (PSC)
problem. The input to PSC is a tuple (X,R, k): X is
a set of n elements, R is a collection of subsets of X
such that

⋃R = X 2, and 1 ≤ k ≤ n is the coverage
requirement. The goal is to find a minimum-size col-
lection R′ ⊆ R, such that |⋃R′| ≥ k. Notice that the
unweighted Set Cover (SC) problem is a special case
of PSC with k = n, i.e., we are required to cover all
elements in X in SC. Therefore, PSC, like SC, is NP-hard
to approximate even within a factor of o(log n) ([8]).
On the positive side, the approximation guarantees of
O(log n) ([17, 23]), or f ([11]), for PSC match those
for SC ([24]). Here, f denotes the maximum frequency
of any element, i.e., the maximum number of sets an
element is contained in.

The Maximum Coverage (MC) problem is closely re-
lated to PSC. The input to MC is (X,R, D). Here,
1 ≤ D ≤ |R| denotes the budget on the size of the so-
lution. The goal is to select a solution R′ ⊆ R, where
|R′| ≤ D, that covers the maximum number of elements.
It is easy to see that the exact versions of PSC and MC
are reducible to each other; however, these reductions

∗Department of Computer Science, The University of Iowa,
tanmay-inamdar@uiowa.edu.

1PTAS stands for Polynomial Time Approximation Scheme,
i.e., a (1 + ε)-approximation that runs in polynomial time for any
constant ε > 0.

2For any R′ ⊆ R, we use the notational shorthand
⋃R′ :=⋃

S∈R′ S.

are not approximation preserving, in general. Improving
upon the classical (1 − 1/e)-approximation for MC is
known to be NP-hard ([18]).

An interesting special case of SC is known as Geo-
metric Set Cover (GSC). Here, the elements are usually
points in Rd for a constant d, and the sets are induced
by geometric objects in Rd. Many interesting versions
of GSC have been studied. A detailed discussion of the
literature and techniques can be found in [15].

Now, we turn to the Geometric Partial Set Cover
(GPSC) problem. Gandhi et al. [11] give a PTAS for
partially covering points in R2 with unit disks, extending
the “shifting technique” of Hochbaum and Maass [14],
combined with a dynamic program. However, the collec-
tion of sets, R, is not given explicitly – it consists of all
unit disks in the plane. Chan and Hu [4] give a PTAS
for the version of GPSC, where the sets are induced by a
given set of unit squares in R2. This PTAS uses a clever
dynamic programming based approach. However, their
technique does not seem to extend to a more general
class of objects – even for arbitrary squares. Inamdar
and Varadarajan [15], show that the standard Linear
Program for PSC can be rounded within a factor of 2β+2.
Here β is the approximation guarantee of an “LP-based”
algorithm for the corresponding SC instance, which they
use as a black box. Using this result, they obtain ap-
proximation guarantees that match the respective SC
guarantees up to a constant factor for many instances of
GPSC. However, an intrinsic drawback of this approach
is that they cannot use an arbitrary approximation al-
gorithm for SC (such as a Local Search algorithm) as a
black box.

1.1 Local Search

The Local Search technique was first analyzed by
Mustafa and Ray [21] in the context of GSC (also by
Chan and Har-Peled [3] for Geometric Maximum In-
dependent Set). Since then, it has been successful for
obtaining PTASs for a variety of geometric problems.
Before we discuss the details of this technique, we in-
troduce the notion of sublinear separators for “sparse”
graphs, which is central to the analysis of Local Search.
Much of the following terminology is borrowed from [5].
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Graph Separators

Let G = (V,E) be an m vertex graph, and let α ∈
[ 12 , 1) be a constant. A set S ⊆ V is said to be an α-
balanced separator for G, if V \ S can be partitioned
into V1 ∪V2, where (i) |V1|, |V2| ≤ α ·m, and (ii) there is
no edge between a vertex in V1 and a vertex in V2. Let
f(m) = O(m1−δ) be a non-decreasing sublinear function,
with 0 < δ < 1. We say that a graph G = (V,E) is
f -separable, if for every subgraph G′ = (U ′, E′) of G,
there exists an α-balanced separator of size f(|U ′|), for
some constant α ∈ [ 12 , 1).

From a celebrated result of Lipton and Tarjan [20],
it is known that the planar graphs are

√
m-separable.

More generally, it is known that any minor-closed graph
class is Θ(

√
m)-separable [1]. The following theorem

is obtained by a recursive application of the sublinear
separator theorem [10, 13] (as stated in [5]), the variants
of which are often critical to the analyses of Local Search
algorithms.

Theorem 1 ([10, 13]) Fix a sublinear function f .
There exist constants c1, c2 such that, for any f -separable
m-vertex graph G = (V,E) the following holds.
For any integer r ≥ 1, there is an integer t =
Θ
(
m
r

)
, such that V can be partitioned into disjoint sets

(B, V1, V2, . . . , Vt) with the following properties.

1. N(Vi) ∩ Vj = ∅ for each i 6= j and B =
⋃
iN(Vi)

3,

2. |Vi ∪N(Vi)| ≤ r for all i,

3. |N(Vi)| ≤ c1 · f(r) for each i, which also implies

|B| ≤∑t
i=1 |N(Vi)| ≤ c2m·f(r)

r .

Standard Local Search Framework

Now, we give a brief overview of the standard framework
for the design and analysis of the Local Search technique.
We first define a key operation in any Local Search
algorithm for SC.

Definition 1 (b-swap) Let R′ ⊆ R be a feasible so-
lution for the given SC instance (X,R). For a given
positive integer b, a b-swap is an operation of replacing
R′ with (R′ \ R1) ∪ R2, for any collections R1,R2 of
sets such that:
1. R1 ⊆ R′ with |R1| ≤ b,
2. R2 ⊆ R with |R2| ≤ |R1| − 1.
Furthermore, if the resulting solution (R′ \ R1) ∪R2 is
feasible, the b-swap is said to be feasible.

Note that a feasible b-swap is a “local operation” that
decreases the size of the solution, while still covering X.

3For any vertex w ∈ V , let N(w) denote the set of neighbors
of w. For a set W ⊆ V , the “outer neighborhood” of W , N(W ),
is defined as

(⋃
w∈W N(w)

)
\W . When we use this notation in

our analysis, it will always be the case that N(W ) ⊆ B.

Starting from an arbitrary feasible solution R′ ⊆ R, in
each iteration, we repeatedly check for the existence of a
feasible b-swap, and perform it, if it is possible to do so.
If no such local improvement is possible, the resulting
solution is called a b-locally optimal solution. For a
constant b, each iteration takes polynomial time, and
the number of iterations is bounded by |R|. Therefore,
the overall running time of the algorithm is polynomial
in the input size.

Let O be an optimal solution, and A be a candidate
feasible solution. A key idea in the analysis of any Local
Search algorithm for SC is the concept of an exchange
graph, which relates the sets covering each element of
X in the two solutions. It is known that the class of
exchange graphs defined by many geometric set systems
admit sublinear separators. Suppose |A| is “much larger”
than |O|, then, by using Theorem 1 on the exchange
graph, one can show the existence of a feasible small
swap, i.e., that A is not a locally optimal solution.

Given the success of Local Search in the context of GSC
and its variants (e.g., [12, 21, 22]), it is natural to wonder
whether it can be used to obtain PTASs for versions of
GPSC. Note that the notions of b-swap, feasible b-swap,
and b-local optimality can be naturally generalized in the
context of (G)PSC, recalling that a solution is feasible if
it covers at least k elements. However, observe that in
GPSC, the solutions O and A may cover different sets of
at least k elements. Therefore, the standard analysis of
the Local Search algorithm as described above, does not
work for GPSC. Note that a similar issue also exists in
the context of MC. Nevertheless, Chaplick et al. [5] were
able to show that a version of the Local Search algorithm
gives a PTAS for a variety of Geometric MC problems.
We adapt their analysis in the context of GPSC. We first
discuss our result and its applications, before we delve
into a detailed comparison of our work with theirs in
Section 1.4.

1.2 Result

Now we describe the general idea of our algorithm for
GPSC and its analysis. We use the Local Search algo-
rithm described in the previous section, the only dif-
ference being the definition of feasibility of a solution
– a collection R′ ⊆ R is feasible if it covers at least k
elements of X.

Now, let A be a candidate feasible solution such that
|A| > (1 + ε) · |O|, where O is an optimal solution, and
ε > 0 is a constant. We define an exchange graph with
respect to these two solutions as follows.

Definition 2 (Exchange Graph) An exchange graph
is a graph G = (V,E), such that
(1) V = O ∪A, and
(2) For any element e ∈ X that is covered by both solu-
tions O and A, there is an edge {P,Q} ∈ E, such that
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P ∈ A, Q ∈ O and e ∈ P ∩Q.

In the analysis, we construct such an exchange graph
G. We assume that G is f -separable for some sublinear
function f . Then, we use Theorem 1 on an exchange
graph, where r is chosen carefully in terms of ε. Then,
using the properties of this exchange graph, we prove
the existence of a local swap of a small size. We state
this in the following (slightly informal) theorem, which
is proved in Section 2.

Theorem 2 Consider a PSC instance (X,R, k). Let O
be an optimal solution and A be a feasible solution for
this instance, such that |A| > (1 + ε) · |O| for some con-
stant ε > 0. Furthermore, suppose that the corresponding
exchange graph G is f -separable for some sublinear func-
tion f . Then, for some positive constant b = b(f, ε),
there exists a feasible b-swap from A. That is, A is not
a b-locally optimal solution.

We note that, if the exchange graph is f -separable for
f(t) = O(t1−δ), where 0 < δ < 1 is a constant, then the

running time of the PTAS is mO(ε−2/δ), where m is the

number of sets in R. We contrast this with mO(ε−1/δ)

running time of the Local Search algorithm for GSC,
which is known to be tight for various set systems ([16]).
It is an interesting question whether the exponent in the
running time of our PTAS can be improved.

1.3 Applications

Before we discuss the consequences of Theorem 2, we
define some variants of GPSC that are also amenable to
the Local Search algorithm.

Partial Hitting Set Let S be a set of geometric objects
in Rd and P be a set of points in Rd. A point p ∈ P
is said to hit an object S ∈ S if p ∈ S. The instance
(S, P, k) of the Partial Hitting Set problem asks to find
a minimum-size set P ′ ⊆ P of points that hits at least
k objects from S.

Partial Terrain Guarding Let T be a 1.5D terrain, i.e.,
an x-monotone polygonal chain in R2. Let X,Y ⊆ T be
finite sets on the terrain T . For any two points x, y ∈ T ,
x is said to see y if no point on the line segment xy lies
below the terrain T . The instance (X,Y, k) of the Partial
Terrain Guarding problem asks to find a minimum-size
set Y ′ ⊆ Y of points that sees at least k out of n points
from X.

We borrow the following definition of r-admissible
regions from [5]. A set of regions (each bounded by a
closed Jordan curve) in R2 is called r-admissible, if for
any two regions q1, q2 in the set, the curves bounding
them cross at most s ≤ r times, and the regions q1 \

q2, and q2 \ q1 are connected. Here, s ≤ r are positive
even integers. This class of objects includes translates
of convex objects. In the special case where r = 2, the
objects are also known as pseudo-disks (which includes
arbitrary disks, squares, and axis-parallel rectangles of
same height).

As a consequence of Theorem 2, we obtain new PTASs
for various versions of GPSC and its variants, via Lo-
cal Search. The f -separability of the exchange graphs
for GPSC, follows from that in the corresponding SC
versions, already known in the literature. We give the
relevant references next to each result, which show the
f -separability of the corresponding exchange graph in
the full covering version.

Theorem 3 Local Search gives a PTAS for the follow-
ing geometric partial covering problems:

1. Partially covering points by halfspaces in R3 ([21]).

2. Partially covering points by r-admissible regions in
R2 ([22]).

3. Partially hitting r-admissible regions by points in
R2 ([21]).

4. Partially hitting halfspaces by points in R3 ([21]).

5. Partial Terrain Guarding ([19]).

1.4 Comparison to the work of Chaplick et al. [5]

Here, we compare and contrast our result with that
of [5] for MC. Recall that, in MC, the goal is to cover
the maximum number of elements using at most D sets.
First, we sketch the Local Search algorithm used in [5] for
MC. Here, we start with an arbitrary collection R′ ⊆ R
of size exactly D. In each iteration, we check for the
existence of a local swap that improves the number of
elements covered. More precisely, for a positive integer b,
we check whether there exists some R′′ := (R′\R1)∪R2,
where |R1| = |R2| ≤ b, and |⋃R′′| > |⋃R′|. We
iteratively perform such b-swaps while it is possible to
do so.

Note that in PSC, a b-swap reduces the number of
sets in the solution, while covering at least k elements.
On the other hand, in MC, the corresponding operation
increases the number of elements covered, while keep-
ing the number of sets at most D. Consequently, the
respective analyses of the Local Search algorithms are
different, which we informally discuss next.

Chaplick et al. [5] also use a decomposition
(B, V1, V2, . . . , Vt) of the exchange graph in their analysis.
Each part Vi corresponds to a possible swap in the anal-
ysis (we also use a similar notion, which is formalized
in the proof). Notice that during such a swap, we may
lose the coverage of some elements, while we may win
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coverage of some elements 4. Using a careful counting
argument, they show that in at least one of these swaps,
the number of elements “lost” is much smaller as com-
pared to the number elements “won”. However, this
swap may not be feasible, i.e., the number of sets in the
resulting solution may be slightly larger than D. This
is because, |R2| > |R1| using the notation from above.
Nevertheless, they show that for a carefully chosen sub-
set R′2 ⊆ R2, the corresponding swap has the desired
properties.

In our analysis, also, each Vi is associated with a
possible swap. However, some swaps may not decrease
the size of the solution, or they may result in an infeasible
solution. We then show (cf. Lemma 5) that the parts Vi
can be combined into slightly larger parts Ui, such that
all the associated swaps are of small size, and they result
in a solution of smaller size. However, not all swaps may
be feasible, i.e., cover at least k elements. Then, we use
a version of the counting argument from [5] (referenced
above), to show in Lemma 6 that at least one of the
swaps is feasible, and hence A is not locally optimal.

We note that Chaplick et al. [5] prove a “color-
balanced” version of the separator theorem. Informally
speaking, this provides an additional guarantee that in
each part Vi, the “local ratio” of the number of sets in
O ∩ Vi to A ∩ Vi is close to the “global ratio” of O to
A, up to a small error. Even though this small error
does not pose a problem in their analysis for MC, it is
an issue in the context of PSC. In particular, the small
error may correspond to an increase in the size of the
solution after the swap. Therefore, we cannot use the
color-balanced separator theorem in our analysis. At a
high level, the Combination Lemma (Lemma 5) plays a
similar role in our analysis, but the details are different.

Thus, the kinds of challenges faced in both proofs
are different. Despite this, we are able to extend the
ideas from [5] for PSC. Interestingly, in Section 3, we
show how to obtain a PTAS for MC, using a PTAS for
the corresponding version of PSC as a black box, which
can be seen as an alternative proof for the results in
[5]. However, we are not aware of a similar result in the
opposite direction.

Chaplick et al. [5] observe that their algorithm also
gives a PTAS for “Maximum Coverage” versions of Ver-
tex Cover and Dominating Set problems for the graphs
that admit sublinear separators – this includes the inter-
section graphs of homothetic copies of convex objects,
e.g., arbitrary squares, regular k-gons etc. Indeed, our
proof also shows that Local Search is a PTAS for the
corresponding partial covering versions. However, it is
already known from the previous results ([9, 11]) that
these problems admit a PTAS on certain “sparse” graph

4Note that the elements “won” by adding R2 may include a
subset of elements that were “lost” as a result of the removal of
R1.

classes, such as planar graphs. Therefore, these results
about geometric partial covering problems were already
implied by the constructions of sparse graphs for the
respective full coverage problems ([12, 22]).

2 Analysis of Local Search

In this section, we prove Theorem 2.
Let A be an arbitrary feasible solution and O be an

optimal solution, such that |A| = α′ · |O|, for some
α′ > 1. Notice that both |A| and |O| cover at least k
elements. We assume that the solution A is minimal
w.r.t. removal of sets, i.e., no set in A can be removed
while still covering at least k elements. Note that O is
also minimal, since it is an optimal solution.

First, we assume that the number of elements covered
by the both solutions is exactly k, i.e., |⋃A| = |⋃O| =
k. This can be done by deleting arbitrary elements
from

⋃A and
⋃O, if necessary. Note that this process

does not change the sizes of the two solutions, since this
would contradict the minimality of the solutions A and
O. Next, it is easy to see that following inequality holds,
given the assumption on the sizes of the two solutions:
|A \ O| = α · |O \ A|, where α ≥ α′. Furthermore,
observe that, |⋃(A \ O)| = |⋃(O \ A)| = k′ ≤ k, and
that the solutions A \ O and O \ A are also minimal
for k′. Therefore, by renaming A,O, k, if necessary, we
assume that A and O are disjoint, minimal, and each
solution covers exactly k elements.

Now, we construct an exchange graph G = (V,E) with
respect to the two solutions A, and O, as defined above.
By assumption, G is f -separable for some sublinear
function f . Let m = |A| + |O| denote the number of
vertices in the exchange graph. Since the vertices in the
exchange graph correspond to sets, we will use the terms
‘set’ and ‘vertex’ interchangeably. Let r be a positive
integer constant to be fixed later. We use Theorem 1 to
obtain a decomposition (B, V1, . . . , Vt) with this r.

Let c3 be an absolute constant such that t ≤ c3·m
r ,

and let q(r) := 2c2f(r) + 2c3 + r(r+1)
m . Assuming m� r

and since f(r) is a sublinear function in r, we assume
that r is large enough so that r − q(r) ≥ r/2.

Recall that |A| = α · |O|, and now suppose that α >

1 + 4q(r)
r . We will show that A is not a b-locally optimal

solution, by showing the existence of a b-swap, where b =
2r(r + 1). First, we show the following technical lemma,
which, informally speaking, shows that the “discrepancy”
in the number of sets in A as compared to O, is large
enough.

Lemma 4

∑

i∈[t]
(|A ∩ Vi| − |O ∩ Vi| − |O ∩N(Vi)|) ≥ 2t+ r + 1.

Proof. Since (B, V1, V2, . . . , Vt) is a partition of V =
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A ∪O,

|A ∩B|+
t∑

i=1

|A ∩ Vi| = α · |O ∩B|+ α ·
t∑

i=1

|O ∩ Vi|.

Rearranging this, we get,

t∑

i=1

(|A ∩ Vi| − |O ∩ Vi|)

= (α− 1) · |O|+ |O ∩B| − |A ∩B|
≥ (α− 1) · m

α+ 1
− |B|

(∵ |A| = α|O| and |A|+ |O| = m)

Therefore,

t∑

i=1

(|A ∩ Vi| − |O ∩ Vi| − |O ∩N(Vi)|)

≥ m · α− 1

α+ 1
−m · 2c2f(r)

r
(1)

Where, the last step follows from Property 3 of The-

orem 1, which implies that, |B| ≤ c2mf(r)
r , and that∑

i |N(Vi) ∩ O| ≤
∑
i |N(Vi)| ≤ c2mf(r)

r .
It is sufficient to prove that the right hand side of (1)

is at least 2c3m
r + r + 1 ≥ 2t+ r + 1. Equivalently, we

want to prove that,

α− 1

α+ 1
≥ 2c2f(r) + 2c3 + r(r + 1)/m

r
=
q(r)

r
.

Since r − q(r) ≥ r/2, we have α− 1 > 4q(r)
r ≥ 2q(r)

r−q(r) .

Therefore, r
q(r) > 1 + 2

α−1 = α+1
α−1 . �

Let (P1, P2, . . . , Pl) be any partition of V \ B. For
every part Pi, we define the discrepancy of Pi as µ(Pi) :=
|Pi ∩ A| − |Pi ∩ O| − |N(Pi) ∩ O|. Furthermore, let
λ(Pi) := µ(Pi) − 1. Using this notation, the result of
Lemma 4 can be restated as

∑
i∈[t] µ(Vi) ≥ 2t + r + 1,

which also implies that
∑
i∈[t] λ(Vi) ≥ t + r + 1. Now

in the following lemma, we show that the parts Vi can
be combined into slightly larger parts Ui, such that the
discrepancy of each Ui is strictly positive.

Lemma 5 Suppose we are given a partition
(B, V1, V2, . . . , Vt) of the vertex set V = A ∪ O
that satisfies the properties of Theorem 1. Furthermore,
suppose

∑
i µ(Vi) ≥ 2t + r + 1. Then, there exists a

partition (B,U1, U2, . . . , Us) that satisfies the following
properties.

1. |Ui ∪N(Ui)| ≤ 2r(r + 1) for all i ∈ [s],

2. µ(Ui) > 0 for all i ∈ [s].

Proof. In order to prove this lemma, we need the fol-
lowing claim, which is a straightforward adaptation of
an analogous lemma in [2] (also [6, 7]). For the sake of
completeness, we prove it in the appendix.

Claim 1 Let N = {n1, n2, . . . , nt} be a set of t integers,
where |ni| ≤ r+1 for any ni ∈ N , and

∑
i∈t ni ≥ t+r+1.

Then, there exists a partition P = {P1, P2, . . . , Ps} of
the index set [t], satisfying the following properties:

1. For any i ∈ [s], 1 ≤ |Pi| ≤ 2(r + 1),

2. For any i ∈ [s],
∑

j∈Pi
nj ≥ 0.

Recall that for any i ∈ [t], λ(Vi) = µ(Vi)−1 ≤ |Vi| ≤ r,
using property 2 of Theorem 1. Therefore, |λ(Vi)| ≤ r+1.
Also, recall that

∑
i∈[t] λ(Vi) ≥ t + r + 1. Therefore,

setting ni := λ(Vi), and N = {λ(V1), λ(V2), . . . , λ(Vt)}
satisfies the properties required to apply Claim 1. We
then obtain a partition P of the index set [t] with the
properties guaranteed in Claim 1.

Now, for any Pi ∈ P, let Ui =
⋃
j∈Pi Vj . From prop-

erty 1, we know that each Uj is obtained by taking
a union of at least one and at most r + 1 Vj ’s from
the original partition. That is, the original partition
(V1, V2, . . . , Vt) of the set V \ B, is a refinement of
(U1, U2, . . . , Us). Furthermore, since, for any j ∈ [t]
|Vi| ≤ r, the first property of the lemma is satisfied.

For any i ∈ [s], N(Ui) ∩ O =
⋃
j∈Pi(N(Vj) ∩ O).

Therefore, |N(Ui) ∩ O| ≤
∑
j∈Pi |N(Vi) ∩ O|. Now,

recalling the definition of µ(·), it holds that, µ(Ui) ≥∑
j∈Pi µ(Vj). Recall that λ(·) = µ(·) − 1. Therefore,

λ(Ui) ≥
∑
j∈Pi λ(Vj).

Now, using the second property of Claim 1, we have
that

∑
j∈Pi λ(Vj) ≥ 0. Therefore, λ(Ui) = µ(Ui)−1 ≥ 0,

which proves the second property. �

The goal of the rest of the proof is to show the existence
of a feasible swap of a small size. This part of the proof
is very similar to that in [5], adapted in the context of
PSC.

First, we define some notation. Let Ai = Ui ∩
A, and Oi = Ui ∩ O denote the sets in the part Ui :
i ∈ [s], from the solutions A and O respectively. Fur-
thermore, let Oi = Oi ∪ (N(Ui) ∩ O) be the optimal
vertices in Ui or on the boundary of Ui. Notice that
Ai,Oi,Oi are collections of sets in A∪O. Furthermore,
we will restrict our attention to the following candidate
swaps: (Ai,Oi) for different i ∈ [s], i.e., replacing A
with (A \ Ai) ∪ Oi.

Now, we define some subsets of elements in
⋃

(A∪O).
For any i ∈ [s], let Zi :=

⋃
(A \ Ai) denote the elements

that remain covered even if all sets in Ai are removed
from A. Let Z :=

⋂
i∈[s] Zi denote the elements that are

covered by A but not exclusively by any particular Ai.
Observe that

⋃
(B ∩ A) ⊆ Z. Let Li := (

⋃Ai) \ Z be
the elements that are “lost” while swapping out sets in
Ai. Finally, let Wi :=

(⋃Oi
)
\ Z denote the elements

that are “won” after swapping in sets in Oi for the sets
in Ai. We now prove the following two claims.
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Claim 2

0 <
∑

i∈[s]
|Li| ≤

∣∣∣
⋃
A
∣∣∣− |Z|.

Proof. Notice that µ(Ui) > 0 for all i ∈ [s], therefore,
Ai 6= ∅ for all i ∈ [s]. We claim that Li 6= ∅ for all i ∈ [s].
Suppose we have Li = (

⋃Ai)\Z = ∅, which means that⋃Ai ⊆ Z, i.e., the elements in
⋃Ai are also covered

by
⋃

(A \ Ai). Therefore, we can remove the sets in
Ai, which decreases the size of A by at least 1 (since
Ai 6= ∅), without decreasing the number of elements
covered. This contradicts the minimality of the solution
A. This proves the first inequality.

Now we prove the second inequality. Note that Z ⊆⋃A. Furthermore, the sets Li’s are pairwise disjoint.
Therefore, an element e ∈ ⋃i Li is not contained in
Z. The left hand side is equal to the number of such
elements, whereas each such element contributes exactly
1 to the right hand side. �

Claim 3 ∑

i∈[s]
|Wi| ≥

∣∣∣
⋃
O
∣∣∣− |Z|.

Proof. We consider different cases for an element e ∈
(
⋃O) ∪ Z. Note that these are the only elements that
play a role in this inequality.

1. e ∈ Z.
An element in Z cannot belong to any Wi by definition,
and therefore contributes 0 to the LHS. If e ∈ ⋃O, it
contributes 0 to the RHS. Otherwise, it contributes −1.

2. e ∈ ⋃O \⋃A.
Such an element belongs to at least one Wi (since every
set in O belongs to at least one Oi), and therefore con-
tributes at least 1 to the LHS. Since e 6∈ Z, it contributes
exactly 1 to the RHS.

3. e ∈ ⋃O ∩⋃A, but e 6∈ Z.
Since e 6∈ Z, it cannot be covered by a set in B ∩ A.
Suppose e ∈ S, where S ∈ Ai for some i. Note that all
sets in A covering e must belong to Ai – for otherwise
e ∈ Z, which is a contradiction. Now, since e is covered
by both solutions, there exists an edge {S′, T} in the
exchange graph, where S′ ∈ A, T ∈ O, and e ∈ S′ ∩
T . Therefore, T ∈ Oi, which implies that e ∈ Wi,
contributing at least 1 to the LHS. On the other hand,
e ∈ ⋃O \Z, so it contributes exactly 1 to the RHS. �

In the following Lemma, we show that, for some i ∈ [s],
replacingA with (A\Ai)∪Oi results in a feasible solution
of smaller cost.

Lemma 6 There exists an index i ∈ [s] such that:

1.
∣∣(A \ Ai) ∪ Oi

∣∣ < |A|, and

2.
∣∣⋃ ((A \ Ai) ∪ Oi

)∣∣ ≥ k.

Proof. For any i ∈ [s], we have that µ(Ui) = |Ai| −
|Oi| > 0. Therefore, the first property holds for all
i ∈ [s]. Now we show that there exists some i ∈ [s] for
which the second property holds.

From Claim 2 and Claim 3, we have the following.

max
i∈[s]

|Wi|
|Li|

≥
∑
i∈[s] |Wi|∑
i∈[s] |Li|

≥ |
⋃O| − |Z|
|⋃A| − |Z| =

k − |Z|
k − |Z| = 1.

Therefore, for some i ∈ [s], |Wi| ≥ |Li|, which implies
the second property. �

Since |Ai|, |Oi| ≤ 2r(r + 1), this lemma shows the
existence of a feasible 2r(r + 1)-swap, assuming that

|A| > (1 + 4q(r)
r ) · |O|. This concludes the proof of

Theorem 2.

3 A PTAS for Maximum Coverage Problem

In this section, we show how to obtain a (1 − δ)-
approximate solution for MC, using the PTAS for the
corresponding version of PSC. Here, δ ∈ (0, 1) is as-
sumed to be a constant. Let (X,R, D) be the given MC
instance. Recall that the goal is to cover the maximum
number of elements from X, using at most D sets from
R. By trying all possible values, suppose we know the
value of OPT — the number of elements covered by an
optimal solution — for the MC instance (X,R, D). Now,
we use the PTAS from the previous section for the PSC
instance (X,R, OPT ) for some ε (to be fixed later), and
obtain a feasible solution R′ ⊆ R.

We first claim that |R′| ≤ (1 + ε) ·D. This is because,
an optimal solution for the MC instance covers OPT
points using at most D sets, therefore it is a feasible
solution for the PSC instance (X,R, OPT ). Now, if
|R′| ≤ D, then R′ is an optimal solution for MC, and we
are done. Otherwise, |R′| > D. We arbitrarily partition
R′ into t = d1+ 1

ε e non-empty collectionsR1,R2, . . . ,Rt,
such that 0 < |R1| ≤ |R2| = . . . |Rt| = dεDe.

Let i ∈ [t] be an index such that removal of Ri results
in the least loss in the coverage. More formally, for
any j ∈ [t], let `j := |⋃R′| − |⋃(R′ \ Rj)| be the
number of elements lost by removal of Ri, and let i =
arg minj∈[t] `j . By an averaging argument, we must have
that `i ≤ OPT/t. Therefore, R\Ri has at most D sets,
and it covers at least OPT · (1− 1

t ) ≥ OPT · (1− ε
1+ε )

elements. Therefore, it suffices to choose ε such that
ε

1+ε = δ.
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A Proof of Claim 1

Claim 1 Let N = {n1, n2, . . . , nt} be a set of t integers,
where |ni| ≤ r+1 for any ni ∈ N , and

∑
i∈t ni ≥ t+r+1.

Then, there exists a partition P = {P1, P2, . . . , Ps} of
the index set [t], satisfying the following properties:

1. For any i ∈ [s], 1 ≤ |Pi| ≤ 2(r + 1),

2. For any i ∈ [s],
∑

j∈Pi
nj ≥ 0.

Proof. For the simplicity of the exposition, we will work
with a partition of N instead of a partition of the index
set [t], as in the statement of the claim. Note that there
is a one-to-one correspondence between these two kinds
of partitions.

We initialize P to be an empty collection, and let N ′

be a copy of N , which is modified over the course of the
following algorithm, while iteratively building P . For any
subset M ⊆ N ′, we use the notation σ(M) :=

∑
ni∈M ni.

First, if there are any ni’s with ni = 0, we add them
to P as singleton sets. Note that, so far, each Pi satisfies
the required properties. We remove all such ni’s from
N ′. Now, for remaining ni ∈ N ′, we have that 1 ≤
|ni| ≤ r + 1.

Algorithm 1

1: while |N ′| > 2(r + 1) do
2: P ′ ← {ni}, where ni ∈ N ′ with ni > 0
3: for i = 1 to r + 1 do
4: if σ(P ′) ≥ 0 then
5: if ni > 0 for all ni ∈ N ′ then
6: P ← P ∪N ′ ∪ {P}, N ′ ← ∅
7: return
8: else
9: Pick an arbitrary ni ∈ N ′ with ni < 0.

10: P ′ ← P ′ ∪ {ni}, N ′ ← N ′ \ {ni}
11: end if
12: else
13: Pick an arbitrary ni ∈ N ′ with ni > 0.
14: P ′ ← P ′ ∪ {ni}, N ′ ← N ′ \ {ni}
15: end if
16: end for
17: P ← P ′

18: while σ(P ) < 0 do
19: Pick an arbitrary ni ∈ N ′ with ni > 0.
20: P ′ ← P ′ ∪ {ni}, N ′ ← N ′ \ {ni}
21: end while
22: P ← P ∪ {P}
23: end while
24: P ← P ∪N ′

Consider any iteration of the outer while loop, where
we are iteratively building a set P ′. In each iteration, P ′

is initialized to a single positive integer from N ′ – the

existence of such an integer follows an inductive claim
proved later. Assuming this is true, at the start of the
for loop, σ(P ′) > 0. Now, consider an iteration of the
for loop. If σ(P ′) ≥ 0, add to it a negative integer ni, if
such ni exists in N ′. If all ni ∈ N ′ are positive, then we
add the each of them as a singleton set in P. We also
add the current U ′ to P, and terminate. Note that this
satisfies the required properties.

Otherwise, if σ(P ′) < 0, we add a positive ni to it. We
will prove later that σ(N ′) ≥ 0 at any point. Assuming
this holds, such ni ∈ N ′ must exist. Furthermore, since
1 ≤ |ni| ≤ r + 1 for any ni ∈ N . Therefore, at the end
of the for loop (line 16), it holds that |σ(P ′)| ≤ r + 1.
Therefore, in lines 18-20, we need to add at most r + 1
positive ni’s so as to make σ(P ) ≥ 0. Therefore, at line
21, |P | ≤ 2(r + 1).

Note that in each iteration except possibly the last,
the size of N ′ decreases by at least r + 1. Also, |N ′| ≤ t
at the beginning. If I denotes the number of iterations
of the outer while loop, then (I − 1) · (r + 1) ≤ t, which
implies that, I ≤ t

r+1 + 1. We prove by induction that
after iteration j of the while loop, σ(N ′) ≥ (r + 1) ·(

t
r+1 + 1− j

)
. This implies that for any 0 ≤ j ≤ I,

σ(N ′) ≥ 0 after iteration j. As for the base case, note
that σ(N) =

∑
ni∈N ni ≥ t+ r + 1.

Suppose the claim is true after iteration j − 1 of the
while loop. At this point, if the condition in line 5 holds,
then we add all sets in N ′ as well as the current P ′ to P ,
and the algorithm terminates, trivially proving the claim,
since N ′ = ∅. On the other hand, if we add P to P in

line 22, then σ(N ′) ≥ (r + 1) ·
(

t
r+1 + 2− j

)
− σ(P ) ≥

(r + 1) · ( t
r+1 − 1 + j), using the induction hypothesis

and the fact that σ(P ) ≤ r + 1.
Thus, P satisfies the required properties. Now, we

simply redefine P to be the corresponding partition of
the index set [t], which finishes the proof. �
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Affine invariant triangulations∗

Prosenjit Bose† Pilar Cano‡ Rodrigo I. Silveira§

Abstract

We study affine invariant 2D triangulation methods.
That is, methods that produce the same triangulation
for a point set S for any (unknown) affine transforma-
tion of S. Our work is based on a method by Nielson
[A characterization of an affine invariant triangulation.
Geom. mod, 191-210. Springer, 1993] that uses the in-
verse of the covariance matrix of S to define an affine
invariant norm, denoted AS , and an affine invariant tri-
angulation, denoted DTAS [S]. We revisit the AS-norm
from a geometric perspective, and show that DTAS [S]
can be seen as a standard Delaunay triangulation of a
transformed point set based on S. We prove that it
retains all of its well-known properties. In addition,
we provide different affine invariant order methods of
a point set S and of the vertices of a polygon P that
can be combined with well-known algorithms in order
to obtain other affine invariant triangulation methods
of S and P .

1 Introduction

A triangulation of a point set S in the plane is a geo-
metric graph such that its vertices are the points of S
and all of its faces (except possibly the exterior face)
are triangles. Triangulations of point sets are of great
interest in different areas such as approximation theory,
computational geometry, computer aided geometric de-
sign, among others [4, 5, 7]. In particular, the compu-
tation of triangulations that are optimal with respect
to certain criteria has been widely studied. One of the
most popular triangulations is the Delaunay triangula-
tion, denoted DT [S], defined by having a triangle be-
tween any three points in S if their circumcircle contains
no other point of S. This triangulation has the property
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ported by CONACyT. R.S. was supported by MINECO through
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Figure 1: The points on the left correspond to an affine
transformation of the points on the right, where each
point is mapped to the point with the same color. The
DT and MWT (equal in this case) differ between the
left and right points, hence they are not affine invariant.

that it maximizes the minimum angle of all the angles
of the triangles in the triangulation, which allows it to
avoid narrow triangles. Other properties include the
containment of the minimum spanning tree, closest pair
of points, and being a constant spanner. For a survey
see [2]. Another famous triangulation is the minimum
weight triangulation, denoted MWT , which minimizes
the sum of the length of its edges. The Delaunay trian-
gulation may fail to be a minimum weight triangulation
by a factor of Θ(n) where n is the size of S [15].

A property that is very important in areas like graph-
ics and computer aided geometric design is affine in-
variance. In the context of triangulations, consider
a triangulation algorithm T , which given a point set
S computes a triangulation T (S). We say that T is
affine invariant if and only if for any invertible affine
transformation α (see Section 2 for a formal definition),
the triangulations α(T (S)) and T (α(S)) are the same;
i.e., triangle 4(pqr) is in T (S) if and only if triangle
4(α(p)α(q)α(r)) is in T (α(S)). Note that α is not
known to the triangulation procedure.

It is easy to see that neither the Delaunay nor the
minimum weight triangulation is affine invariant in gen-
eral (see Fig. 1). This is because non-uniform stretching
can make a point previously outside of a circumcircle
become inside, or increase edge lengths non-uniformly.

Affine invariance is also important in the analysis and
visualization of data, to guarantee for instance that dif-
ferent units of measurement do not influence the trian-
gulation computed. For this reason, Nielson [17] defined
an affine invariant normed metric AS of a point set S,
denoted AS-norm, where for each point v ∈ S and any
affine transformation α, AS(x) = Aα(S)(α(x)). The AS-
norm produces ellipses (see Fig. 2) as the boundary of
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(a) Point set S (b) Point set S′

Figure 2: Point set S′ is an affine transformation of
S. Each color of the ellipses represents the correspond-
ing boundary of the A-disk centered at the red point
(mean) and containing the corresponding point of each
transformation.

the AS-norm disk and using this notion Nielson [18]
defined an AS-Delaunay triangulation that is affine in-
variant. Nielson’s approach does not distinguish if the
point set is rotated or reflected. While this is not an is-
sue to obtain an affine invariant Delaunay triangulation,
it makes the method unsuitable to construct other tri-
angulations or geometric objects, like the ones discussed
in Sections 4 and 5. Surprisingly, it seems that this vari-
ant of the Delaunay triangulation, and the whole topic
of affine invariant geometric constructions, has gone vir-
tually unnoticed in the computational geometry litera-
ture.

Our work. We revisit the AS-norm and explain the
geometry behind it in order to understand how the AS-
Delaunay triangulation behaves. We show that such
triangulations have a spanning ratio related to the span-
ning ratio of standard Delaunay triangulations, and that
the hierarchy subgraphs of the AS-Delaunay triangula-
tion is affine invariant. In addition, we show how to use
the AS-norm to compute different affine invariant or-
derings of a point set (radial order, sweep line ordering,
and a polygon traversal ordering). Using these affine in-
variant orderings as subroutines, we can adapt standard
geometric algorithms for computing a triangulation of a
point set or a polygon to become affine invariant. Due
to space constraints we omitted some proofs.

2 Preliminaries

A norm of a vector space X is a nonnegative function
ρ : X → R+ with the properties that for all λ ∈ R+ and
u, v ∈ X: (a)ρ(u+ v) ≤ ρ(u) + ρ(v), (b) ρ(λv) = λρ(v)
and, (c) if ρ(v) = 0 then v = 0 is the zero vector.
A metric is a nonnegative function d : X × X → R+

where X is a set such that for all u, v, w ∈ X the fol-
lowing properties hold: (a) d(u, v) = 0 ⇐⇒ u = v,
(b) d(u, v) = d(v, u) and, (c) d(u,w) ≤ d(u, v)+d(v, w).

When a metric defines a norm, then it is called a normed
metric. Let N be a normed metric, then the N -disk DN

centered at c ∈ X with radius r is the set of points in
X within N -distance r from c, i.e., DN = {x : x ∈ X
and N(x−c) ≤ r}. When the radius is 1 then we call it
a unit N -disk. An affine transformation α : X → Y is
of the form α(x) = Mx + b where X is an affine space
mapped to another affine space Y , denoted Y = α(X),
and M is a linear transformation on each vector in X
plus a translation by vector b in α(X). In this paper
we will work in R2, i.e., X = Y = R2, M is a matrix
in R2 × R2 and b is a vector in R2. For the rest of
this paper we will not distinguish a point from a vector
unless notation is confusing and we will assume that α
is invertible, i.e., it is a non degenerate function and
det(M) 6= 0. The following proposition states some well
known properties of affine transformations.

Proposition 1 [6] Let α(x) = Mx + b be an affine
invertible transformation on the affine space X and let
S be a point set in X. Then the function α

1. maps lines (line segments) to lines (line segments),
2. preserves parallelism between lines and segments,
3. maps a simple n-gon to a simple n-gon,
4. preserves the ratio of lengths of two parallel seg-

ments, and
5. maps the mean of S to the mean of α(S).

Using similar arguments as the ones for showing Prop-
erty 4 in Proposition 1, it can be shown that order
types are preserved up to a change of sign. This is
shown by checking for each triple u, v, w ∈ S, the signed
area of the triangles 4(uvw) and 4(α(u)α(v)α(w))
given by the cross product in the following equation
α(u− v)× α(w − v) = det(M)((u− v)× (w − v)).

Let S = {v1, v2, . . . , vn} be an n-point set in the plane
where the coordinates of each point vi ∈ S are denoted
by (xi, yi).

Nielson [17] defines an affine invariant normed metric,
that we call AS-norm, in the following fashion.

Let

µx =

n∑

i=1

xi

n
, µy =

n∑

i=1

yi

n
, σ2

x =

n∑

i=1

(xi − µx)2

n

σ2
y =

n∑

i=1

(yi − µy)2

n
, σxy =

n∑

i=1

(xi − µx)(yi − µy)

n
.

Note that the mean µ = (µx, µy) is the barycen-
ter of S. The covariance matrix of a point set

S is defined as Σ =

(
σ2
x σxy

σxy σ2
y

)
and the matrix

Σ−1= 1
σ2
xσ

2
y−σ2

xy
·
(

σ2
y −σxy

−σxy σ2
x

)
is the inverse of Σ.

251



CCCG 2019, Edmonton, Canada, August 8–10, 2019

Then, the AS-norm metric is defined as,

AS(x, y)=(x y)Σ−1

(
x
y

)
.

The matrix Σ−1 is also known as the concentration
matrix, which defines a norm with respect to the nor-
mal distribution defined by S. The eigenvectors of Σ are
the same of Σ−1 and such vectors define the principal
orthogonal directions of how spread is the point set with
respect to its mean (barycenter) µ. In other words, if we
compute the Gaussian manifold defined by the bivariate
normal distribution given by the point set S and then
cut the Gaussian manifold with a plane parallel to the
plane z = 0, then we obtain an ellipse. See Figure 2.
Such an ellipse has principal orthogonal axes defined
by the eigenvectors of Σ−1. Thus, the boundary of an
AS-disk will be defined by a homothet of the result-
ing ellipse where the boundary of the unit AS-disk will
be represented by the ellipse with principal axes being
parallel to the eigenvectors of Σ−1 and the magnitude
of each principal axis will be given by the square root
of the eigenvalue of the corresponding unit eigenvector.

The N -Delaunay triangulation of S, denoted
DTN [S], is defined in the following fashion. For any
three points pi, pj , pk in S add the triangle 4(pipjpk)
if there exists an N -disk containing the three points on
its boundary and there is no other point of S in its inte-
rior. So, the L2-Delaunay triangulation is the standard
Delaunay triangulation, simply denoted DT [S]. We say
that a point set S is in general position if no three points
are collinear and all points in S are at different AS-norm
distances from the mean µ.

Using that the boundary of the AS-disk is an ellipse,
Nielson uses the AS-Delaunay triangulation and shows
the following.

Theorem 2 (Nielson [18]) The triangulation repre-
sented by DTAS [S] is affine invariant.

3 The AS-Delaunay triangulation revisited

In this section we discuss the connection between the
standard Delaunay triangulation and the AS-Delaunay
triangulation.

Consider the 2×n matrix N such that for each point v
in S there is one column in N represented by the vector
v − µ. Then, one can check that Σ = 1

nNN
T . So, if

a point set S′ = α(S) and α(v) = Mv + b with v ∈ S,
is an affine transformation of the point set S, then its
mean is given by α(µ) and the covariance matrix Σ′ of
S′ is given by Σ′ = MΣMT .

Since S is in general position, det(Σ) 6= 0. Thus, Σ
is invertible. Moreover, since Σ is a square symmetric
matrix, Σ = QΛQT where Q is the matrix of eigen-
vectors of Σ, Λ is the diagonal matrix of eigenvalues
and Q−1= QT . Therefore, we can also rewrite the co-
variance matrix as Σ = (QΛ

1
2 )(QΛ

1
2 )T . Moreover, Q

represents a rotation matrix and Λ
1
2 the scaling factor

of a point set with covariance matrix as the identity ma-
trix I. Looking carefully at this representation of Σ and
Σ′ above we obtain that (QΛ

1
2 )−1S is an affine trans-

formation of S with I as its covariance matrix. Thus,
the unit A

(QΛ
1
2 )−1S

-disk is given by the Euclidean unit

disk. This implies that the A
(QΛ

1
2 )−1(S)

-Delaunay tri-

angulation of (QΛ
1
2 )−1S is given by the L2-Delaunay

triangulation of (QΛ
1
2 )−1S, which together with Theo-

rem 2 proves the following proposition.

Proposition 3 Let S be a point set in general position
in R2 and let Σ = QΛQT be its covariance matrix. Then
DT [(QΛ

1
2 )−1S] = DTAS [S].

A nice implication of Proposition 3 is that the AS-
Delaunay triangulation behaves in many ways like
a standard Delaunay triangulation. For instance,
straightforward properties are that the DTAS [S] con-
tains a perfect matching when |S| is even, and that the
graph is 1-tough, we refer to Dillencourt [8].

Given a weighted graph G = (V,E) and real number
t ≥ 1, a t-spanner of G is a spanning subgraph G′ such
that for every edge xy in G, there exists a path from
x to y in G′ whose weight is no more than t times the
weight of the edge xy in G. When G′ is a t-spanner
of the complete graph and each edge is weighted with
its Euclidean length, we denote t = sr(G′) and we sim-
ply say that G′ is a spanner if sr(G′) is finite. It is
known that the standard Delaunay triangulation is a
spanner, see [9, 14, 19]. The following theorem shows
that DTAS [S] is a spanner.

Theorem 4 Let S be a point set in general posi-
tion and let Σ = QΛQT be the covariance ma-
trix of S. Let λmax and λmin be the maximum
and minimum eigenvalues of Σ, respectively. Then,

sr(DTAS [S])≤
(
λmax

λmin

) 1
2 ·sr(DT [(QΛ

1
2 )−1S]).

Proof. Let S′ = (QΛ
1
2 )−1S. DT (S′) is a standard

Delaunay triangulation. For any pair of points u, v ∈
S′ let δuv be a shortest path from u to v contained in

DT (S′). Thus,

∑
(pi,pj)∈δuv d(pi,pj)

d(u,v) ≤ sr(DT [S′]).
Note that the only thing that changes the spanning

ratio is when the graph DT (S′) is stretched with differ-
ent scaling factors in the x- and y-coordinates. As dis-
cussed previously, such scaling is defined by the square
root of the eigenvalues of Σ given in the diagonal ma-
trix Λ. Hence, for any u, v ∈ S′ we have d(Λ

1
2u,Λ

1
2 v) ≤

λ
1
2
max·d(u, v) and d(Λ

1
2u,Λ

1
2 v)≥λ

1
2

min·d(u, v). Therefore,

sr(DTAS [S])≤(λmax

λmin
)

1
2 ·sr(DT [S′]). �

3.1 Hierarchy of affine invariant subgraphs

Let N be a normed metric and S be a point set in
general position. The N -Gabriel graph of S, denoted
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GGN [S], is defined with S as vertex set and for each
pair of points u, v ∈ S, the edge uv is in GGN [S] iff
there exists an N -disk of radius N(u−v)/2 containing u
and v on its boundary and no other point of S. In other
words, the edge uv is in GGN [S] if a smallest N -disk
containing u and v contains no other point of S. If the
boundary of the N -disk is defined by a smooth convex
shape, then the N -disk of radius N(u−v)/2 containing
u and v is unique. The N -relative neighborhood graph
of S, denoted RNGN [S], is the graph with vertex set
S and for each pair of points u, v ∈ S, the edge uv is
in RNGN [S] iff N(u−v) ≤ max{N(u−w), N(v−w)} for
any w ∈ S. Consider the complete weighted graph G
with vertex set S such that the weight of each edge is
the N -distance between its endpoints. An N -minimum
spanning tree of S, denoted MSTN [S], is a spanning
tree of G with minimum total edge length. When
the boundary of the N -disk defines a convex shape
in the plane, Aurenhammer et. al. [3] proved that
MSTN [S]⊆RNGN [S]⊆GGN [S]⊆DTN [S]. The follow-
ing result shows that the subgraphs of the AS-Delaunay
triangulation are affine invariant.

Theorem 5 The MSTAS [S], RNGAS [S] and
GGAS [S] are affine invariant graphs.

Proof. Let α(S) be an affine transformation of
S. Let us show first that MSTAS [S] is preserved
under affine transformations. Let W (MSTAS [S])
denote the weight of MSTAS [S] and let ST
be an arbitrary spanning tree of S. Thus,∑
uv∈MSTAS [S]AS(u − v) = W (MSTAS [S]) ≤

W (ST ) =
∑
xy∈ST AS(x − y). From Property 1 of

Proposition 1, α(u)α(v) = α(uv) ∈ α(MSTAS [S])
for any edge uv in MSTAS [S]. Since the AS-
norm is affine invariant, W (α(MSTAS [S])) =∑
α(u)α(v)∈α(MSTAS [S])Aα(S)(α(u)−α(v)) =∑
uv∈MSTAS [S]AS(u−v) = W (MSTAS [S]). Let ST ′

be a spanning tree of α(S). Let xy be an edge in ST ′,
from Property 1 of Proposition 1, α−1(x)α−1(y) =
α−1(xy) ∈ α−1(ST ′). Then, W (α(MSTAS [S])) =
W (MSTAS [S]) ≤ W (α−1(ST ′)) =∑
α−1(x)α−1(y)∈α−1(ST ′)AS(α−1(x)−α−1(y)) =∑
xy∈ST ′ Aα(S)(x−y) = W (ST ′). Therefore,

α(MSTAS [S]) is a minimum spanning tree of α(S).
Now, we show that RNGAS [S] is affine invariant. Ev-

ery edge uv is in RNGAS [S] if and only if AS(u−v) ≤
max{AS(u−w), AS(v−w)} for all w ∈ S. Since
the AS-norm is affine invariant, Aα(S)(α(u)−α(v)) ≤
max{Aα(S)(α(u)−α(w)), Aα(S)(α(v)−α(w))} for any
w ∈ S if and only if the edge α(u)α(v) is in
RNGAα(S)

[α(S)]. Thus, RNGAS [S]=RNGAα(S)
[α(S)].

It remains to show that GGAS [S] is affine invari-
ant. Let uv be an edge in GGAS [S], thus the AS-
disk of radius AS(u−v)/2 containing u and v con-
tains no other point of S. Now, assume for the sake

of a contradiction that the edge α(u)α(v) is not in
GGAα(S)

[α(S)]. Hence, there exists a point w ∈ α(S)
inside the Aα(S)-disk of radius Aα(S)(α(u)−α(v))/2 con-
taining α(u) and α(v). Let c be the center of such Aα(S)-
disk. Then, Aα(S)(c−w) ≤ Aα(S)(α(u)−α(v))/2. Since
the AS-norm is affine invariant, the AS-disk of radius
AS(u−v)/2 containing u and v is centered at α−1(c). In
addition, AS(α−1(c)−α−1(w)) ≤ AS(u−v)/2. There-
fore, α−1(w) is in the AS-disk of radius AS(u−v)/2 con-
taining u and v, which contradicts that uv is an edge in
GGAS [S]. With similar arguments, it is shown that if
u′v′ is an edge in GGAα(S)

[α(S)] then α−1(u′)α−1(v′) is
in GGAS [S]. �

4 Other affine invariant triangulations of point sets

In this section we present two affine invariant triangu-
lations of a point set in general position S.

4.1 An affine invariant Graham triangulation

One of the most popular algorithms for computing the
convex hull of a point set S is Graham’s scan [13]. A nice
property of this algorithm is that a modification of the
algorithm can also produce a triangulation, sometimes
called the Graham triangulation [11]. In this section
we present an affine invariant version of Graham’s scan
using the AS-norm metric. Our method is based on the
algorithm for Graham triangulation by Fabila-Monroy
and Urrutia [11]. Their method consists of choosing a
point p and adding edges from p to the rest of the points,
then visiting in radial order from p each remaining point
v, edge vu is added if u is visible from v, for each u
different from p and v.

The Graham triangulation can be computed in lin-
ear time when S is radially ordered. Moreover, since
the edges of the triangulation are added according to
the radial ordered of S, it follows that if the radial or-
der is affine invariant, then the triangulation is affine
invariant. Notice that mapping S to the Euclidean dis-
tance in the AS-norm and then radially sorting is not
enough since for any affine transformation α the result-
ing point sets of the affine transformations (QΛ

1
2 )−1S

and (Q′Λ′
1
2 )−1α(S) are the same up to rotations and

reflections, where Σ = QΛQT and Σ′ = Q′Λ′Q′T are
the covariance matrices of S and α(S), respectively.

We will say that a point u is the AS-closest point to
µ if u minimizes the AS distance to µ.

Observation 6 Let S be a point set in general position
with mean µ and let α(S) be an affine transformation
of S with mean µ′. The k-th AS-closest point to µ is
mapped to the k-th Aα(S)-closest point to µ′.

Using Observation 6, we show that the following ra-
dial order is affine invariant.
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p1
p2

p3
p0

p4 p5

p6 p0

p1 p2

p3

p4p5

p6

Figure 3: An affine invariant ordering of the point sets
S (left) and its affine transformation S′=α(S) (right).

RadiallyOrder(S): Let µ be the mean of S, p be
the AS-closest point to µ. Let q be the second AS-
closest point to µ if it is not on the line defined by µ and
p. Otherwise, let q be the third AS-closest point to µ.
If q is on the right of −→pµ, then sort S clockwise radially
from −→pµ and p0 = p. Otherwise, sort S counterclockwise
radially from −→pµ and p0 = p [See Fig. 3].

Theorem 7 RadiallyOrder computes an affine in-
variant radial order of any point set S in general posi-
tion.

Proof. [sketch] Let S be a point set in general position
and let µ and p be the mean and AS-closest point to
µ, respectively. Let q be the second AS-closest point
to µ if it is not on the line defined by µ and p. Oth-
erwise, let q be the third AS-closest point to µ. Let
p0 = p, p1, . . . , pn−1 be the order of S given by Radial-
lyOrder(S). Let α be an affine transformation. Let
µ′ be the mean of α(S). By Property 5 from Propo-
sition 1, α(µ) = µ′ is the mean of α(S). Let p′ be
the Aα(S)-closest point to µ′. Let q′ be the second
Aα(S)-closest point to µ′ if it is not on the line defined
by µ′ and p′. Otherwise, let q′ be the third Aα(S)-
closest point to µ′. By Observation 6, α(p) = p′ and
α(q) = q′. Let p′0, p

′
1, . . . , p

′
n−1 be the order of α(S)

given by RadiallyOrder(α(S)). We know from be-
fore p′0 = p′ = α(p = p0). It remains to show that
p′i = α(pi) for all 1 ≤ i ≤ n − 1. If α contains an
even number of reflections then the directions (clock-
wise/counterclockwise) are preserved. The order types

are preserved, so q′ is on the same side
−−→
p′µ′ as q is with

respect to −→pµ. Thus, the radial order is the same. When
α contains an odd number of reflections the order types

are inverted. Hence, q′ is on different side of
−−→
p′µ′ as q

from −→pµ. Therefore, the direction will be inverted for
all points in the algorithm and the order will be pre-
served. �

The following result is an implication of Theorem 7.

Corollary 8 There exists an affine invariant Graham
triangulation for any point set S in general position.

4.2 An affine invariant Hamiltonian triangulation

When the point set S has at least one point in the in-
terior of its convex hull, then S can be triangulated by
the insertion method, which consists of computing the
convex hull of S and then inserting points from the inte-
rior in arbitrary order. Every time a point v is inserted,
the edges connecting v with the points defining the face
that contains v are added.

Note that since the convex hull of a point set is pre-
served under affine transformations, follows that if the
points that are in the interior of the convex hull are
inserted in an affine invariant order, then the insertion
method computes an affine invariant triangulation of S.
Hence, applying the insertion method to S such that
the interior points in the convex hull of S are inserted
in the order given by RadiallyOrder computes an
affine invariant triangulation.

These triangulations are Hamiltonian, i.e., their du-
als 1 contain a Hamiltonian path, and are of interest for
fast rendering in computer vision [1, 11].

5 Affine invariant triangulations of polygons

In this section we present two affine invariant triangu-
lations of any simple polygon P .

5.1 An affine invariant triangulation by ear clipping

An ear of a polygon is a triangle formed by three consec-
utive vertices p1, p2 and p3 such that the line segment
p1p3 is a diagonal2 of the polygon. It is a well-known
fact that every simple polygon contains two ears (see
Meisters [16]). By recursively locating and chopping
an ear, one can triangulate any simple polygon. This
method is known as ear clipping.

It follows from Properties 1 and 3 of Proposition 1
that the diagonals of a simple polygon are preserved
under affine transformations. Thus, the ears of a sim-
ple polygon are also preserved. Hence, if the ear clip-
ping procedure locates an ear by traversing P in an
affine invariant order, then such procedure computes
an affine invariant triangulation of P . The traversal of
P in an affine invariant order depends only on finding
an affine invariant starting point, and on deciding cor-
rectly whether to traverse it clockwise or counterclock-
wise. The latter depends only on whether the affine
transformation contains an odd number of reflections.

Let P have vertex sequence S := {v1, . . . , vn} such
that S is in general position. Consider the following
traversal of P . Traversal (P): Let µ be the mean of
S and let p0 be the AS-closest point to µ. Let q be the

1The dual of a graph G has as vertices the faces of G and an
edge between vertices is added if the two faces in G share an edge.

2A diagonal of a polygon is a line segment between two non-
consecutive vertices that is totally contained inside the polygon.
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Figure 4: An affine invariant traverse ordering of two
simple polygons with point set S and α(S) from Fig. 2.

second AS-closest point to µ. If q is on the left of −→µp0,
then order S by traversing P from p0 in counterclock-
wise order. Otherwise, order S by traversing P from p0

in clockwise order. See Fig. 4.
Using arguments similar to the ones used to prove

Theorem 7, we show that Traversal is affine invariant.

Theorem 9 Let P be a simple polygon such that its
vertices are in general position. Traversal(P) is
affine invariant.

The following result is an implication of Theorem 9.

Corollary 10 Let P be a simple polygon such that its
vertices are in general position. There exists an ear clip-
ping triangulation of P that is affine invariant.

5.2 An affine invariant triangulation by sweep-line

A simple polygon P is monotone with respect to a line
` if for any line `⊥ perpendicular to `, the intersection
of P with `⊥ is connected. A line ` divides the plane
into two half planes, and we say that two points lie on
the same side of ` if they lie on the same half plane.
Let v be a vertex of P and `v be the line containing v
that is parallel to `. We say that v is an `-cusp if v is a
reflex vertex of P and its neighbors in P lie on the same
side of `v. A characterization of a monotone polygon is
that a polygon is `-monotone if and only if it does not
contain an `⊥-cusp (see Edelsbrunner et. al. [10]).

An `-monotone polygon can be triangulated by
sweeping its vertices with line `⊥ (see, e.g., Garey et.
al. [12]). If P is not `-monotone, one can first split it into
`-monotone subpolygons by adding diagonals to break
all `⊥-cusps. Then each resulting `-monotone polygon
can be triangulated independently. See Figure 5. It
can be shown that if two vertices of P lie on the same
side with respect to `⊥, then the corresponding ver-
tices in α(P ) lie again on the same side with respect
to α(`⊥). Using this fact, we show that `⊥-cusps are
preserved under affine transformations. Therefore, if P

p
q

t

b
p′

q′

t′

b′

Figure 5: Each colored line is a line parallel to the black
line containing the corresponding A-closest point and
mean. The red diagonals partition the simple polygon
into monotone polygons. Each diagonal contains a cusp
with respect to the black line. Each color corresponds
to the same line in the transformation.

is `-monotone and `⊥ is perpendicular to `, then α(P )
is `∗-monotone where `∗ is perpendicular to α(`⊥).

Thus in order to compute an affine invariant triangu-
lation of P it remains to give an affine invariant sweep
line order of its vertices. In order to define an affine
invariant sweep line order of a point set in general point
set S, we use the line `⊥ defined by the mean of S and
its AS-closest point. Using the second AS-closest point
to the mean we determine the direction of the sweep
with `⊥ (see Figure 5). The following theorem shows
that such ordering is affine invariant.

Theorem 11 There exists an affine invariant sweep
line ordering of any point set S in general position.

6 Conclusions

In this paper we initiated the study of affine invariant
geometric algorithms, a topic absent in the computa-
tional geometry literature. We revisited Nielson’s affine
invariant norm, which geometrically, the AS-disk rep-
resents how spread is the point set with respect to its
mean. We also proposed affine invariant point sorting
methods, which are necessary for other affine invariant
geometric constructions. Our methods heavily rely on
being able to distinguish three points. To this end, we
used the AS-norm. However, for this we had to require
that all the points are at different AS-distances from the
mean. Otherwise, the point set becomes highly symmet-
ric, which introduces a problem of indistinguishability.
An interesting open question is to what extent such re-
striction can be removed, while still being able to dis-
tinguish rotations and reflections. In addition, finding
affine invariant methods to construct other geometric
objects is a promising direction for future research.
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Flipping in Spirals

Sander Verdonschot∗

Abstract

We study the number of edge flips required to transform
any triangulation of a spiral polygon into any other. We
improve the upper bound from 4n−6 to 3n−9 flips and
show a lower bound of 2n − 8 flips. Instead of using a
single canonical triangulation as the intermediate point
in the transformation between two triangulations, we
use a family of closely-connected triangulations.

1 Introduction

This paper deals with edge flips in triangulated spiral
polygons. In a triangulated polygon, an edge flip (or
just flip) replaces an internal edge whose incident trian-
gles form a convex quadrilateral with the other diagonal
of that quadrilateral (see Figure 1). The flip distance
between two triangulations is the minimum number of
flips required to transform one into the other. Since
their introduction by Wagner in 1936 [11], flips have
been studied extensively [1]. One of the seminal results
in the area is a tight bound on the flip distance be-
tween two triangulations of an n-vertex convex polygon.
Sleator, Tarjan, and Thurston showed that 2n−10 flips
suffice and are sometimes necessary [10]. This is one of
the only settings for which matching upper and lower
bounds are known.

e f

Figure 1: A triangulated spiral polygon where edge e
can be flipped to f .

Spiral polygons are polygons with a single contiguous
group of reflex vertices. They can be considered the next
step up in complexity from convex polygons. Hanke [5]
showed that 2(n+nC − 2) flips suffice to transform any
triangulation of a spiral polygon with nC convex vertices
into any other. Her proof follows a typical pattern: first
define a canonical triangulation of your polygon, then
show that any other triangulation can be transformed

∗Shopify, sander.verdonschot@gmail.com

into the canonical triangulation using x flips. Since flips
are reversible (if a flip replaces an edge e with f , flip-
ping f in the resulting triangulation gives us back e),
this gives an upper bound of 2x flips between any pair
of triangulations, T1 and T2, by combining the flip se-
quence from T1 to the canonical triangulation with the
reversed flip sequence from T2 to the canonical trian-
gulation. Hanke’s canonical form makes certain convex
vertices incident to all vertices they can see. In Sec-
tion 3.1 we show that this requires at least 2n − O(1)
flips, which means that this technique can never give a
worst-case upper bound below 4n − O(1). Our proof
also gives a lower bound of 2n−8 on the worst-case flip
distance between two triangulated spiral polygons.

In Section 3.2, we show how to break the 4n bar-
rier. Using a family of canonical triangulations instead
of a single triangulation, we prove an upper bound of
3n − 9 flips. To the best of our knowledge, this is one
of the first upper bounds on flip distance that avoids
the use of a single intermediary triangulation. The only
other such result we know of is by Hanke, Ottmann,
and Schuierer [6], who show that the flip distance be-
tween two triangulations of a set of points in the plane is
bounded by the number of intersections of their edges.

1.1 Related work

Hurtado, Noy, and Urrutia [7] use Hanke’s linear bound
on the flip distance between triangulations of a spiral
polygon1 to prove an O(n + n2

R) bound on the flip dis-
tance between triangulations of general polygons with
nR reflex vertices. They also prove an Ω(n2) lower
bound on the flip distance between two triangulations of
a polygon with two reflex chains. This suggests that spi-
ral polygons could hold a special position as the largest
natural class of polygons with a linear flip distance.

Spiral polygons have also been studied in the setting
where each edge has a unique label and a flip trans-
fers the label of the flipped edge to the new edge. In
this setting, it is no longer possible to transform any
labelled triangulation into any other, since there may
not exist any sequence of flips that moves one edge to
its counterpart with the same label, for example if there
is an unflippable edge that separates the two. However,

1The conference version of their paper contains an incorrect
proof of a 2n− 6 upper bound on the flip distance between trian-
gulations of a spiral polygon, but they refer to Hanke’s result in
the journal version.
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Bose et al. [2] show that this necessary condition is also
sufficient: if each edge individually can be flipped to its
matched counterpart, the entire triangulation can be
transformed into the target triangulation. Whether the
same was true for more complex triangulations was un-
known, until Lubiw, Masárová, and Wagner [8] recently
proved that it is also true for triangulations of sets of
points in the plane.

2 Preliminaries

Before we can get into the meat of the proofs, we need
some definitions.

Let P be a spiral polygon. The n vertices of P form
one convex chain C = c1, c2, . . . , c|C| and one reflex
chain R = r1, r2, . . . , r|R| such that n = |C| + |R|, and
c1 and c|C| are adjacent to r1 and r|R|, respectively (see
Figure 2).

c1

c2
c3

c4

c5c6

c7

c8

r1

r2

r3
r4

Figure 2: A spiral polygon.

One of the most useful properties of convex poly-
gons is that splitting them along a chord results in
two smaller convex polygons. The same holds for spiral
polygons.

Lemma 1 Inserting any chord into a spiral polygon P
splits P into two smaller spiral polygons.

Proof. It is well-known that inserting a chord into a
polygon splits it into two smaller polygons, so we only
need to show that both parts (say P1 and P2) are still
spiral polygons. This is determined by the interior an-
gles of their vertices, which are the same as in P , except
for the endpoints of the inserted chord. At each end-
point, the interior angle is divided between P1 and P2,
which means they can only get smaller. In particular,
any reflex vertex of P1 or P2 is also a reflex vertex of P .
Thus, if the chord connects two convex vertices of P , P1

is a convex polygon, while P2 is a spiral polygon with
the same reflex chain as P . On the other hand, if the
chord connects a convex vertex of P to a reflex vertex
r, it splits the reflex chain so that part of it goes to P1

and part to P2. But since r is the only reflex vertex
whose angle was changed, and it is now adjacent to a

convex vertex in both pieces, there will still be at most
one reflex chain in each piece, regardless of whether r
is reflex or convex in P1 and P2. Thus, both P1 and P2

are spiral polygons. �

We now turn our attention to visibility. We say that
two vertices of P see each other if the line segment con-
necting them does not intersect the exterior of P . The
visibility graph of P is the graph whose vertices are the
vertices of P , with an edge between two vertices if and
only if they see each other. Our interest in visibility
graphs stems from the observation that the triangula-
tions of a polygon P are the maximal plane subgraphs
of the visibility graph of P .

Everett and Corneil [4] classified the visibility graphs
of spiral polygons. For our purposes, their most impor-
tant findings are the following.

1. Every reflex vertex sees at least one convex vertex,
and vice versa.

2. For each vertex v, the set of convex vertices seen by
v is contiguous along C. Likewise, the set of reflex
vertices seen by v is contiguous along R.

3. Every two vertices a and b that do not see each
other have a blocking reflex vertex : a reflex vertex r
such that no two vertices x and y with x ∈ [a, . . . , r)
and y ∈ (r, . . . , b] (along the boundary of the poly-
gon) see each other.

4. The visibility graph does not contain a chordless
cycle of length 4 or greater.

We use these properties to prove two useful lemmas.

ci cj

ra rb

Figure 3: If ci sees rb and cj sees ra, then ci sees cj , ci
sees ra, and cj sees rb.

Lemma 2 If a convex vertex ci sees a reflex vertex rb
and a later convex vertex cj sees an earlier reflex ver-
tex ra, then ci sees cj, ci sees ra, and cj sees rb (see
Figure 3).

Proof. Suppose, for a contradiction, that ci does not
see cj . Then they have a blocking reflex vertex x. If
x lies before rb, it is not a blocking vertex since (ci, rb)
connects the chain [ci, x) to the chain (x, cj ]. On the

258



CCCG 2019, Edmonton, Canada, August 8–10, 2019

other hand, if x is rb itself or lies after rb, (cj , ra) con-
nects the chain [ci, x) to the chain (x, cj ]. Thus, no such
blocking vertex can exist and ci and cj must see each
other.

To prove that ci sees ra, imagine inserting the chord
(cj , ra). By Lemma 1, this subdivides the polygon into
two smaller spiral polygons, so consider the piece con-
taining ci. This is either a convex polygon – in which
case ci definitely sees ra – or another spiral polygon.
Since ci is still a convex vertex, it must see some re-
flex vertex rx that is either ra itself, or comes before ra.
Note that all reflex vertices in the smaller polygon were
reflex vertices in the original polygon, and if ci sees rx
in the smaller polygon, it also sees rx in the original
polygon. Thus, ci either sees ra, or it sees a reflex ver-
tex before ra. But we know that it also sees rb and that
the set of reflex vertices it sees is contiguous. Thus, ci
must see ra. An analogous argument shows that cj sees
rb. �

Lemma 3 Let ci and cj be two convex vertices that see
each other, with i < j. Let r be the last reflex vertex ci
sees. Then cj sees r too.

Proof. Let r′ be the first reflex vertex that cj sees. If r′

lies before r, then cj sees r by Lemma 2. On the other
hand, if r′ lies after r, then cir . . . r

′cj forms a chordless
cycle of length 4 or greater in the visibility graph, which
is impossible by Everett and Corneil’s result. Therefore
cj must see r. �

3 Flip distance

With the preliminaries out of the way, we are ready
to bound the number of flips needed to transform any
triangulation of a spiral polygon into any other. We
begin with a simple lower bound.

3.1 Lower bound

c1

c2
r cn−1

cn−2

Figure 4: A spiral polygon where most edges need to be
flipped twice to become incident to c1.

Theorem 4 For any n > 4, there is an n-vertex tri-
angulated spiral polygon where at least 2n − 8 flips are
required to connect c1 to all vertices it sees.

Proof. Consider a spiral polygon with a single reflex
vertex r, such that all vertices other than the two neigh-
bours of r are visible to all vertices (see Figure 4). In
the initial triangulation, cn−1 is connected to all convex
vertices except for c1, and c2 is connected to r. In the
final triangulation, c1 is connected to all convex vertices
except for cn−1, and cn−2 is connected to r.

No edge cicn−1 can be flipped directly to an edge c1cj ,
since any quadrilateral c1cicjcn−1 contains r. Thus,
each internal edge needs to be flipped at least twice, save
for c2r and one edge that ends up incident to r. This
gives us the desired bound of 2(n− 3)− 2 = 2n− 8. �

By adding additional vertices near c1, this argument
can be adapted to show a similar lower bound for strate-
gies that connect the first reflex vertex or the i-th convex
vertex to all vertices it sees. It also gives a general lower
bound on the worst-case number of flips required.

Corollary 5 For any n > 4, there is an n-vertex spi-
ral polygon with two triangulations T1 and T2 such that
transforming T1 into T2 requires at least 2n− 8 flips.

3.2 Upper bound

Next we turn our attention to the upper bound. As with
many such proofs [3], we first transform each triangu-
lation into a form that is easier to work with, called a
canonical form. One significant difference between our
proof and most others is that our canonical form con-
sists of a family of triangulations, instead of a single
triangulation.

x1

x2

x3

x4

x5

Figure 5: A spiral polygon with its spine (dashed), fins
(darker) and body (lighter). Note that the spine in-
cludes part of the polygon boundary.

3.3 The canonical form

Let P be a spiral polygon. The spine of P starts at
c1, which we label x1, and continues to the last con-
vex vertex ci that x1 sees. We refer to ci as x2 and if
x2 = c|C|, we are done. Otherwise, we continue to the
last convex vertex cj that x2 sees and call it x3, and
so on (see Figure 5). Thus, the spine of P is a path
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X = x1, x2, . . . , x|X| such that for each i, xi+1 is the
last convex vertex visible from xi. The spine partitions
P into several convex polygons on one side, which we
call fins, and one spiral polygon on the other side, which
we call the body.

We say that a triangulation of a spiral polygon P is in
canonical form if all spine edges are present and every
internal edge is incident on a spine vertex2. Two trian-
gulations in canonical form are “close” in terms of flip
distance. We show how to transform one triangulation
in canonical form into another by flipping each edge at
most once. First, we introduce one more useful lemma.

v1 v2

vivi+1

vi−1

Figure 6: A binary star. All vertices see both v1 and v2
and all internal edges are incident on one of these two
vertices.

Lemma 6 Let P be a polygon with a boundary edge
(v1, v2) such that all other vertices of P see both v1 and
v2 (see Figure 6). Then any triangulation T1 of P where
all edges are incident to v1 or v2 can be transformed into
any other such triangulation T2 by flipping each edge in
T1 that is not in T2 exactly once.

Proof. The triangulations T1 and T2 are characterized
by the triangle incident on edge (v1, v2): fixing this tri-
angle fixes all other edges. Thus, we can uniquely label
each triangulation with the third vertex vi of this trian-
gle. Suppose that (v1, vi) is an internal edge. Then it
must be flippable, since all vertices see v2. After flipping
(v1, vi), we get triangulation vi+1. Similarly, if (v2, vi)
is an internal edge, flipping it yields triangulation vi−1.
Thus, if T1 has label va and T2 has label vb with a ≤ b,
it takes exactly b−a flips to transform T1 into T2. Since
each flipped edge was incident on v1 before the flip and
is not after the flip (or vice versa), no edge is flipped
twice. Thus, we flip each edge that differs between T1

and T2 exactly once. �

We refer to a triangulated polygon P with a boundary
edge (v1, v2) such that all other vertices of P see both
v1 and v2, and all internal edges are incident to either
v1 or v2, as a binary star.

2The second condition actually implies the first, but it is more
convenient for us to include both in the definition explicitly.

Lemma 7 In a spiral polygon, we can transform any
triangulation in canonical form into any other such tri-
angulation by flipping each non-spine edge at most once.

Proof. Recall that the spine partitions the polygon into
a number of convex polygons on one side (the fins) and
one spiral polygon on the other (the body). Since both
triangulations contain all spine edges, we can transform
each fin and the body independently. Each fin is a con-
vex polygon with a single spine edge on its boundary
and all internal edges are incident to a spine vertex.
Thus, each fin is a binary star and, by Lemma 6, we
can transform all fins by flipping each edge inside them
at most once. Now all that is left is transforming the
body. We show that this part, too, is composed of bi-
nary stars.

xi
xi+1

yi yi+1

r

Figure 7: A spine edge (xi, xi+1) with relevant reflex
vertices: yi is the last reflex vertex that xi−1 sees, yi+1 is
the same for xi, and r is the first reflex vertex that xi+1

sees. The black edges are present in all triangulations
in canonical form. Note that xi, r, . . . , yi+1, xi+1 forms
a binary star.

Consider a spine edge (xi, xi+1). Recall that xi+1 is
the last convex vertex that xi sees. Let yi+1 be the last
reflex vertex that xi sees. By Lemma 3, xi+1 sees yi+1

as well. We show that the edge e = (xi+1, yi+1) is not
intersected by any other chord and must therefore be
part of all canonical triangulations.

Suppose, for a contradiction, that a chord e′ inter-
sects e. Note that all chords in the body connect a
reflex vertex to a convex vertex. If e′ connects a re-
flex vertex before yi+1 to a convex vertex after xi+1, we
can apply Lemma 2 to e′ and xiyi+1 to conclude that
xi sees the convex vertex after xi+1: a contradiction.
Similarly, if e′ connects a reflex vertex after yi+1 to a
convex vertex before xi+1, xi would see the reflex vertex
after yi+1, yielding another contradiction. Since trian-
gulations are maximal plane graphs, (xi+1, yi+1) is part
of every canonical triangulation.

Let yi be the last reflex vertex seen by xi−1
(or r1 if i = 1) and consider the polygon Pi =
xi, yi, . . . , yi+1, xi+1. If xi+1 sees yi, all vertices on
yi, . . . , yi+1 see both xi and xi+1, making it a binary
star. If xi+1 does not see yi, let r be the first reflex
vertex that xi+1 sees. In this case, xi, r, . . . , yi+1, xi+1

forms a binary star, and all reflex vertices between yi
and r must be connected to xi in all canonical triangula-
tions. Thus, each Pi can be independently transformed
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by flipping each internal edge at most once. Since the
subpolygons Pi form a partition of the body, we can
transform the entire body by flipping each internal edge
at most once. �

3.4 Canonicalization

Now that we know how to transform triangulations in
canonical form into one another, we consider how to
transform arbitrary triangulations into canonical form.
The next lemma allows us to introduce the spine edges.

Lemma 8 Given a triangulated spiral polygon, we can
introduce any chord e = (a, b) between two convex ver-
tices by flipping each edge crossing e exactly once. More-
over, all new edges are incident to an endpoint of e.

Proof. We prove this by induction on the number of
edges crossing e. If there are none, e must already be
present, since triangulations are maximal plane graphs.
This settles the base case. Otherwise, let e′ = (u, v)
be the edge whose intersection with e is closest to a.
Let x be the third vertex of the triangle incident on e′

opposite a (see Figure 8).

a

bu

v

x

(a)

a

bu

v x

y

z

h

(b)

Figure 8: (a) If a sees x, we flip (u, v). (b) If a does not
see x, b must see h, so we flip (y, z).

If a sees x, auxv forms a convex quadrilateral and we
can flip uv to ax. This reduces the number of edges
crossing e by one, using exactly one flip. Since the new
edge is incident on a, the result follows by induction.

If a does not see x, auxv forms a non-convex quadri-
lateral with u or v as reflex vertex. Suppose, without
loss of generality, that v is the reflex vertex. Now con-
sider the edge e′′ = (y, z) whose intersection with e is
closest to b, and let h be the third vertex of the triangle
incident on e′′ opposite b (see Figure 8b). If b sees h, we
are done by the same argument as before, so suppose b
does not see h. We show that this is impossible.

Consider the polygon P formed by the union of all
triangles crossing e. Lemma 1 tells us that P is a spiral

polygon. In P , v is the first vertex of the reflex chain.
Suppose, without loss of generality, that y is the reflex
vertex in byhz. Then y is the last vertex along the reflex
chain. But a is a neighbour of v and b is a neighbour of
y, and the neighbours of the first and last reflex vertex
cannot see each other. Since a and b see each other by
the construction of P , this situation cannot arise and
we can always flip either e′ or e′′. �

The next lemma helps us show that edges flipped to
introduce one spine edge do not need to be flipped again
to introduce later ones.

Lemma 9 An edge e incident on a spine vertex xi can-
not cross a spine edge (xj , xj+1) with j ≥ i.

Proof. It is clear that e cannot cross (xi, xi+1), since
they already intersect in xi and two line segments inter-
sect in at most one point. Now suppose that e crosses
some spine edge (xj , xj+1) with j > i. Then its other
endpoint must lie on the part of the convex chain strictly
between xj and xj+1. But that means e connects xi

to a convex vertex after xi+1. This is a contradiction,
since by definition, xi+1 is the last convex vertex that
xi sees. �

This final lemma helps us transform the fins into
canonical form. It is a common tool for convex poly-
gons [10], included here for completeness.

Lemma 10 In a convex polygon P , we can connect any
vertex v to all other vertices by flipping each internal
edge not incident to v exactly once.

Proof. We prove this by induction on the number of
vertices not connected to v. If this number is 0, all
internal edges are incident on v, so we are done and need
no flips. If there is at least one such vertex x, consider
the chord (v, x). This chord intersects at least one edge
not incident on v, otherwise (v, x) would be part of the
triangulation, connecting x to v. Of those edges, let
(a, b) be the one whose intersection with (v, x) is closest
to v. Flipping (a, b) creates an edge (v, y), where y is a
vertex that was not yet connected to v (y and x may be
the same). Thus we reduced the number of vertices not
connected to v by one, by flipping exactly one edge not
incident on v. The lemma follows by induction. �

Now we have all the tools we need to transform tri-
angulations into canonical form.

Lemma 11 We can transform any triangulation of a
spiral polygon into canonical form by flipping each edge
at most once.

Proof. Recall that the canonical form requires that all
spine edges are present and that all edges are incident
to a spine vertex. We begin with the first requirement.
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We consider each spine edge in sequence, starting
with (x1, x2). If it is already present, we move on to
the next spine edge. Otherwise, we introduce it using
the technique from Lemma 8. This guarantees that we
flip each edge crossing a spine edge exactly once, since
all resulting edges are incident to a spine vertex and
by Lemma 9, these edges cannot cross any later spine
edges.

Once all spine edges are present, the body is already
in canonical form, since no two reflex vertices see each
other and the only convex vertices of the body are spine
vertices. The fins, on the other hand, may contain edges
that are not incident to a spine vertex. Any such edge
has not been flipped yet, since all flipped edges are now
incident to a spine vertex.

Consider a fin F with spine edge (xi, xi+1) where not
all edges are adjacent to a spine vertex. The trian-
gle incident on (xi, xi+1) splits the fin into two convex
polygons, Fi and Fi+1, each containing the correspond-
ing spine vertex. Now Lemma 10 lets us connect all
vertices in Fi to xi and all vertices in Fi+1 to xi+1 by
flipping each edge not incident to one of the two spine
vertices exactly once. �

Putting everything together, we obtain the following
bound on the maximum flip distance.

Theorem 12 We can transform any triangulation of a
spiral polygon into any other by flipping each internal
edge at most thrice and each internal edge that becomes
part of the spine at most twice.

Proof. Given two triangulations T1 and T2, we can
transform each into the canonical form using the tech-
nique from Lemma 11, flipping each edge at most twice.
This leaves us with two triangulations T ′1 and T ′2 in
canonical form, so we can transform T ′1 into T ′2 by flip-
ping each non-spine edge at most once using Lemma 7.
To obtain a full flip sequence that transforms T1 into
T2, we follow these steps to transform T1 into T ′2 and
then reverse the flip sequence that transformed T2 into
T ′2, to obtain T2. �

Since any triangulation of a polygon has exactly n−3
internal edges, this gives us the following upper bound.

Corollary 13 We can transform any triangulation of
an n-vertex spiral polygon into any other with no more
than 3n− 9 flips.

Similar to convex polygons [9], Theorem 12 also gives
us an approximation on the flip distance.

Corollary 14 Given two triangulations T1 and T2 of a
spiral polygon P , we can transform T1 into T2 with at
most 3d(T1, T2) flips, where d(T1, T2) is the flip distance
between T1 and T2.

Proof. Let S be the set of edges that are common be-
tween T1 and T2. By Lemma 1, inserting all of these
edges into P splits it into a number of smaller spiral
polygons. Of these subpolygons, let P1 through Pm be
the ones that are not triangles.

Each subpolygon Pi is present in both T1 and T2 with
different triangulations that have no edges in common.
Thus, each internal edge of Pi in T1 needs to be flipped
at least once to obtain T2. This gives us a lower bound
d(T1, T2) ≥ ∑m

i=1 |Pi|, where |Pi| is the number of in-
ternal edges in Pi.

On the other hand, by Theorem 12, we can transform
the triangulation for T1 in each Pi into the triangula-
tion for T2 by flipping at most 3|Pi| edges. Therefore
the total number of flips is bounded by 3

∑m
i=1 |Pi| ≤

3d(T1, T2). �
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Graph Realization on a Random Embedding

Saad �ader∗ Alexander Russell†

Abstract

We consider the power of selecting a Euclidean metric in or-
der to realize an undirected graph of interest as a unit disc
graph a�er random embedding into the hypercube. Specif-
ically, let G = (V,E) be an n-vertex graph. We say that a
map h : V → Rd realizes G if {u, v} ∈ E if and only if
‖h(u)− h(v)‖2 < 1. We study the probability that a ran-
dom embedding f : V → {0, 1}d can be recti�ed to realize
G by merely scaling the coordinates.

�is yields an interesting relationship between the struc-
ture of G and the dimension d at which this event becomes
likely. Our basic quantity of interest, denoted R(G, d), is
the probability that—for a random embedding f : V →
{0, 1}d—there is an axis-parallel scaling Ŵ : Rd → Rd for
which h = Ŵ ◦ f realizes G.

We show that for a function d(n) = O(n log n), the
probability R(T, d) is 1 − o(1) for any tree T on n ver-
tices. For general graphs, we show that a function d(n) =
O(na2 log n) is su�cient to guarantee R(G, d) = 1− o(1)
for G with n vertices and arboricity a. �ese results apply
to both `2 and `1 norms.

To complement these results, we show that d = Ω(n2)
is necessary to realize an Erdős-Rényi random graph even
if we allow arbitrary realization maps h. We also prove a
probabilistic analog of Radon’s theorem; this may be of in-
dependent interest.

1 Introduction

In an embedding or a realization problem, in general, we
are given a graph G = (V,E) with n vertices and a tar-
get metric space (Y, ‖·‖). �e goal is to �nd a map h :
V → Y so that some desired properties of V are pre-
served in the mapped points h(V ) under the metric ‖·‖.
It is typically desirable that Y should have a low dimen-
sion. Sometimes, in addition, h must satisfy some struc-
tural constraints. Prime examples of such problems include
Euclidean minimum spanning tree (EMST) realization [9],
metric embedding [15, Ch. 15], low-dimensional structure-
preserving embedding [17], and Feige’s volume-respecting
embedding [5]. �ese problems and their solutions have im-
pressive algorithmic applications.

∗Department of Computer Science, University of Connecticut,
saad.quader@uconn.edu

†Department of Computer Science, University of Connecticut,
acr@cse.uconn.edu. �is research was partially supported by NSF
Grant 1717432.

We adopt a new perspective and consider the power of
selecting the Euclidean metric in order to realize an undi-
rected graph of interest as a unit disc graph a�er random
embedding into the hypercube. Speci�cally, let G = (V,E)
be an n-vertex graph. We say that a map h : V → Rd

realizes G if

∀u, v,∈ V, {u, v} ∈ E ⇐⇒ ‖h(u)− h(v)‖2 < 1 . (1)

In particular, h has to bring the neighbors close while push-
ing the non-neighbors far apart:

max
{u,v}∈E

‖h(u)− h(v)‖2 < min
{u′,v′}6∈E

‖h(u′)− h(v′)‖2 .
(2)

We study the probability that a random embedding f :
V → {0, 1}d can be recti�ed to realize G by merely scal-
ing the coordinates. �is yields an interesting relationship
between the structure of G and the dimension d at which
this event becomes likely. Our basic quantity of interest,
denoted R(G, d), is the probability that—for a random em-
bedding f : V → {0, 1}d—there is an axis-parallel scaling
Ŵ : Rd → Rd for which h = Ŵ ◦ f realizes G. We express
the scaling Ŵ as the diagonal matrix diag(ŵ) for a tuple
of non-negative values ŵ ∈ Rd. Here, ◦ denotes function
composition.

Algorithmically, we can treat this as the following prob-
lem.

Problem 1. Let G = (V,E) be an undirected graph; let d ∈
N. Let f : V → {0, 1}d be a uniformly random function.
Given f and G, the goal is to �nd non-negative weights ŵ ∈
Rd—which may depend on f and G—such that the map h :
V → Rd, h = diag(ŵ) ◦ f satis�es (1). �

Observe that f is non-injective with probability at most(|V |
2

)
/2d. If d ≥ 3 log2 |V |, this probability is at most 1/|V |.

�e weighted `d2 norm given by a non-negative weight vector
w ∈ Rd is ‖x‖w , (

∑
i wix

2
i )1/2. De�ne

w ,
(
ŵ2

1, · · · , ŵ2
d

)
. (3)

Since the function x 7→ x2 is monotonically increasing on
non-negative reals x, the constraints (1) are equivalent to

∀u, v ∈ V, {u, v} ∈ E ⇐⇒ ‖f(u)− f(v)‖2w < 1 (4)

where we use h = diag(ŵ)◦f . Understood in this way, we
say “w realizes G” to mean “h realizes G.”

As mentioned above, analytically we study the probabil-
ityR(G, d) for various graphs and dimensions d (which typ-
ically scale with the size or structural features of the graph).

263



31st Canadian Conference on Computational Geometry, 2019

We cast this in an algorithmic framework, both for expos-
itory purposes and to emphasize the simple constructions
we provide for w.

1.1 The literature

You must have noticed that Problem 1 is reminiscent of
many well-known problems such as metric embedding,
graph/tree realization, and metric optimization. However,
the randomness in f sets Problem 1 apart. Speci�cally, in
Problem 1, we wish to �nd a “good metric” ‖·‖w with re-
spect to a random embedding f ; in the usual metric em-
bedding and realization problems, the metric (such as `2) is
�xed, and we look for a “good embedding” h. We delve into
these connections in Appendix A.

Why do we study a uniformly random embedding? With-
out any assumption about the structure of f , it is di�cult to
answer questions such as how large a d is necessary and/or
su�cient for the realization. Studying a uniformly random
f gives us an elegant mathematical structure to analyze. Al-
though this structure is simple, it is nevertheless a �rst step
towards analyzing the embeddings given by more general
stochastic processes, e.g., with a known covariance matrix.

�e inspiration for Problem 1 came from Ghadie et. al [6].
�ey used a linear program to realize a tree T via a map
h = diag(ŵ) ◦ f . �e embedding f : V → {0, 1}d, how-
ever, was extracted from a gene-expression dataset. �ey
asked: do the points f(V ) explain the tree T ? �e existence
of a realizing map h was taken as the evidence that the em-
bedding indeed explains the tree; cf. Appendix A.3. How-
ever, the interplay between d and the size/structure of G
remains unclear in this approach. Our paper sheds light on
this interplay by assuming an additional structure (i.e., the
randomness) in f .

1.2 Results

Notice that for a �xed f , one can a�empt to realize G via a
linear program (as in [6]) since the constraints (4) are linear
inw. In contrast, we are interested in realization algorithms
that harness the randomness in f .

We present two realization algorithms. For some dimen-
sion d = O(n log n), Algorithm 1 realizes any n-vertex tree
with high probability; cf. �eorem 1. In addition, for some
dimension d = O(na2 log n), Algorithm 2 realizes an n-
vertex graph G = (V,E) with high probability; cf. �eo-
rem 2. Here, a is the arboricity of G (cf. De�nition 4.1). It
is known that a is at most d

√
|E|/2e [2]. Both algorithms

use only Boolean weights. Moreover, we outline how the
e�ective resistances of the edges impact this bound; cf. the
comments at the end of Section 4

To complement the above results, we show that for large
n, it is impossible to realize an Erdős-Rényi random graph
on n vertices if d is less than

(
n
2

)
/6; cf. �eorem 4. In addi-

tion, for large n, it is impossible to realize a random span-
ning tree of the complete graph Kn if d is less than n/2;

cf. �eorem 5. In particular, these statements holds even
if (i.) the embedding f is arbitrary and (ii.) the weights wi

are allowed to be negative although, in that case, w would
represent “�ips” as well as scaling. Note that the necessary
and su�cient bounds on d are tight up to a log n factor for
realizing trees.

Realization in `1 and generalizations of f . LetB be the
Boolean hypercube, and let C = sB + t where s, t ∈ R. As
it turns out, our results hold for embeddings f : V → C and
both `1 and `2 metrics. We outline these generalizations at
the end of Section 3. However, to keep our exposition lean,
we treat only Boolean embeddings and the `2 metric.

Application: is a given realization non-trivial? Let
G = (V,E) be an n-vertex graph and f be a d-dimensional
random embedding as in Problem 1. Suppose we are pre-
sented with weights w ∈ Rd that realize G. As we outlined
in Section 1.1, one can interpret this realization as the evi-
dence that the points f(V ) explain the input graph G.

Suppose d is at least as large as the bound given in �eo-
rem 2. �en, although the weightsw realizeG on the points
f(V ), the embedding dimension d is so large that the points
f(V ) would explain every n-vertex graph. (�is, in fact,
is guaranteed by �eorem 2.) Hence, the “explanation” is
meaningless. If d is asymptotically smaller, we could not so
easily have ruled out the possibility that f(V ) indeed ex-
plains G.

2 An overview of main ideas

For any map f : V → {0, 1}d and non-negative weights
w = (w1, . . . , wd) ∈ Rd, we de�ne the (parameterized)
squared Euclidean distance

D(u, v) , ‖f(u)− f(v)‖2w =
d∑

i=1

Di(u, v) , (5)

where Di(u, v) , wi(f(u)i − f(v)i)
2. We also write D(e)

to mean D(u, v) when e = {u, v}.
Observe that according to (4) and (2), D(u, v) must be

small if {u, v} ∈ E and large otherwise. How do we enforce
this behavior? To start, let us try to enforce this in expec-
tation. Notice that if the weights wi are selected indepen-
dently for each i, the

(
n
2

)
random variables {Di(e)}e∈(V

2)
are independent and identically distributed Bernoulli ran-
dom variables. Fix two vertex-pairs e ∈ E and e′ ∈ E.
Suppose that the weights {wi} are selected in such a way
that for each i, Di(e

′)−Di(e) is large in expectation. �en
a Cherno�-type bound would imply that with high proba-
bility, D(e) < D(e′).

Realizing trees. Suppose we want to realize a tree T =
(V,E). A reasonable way to select wi ∈ {0, 1} is to select
coordinates (i.e., set wi = 1) as follows: we may count how
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many of the tree-edges {u, v} ∈ E satisfy f(u)i = f(v)i. If
this fraction is larger than some carefully-computed thresh-
old then most of the tree-edges {u, v} already have a small
value for the ith component of D(u, v); this suits our pur-
pose and hence we set wi = 1. Otherwise, we set wi = 0.
�is strategy, dubbed the census strategy, is employed in Al-
gorithm 1. Its analysis leads to the bound d = O(n log n)
which is only a log n factor away from the linear lower
bound of �eorem 5.

Realizing graphs. When realizing a general graphG, the
edges on a cycle are dependent in a non-trivial way. Observe
that the census strategy “touches” multiple edges. If two
of them are on a cycle, a crucial argument breaks down in
the proof of Claim 3.1. How to overcome this obstacle? A
reasonable idea is to select a single edge r = {u, v} ∈ E
uniformly at random, and then select wi ∈ {0, 1} as wi =
1 if and only if f(u)i = f(v)i. We call this the random
sample strategy. Admi�edly, the above wi would steer only
one tree-edge to the right direction, i.e., make Di(u, v) =
0. However, this strategy overcomes the barrier posed by
cycles at the cost of a weak bound on d.1

Can we do be�er? Can we combine the ideas in the cen-
sus strategy and the random sample strategy? �e answer
is, yes: we can use our tree-realization algorithm to realize
a random acyclic approximation of G. Speci�cally, we may
look at a family A of acyclic subgraphs of G and invoke
Algorithm 1 on a random member A from this family. (Se-
lection of a random edge, thus, is replaced by the selection
of a random acyclic subgraph.) �e bound on d that we get
in this process depends on the probability that a given edge
is contained in the sampled subgraph A. �us we require
that for every edge e ∈ E, there is some A ∈ A such that e
appears in A.

�e best result comes when every edge belongs to exactly
one member of A. In that case, A has to be a collection of
edge-disjoint forests. �is gives rise to the bound containing
a(G), the arboricity of G (cf. De�nition 4.1). �e arboricity
can be interpreted as a measure of how sparse G is. Since
the arboricity of a tree is 1, this bound implies the bound
for trees. If we take A to be the set of all spanning trees
of G, the bound on d is proportional to 1/r2 where r is the
smallest e�ective resistance among all the edges.

A geometric interpretation of Problem 1. �e graph
realization problem can be reduced to a hyperplane sepa-
ration problem. Informally speaking, the constraints in (1)
specify that

∑
wi(f(u)i − f(v)i)

2 be small if {u, v} ∈ E,
and large otherwise. Observe that this quantity is the inner
product of the vector w =

(
w1, · · · , wd

)
with the vector

g(u, v) ∈ {0, 1}d,

g(u, v)i , ((f(u)i − f(v)i)
2
, (6)

1In fact, if we use the random sample strategy, we can realize for some
d = O(n2 logn) for trees and some d = O(n4 logn) for graphs. We
omit further details.

for i ∈ [d]. �us, G is realizable if there is a vector w such
that for all u, v ∈ V , 〈w, g(u, v)〉 < 1 if and only if {u, v} ∈
E. For e = {u, v} ∈

(
V
2

)
, we use the shorthand g(e) for

g(u, v).
In Problem 1, we �rst �x a random map f . �en we locate

the
(
n
2

)
points g(u, v) ∈ Rd for {u, v} ∈

(
V
2

)
. Observe that

the graph G colors these points in red or blue as follows:
g(u, v) is colored red if {u, v} ∈ E, and blue otherwise.
In Problem 1, we have to �nd a hyperplane hw , given by
weights w ∈ Rd, wi = ŵ2

i , so that hw perfectly separates
the red points from the blue points.

Consider the two convex hulls pertaining to the sets of
red and blue points. If they intersect, no hyperplane could
realizeG. �is observation is at the heart of our exploration
in Section 5 where we investigate whether a random red–
blue coloring is separable.

3 Realizing a tree

Observe that the constraints (1) can be equivalently stated
as follows: there exists a positive real θ (which may depend
on f and w) such that

∀u, v ∈ V , {u, v} ∈ E ⇐⇒ D(u, v) < θ . (7)

�is can be seen by scaling the weights ŵ in Problem 1 by√
θ. Hence, if somew ∈ Rd and θ satisfy (7), h = diag(ŵ)◦

f satis�es (1) where ŵ ,
√
w/θ.

�e goal of this section is to prove the theorem below.

�eorem 1 (Realizing a tree). Let n ≥ 25, T be a tree on
n vertices, and f be the random variable as in Problem 1.
Let w ∈ {0, 1}d be the output of Algorithm 1 invoked with
α = 1/4. For a function d = O(n log n), w satis�es the
constraints (4) with probability 1 − 1/n. �us R(T, d) ≥
1− 1/n. �
Remark. �e uncertainty in the claim comes entirely from
f as Algorithm 1 is deterministic. Let w be as in �eorem 1
and de�ne ŵi =

√
wi/θ where θ is de�ned in (11). �en

h = diag(ŵ)◦f satis�es the constraints (1) with probability
1− 1/n. �e algorithm runs in time nd.

Suppose we want to realize a tree T using only Boolean
weights. Fix any e = {u, v} ∈ E and e′ = {u′, v′} ∈ E.
How can we enforce the desired behavior in expectation?
A clue is that only the coordinates i with weight wi = 1
contribute in D(e) or D(e′). �us, we want to select the
coordinates (i.e., select which of the wis are non-zero) such
that in expectation, Di(e) is smaller than Di(e

′). To make
this precise, we introduce the notion of gap.

De�nition 3.1 (Gap and total gap). Let T = (V,E) be a
tree. Let e = {u, v} ∈ E and e′ = {u′, v′} ∈ E. Let

δi(e, e
′) , E

f
[Di(e

′)−Di(e)] , (8)

∆(e, e′) ,
∑

i

δi(e, e
′) . (9)

265



31st Canadian Conference on Computational Geometry, 2019

δi is the gap between e and e′ at coordinate i and δ is the
total gap between e and e′. �

�us, we want to enforce a large gap δi(e, e′) at each co-
ordinate i. By the linearity of expectation, the total gap
∆(e, e′) would be large. �is deterministic strategy is for-
malized in Algorithm 1 below.

Algorithm 1 RealizeTree(T, f, α)

Input: d ∈ N, T = (V,E) a tree, α ∈ (0, 1/2), and f as
de�ned in Problem 1

Output: w ∈ {0, 1}d
1: for i ∈ [d] independently do
2: Set wi ← 0
3: Let pi be the fraction of edges {u, v} ∈ E

such that f(u)i = f(v)i
4: if 1/2 + α/

√
n ≤ pi ≤ 3/4 then wi ← 1

We devote the rest of this section analyzing Algorithm 1.

De�nition 3.2 (PrAgree). �e agreement probability for
two vertices u, v ∈ V at coordinate i is PrAgree(u, v, i) ,
Prf [f(u)i = f(v)i | wi = 1]. �

When speaking about a vertex-pair e = {u, v}, some-
times we write PrAgree(e, i) to mean PrAgree(u, v, i).

De�nition 3.3 (q). For Algorithm 1, de�ne the weight se-
lection probability q , Prf [wi is set to 1] . �

When e ∈ E, e′ ∈ E are identi�ed, we can expand Equa-
tion 8 to show that

δi(e, e
′) = q (PrAgree(e, i)− PrAgree(e′, i)) . (10)

A bad event occurs when there exist two vertex-pairs
e ∈ E, e′ ∈ E with D(e′) ≤ D(e). Our argument for
proving �eorem 1 has two steps. In the �rst step, we prove
that for any �xed vertex-pairs a bad event does not occur
in expectation. �is is equivalent to showing that the to-
tal gap ∆(e, e′) is large. �e second step has two phases.
First, we bound the “bad probability” for a given vertex-
pair {u, v} ∈

(
V
2

)
via a Cherno� bound. Finally, we bound

the total bad probability by applying a union bound over
all vertex-pairs. Requiring that this probability be 1 − 1/n
gives a bound on d.

Step one: proving that the total gap δ is large.
Fix two vertex-pairs e ∈ E and e′ ∈ E. �e quantity
Z =

∑
iDi(e

′)−Di(e) = D(e′) − D(e) is the sum of d
independent (but not identically distributed) Bernoulli ran-
dom variables since {wi} are independent. We proceed by
showing that the expectation of the ith component of this
sum—i.e., δi—is “large.” �is implies thatD(e′) is larger than
D(e) in expectation. Next, a Cherno� bound onZ would re-
veal that Z is unlikely to be “too small” compared to its ex-
pectation EZ = ∆(e, e′). Equivalently, with “large” prob-
ability, the length of the edge e will be strictly shorter than

the length of the non-edge e′. �is satis�es the constraints
on the lengths of e, e′ imposed by (7).

Suppose Algorithm 1 assigns wi = 1. We want a lower
bound on the gap δi , δi(e, e

′), or more appropriately, on
the quantity PrAgree(e, i) − PrAgree(e′, i). Since wi = 1,
we have seen exactly pi|E| edges of T to have the same
values at both endpoints. For any two vertices a, b ∈ V ,
how does PrAgree((a, b), i) depend on pi? �e answer is
given by the following claim.

Claim 3.1 (Decaying correlation). Let T = (V,E) be a tree
and �x a coordinate i. Let pi ∈ (1/2, 1] such that pi|E| is an
integer. Let the random variable f be as in Problem 1 and con-
dition on the event that exactly pi|E| edges {u, v} ∈ E satisfy
f(u)i = f(v)i. Let {u, v} ∈

(
V
2

)
be an arbitrary vertex-pair.

�en, PrAgree(u, v, i) = (1 + (2pi − 1)t) /2 where t is the
length of the path in T from u to v. �

We remark that the proof of the above claim is the only
portion of our analysis which requires T to be a tree.
Claim 3.1 implies that PrAgree(e, i)− PrAgree(e′, i) =
((2pi−1)−(2pi−1)t)/2 is at least ((2pi−1)−(2pi−1)2)/2
= (2pi−1)(1−pi) since t ≥ 2 for e′ 6∈ T and (2pi−1) ≤ 1.
It follows that δi ≥ q(2pi − 1)(1 − pi). However, we want
an expression for the right-hand side which does not depend
on i. �en the sum

∑
δi, in turn, would not depend on i as

well. Can we lowerbound δi in terms of p , 1/2 + α/
√
n

as opposed to pi? Indeed we can, but we have to work for
it. �is is the following claim whose proof is deferred till
Appendix B.

Claim 3.2. q ≥ 1/2 − α − 2(H(1/4)−1)n where H is
the binary entropy function. In particular, q ≥ 1/6 when
n ≥ 20 and α = 1/4. In addition, for any i ∈ [d], δi ≥
q(2α/

√
n)(1/2 − α/√n). In particular, for any β ∈ (0, 1)

and n ≥ 4α2/β2, δi ≥ (1− β)qα/
√
n. �

Step two: bounding the bad probability via Cher-
noff/union bound. We have already seen that for two
�xed vertex-pairs e ∈ E and e′ ∈ E, the gap between
their respective expectations, i.e., ∆(e, e′), is large. Let
θ , ∆(e, e′)/2 be the midpoint of this gap. A bad event
occurs when either D(e) > θ or D(e′) < θ. �e prob-
ability of an individual bad event can be obtained via the
Cherno�-Hoe�ding bound. Note that there can be at most(
n
2

)
bad events. �e probability that no bad event occurs can

be found via a union bound. By se�ing this probability to at
most 1− 1/n, we get a bound on d. �is is recorded in the
following lemma; we defer its proof to Appendix B.

Lemma 3.3 (Bounding d from gap δi). Let the random vari-
able f be as in Problem 1. Letw1, · · · , wd be the weights from
Algorithm 1 invoked on the tree T = (V,E) and the embed-
ding f . De�ne δ , inf δi(e, e

′) where the in�mum is taken
over all i ∈ [d], e ∈ E, and e′ ∈ E. If d ≥ (6 log n)/δ2, the
constraints (7) are satis�ed with probability 1−1/n (over the
random choice of f ) with θ = dδ/2. �
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Proof of Theorem 1. Let w ∈ {0, 1}d be the weights
generated by Algorithm 1 with α = 1/4. Using Claim 3.2,
δ ≥ (1−β)qα/

√
n ≥ 9/10 · 1/24

√
n = 3/80

√
n by taking

q ≥ 1/6, α = 1/4, and β = 0.1. �is means n ≥ 4α2/β2 =
4/42 × 102 = 25. �us, it su�ces to use

θ = dδ/2 = 3d/160
√
n . (11)

�e bound on d from Lemma 3.3 states that it su�ces to
take d ≥ 6 log n/δ2 = Cn log n, where C = 6/(qα(1 −
β))2 ≤ 6× (80/3)2, so that w and θ would satisfy (7) with
probability 1−1/n. �us, as discussed a�er (7), ŵ ,

√
w/θ

satis�es (1) with probability 1− 1/n.

Realizing tree-complements and a closer look at
the bound. If we modify Algorithm 1 to tally edge-
disagreements instead of edge-agreements, we would re-
alize the complement of T . �e factor n = (

√
n)2 in the

bound d = O(n log n) in �eorem 1 comes from the bias
p = 1/2 + O(1/

√
n) in Algorithm 1. �e log n factor in

the bound is an artifact of the 1− 1/poly(n) probability re-
quired from the Cherno� bound in the proof of Lemma 3.3,
and that there are poly(n) vertex-pairs in the union bound.

Non-Boolean weights, `1 realization, and a trans-
formed hypercube. Suppose we use weights wi ∈
{0, a}, a > 0 and a uniformly random map f : V →
{x, y}d for arbitrary distinct reals x, y. Let s , |x− y|.
�en Di(u, v) ∈ {0, as2} in (5). �is change will cascade
into scaling δi and the quantity c in (15) by as2. �ere-
fore, the ratio δ2/c2 would stay the same. �e expression
θ = dδ/2 in Lemma 3.3 would be scaled by as2, however.

A weighted `1 distance between two points f(u), f(v) is
de�ned as

∑
i wi|f(u)i − f(v)i|. It is not hard to see that

this would a�ect δi, d, and θ in the same way as above. We
omit further details.

4 Realizing a graph

�e analysis of the census strategy in the proof of Claim 3.1
requires that the graph being realized is indeed a tree. In
particular, it breaks down if G contains a cycle.

To see why, �x a coordinate i and de�ne σ(u, v) ∈ {±1},
σi(u, v) , +1 if and only if f(u)i = f(v)i. If G con-
tains a triangle (u, v, w) and σi(u, v) = σi(v, w), then
σi(u,w) must be 1. In general,

∏
e∈C σi(e) = 1 for ev-

ery cycle C . Due to this correlation in coordinate values
along a cycle, a uniform distribution on the coordinate val-
ues {f(u)i}u∈V does not imply a uniform distribution on
the ensemble {σi(u, v)}{u,v}∈E ∪ {f(r)i} where r ∈ V is
arbitrary. �us, the proof in Claim 3.1 (i.e., the census strat-
egy) breaks down when G contains a cycle.

�e random sample strategy mentioned in Section 2,
however, is immune to any correlation since it samples a
single edge. In fact, it is oblivious to any structure in the
graph.

Realizing an acyclic approximation of G. Here is an
idea which uni�es the random edge-sampling and the ease
of realizing acyclic graphs. What if we use an acyclic sub-
graph as an approximation of G? Let A be a collection of
acyclic subgraphs ofG. We would sample a memberA from
A uniformly at random and run the tree-realization algo-
rithm on A. �is eliminates all cycles from our view, but it
is not obvious that the resulting weights would satisfy the
constraints for the edges not in A. It turns out that the gap
between the two kinds of inner products (i.e., edges vs. non-
edges) depends on the probability that the edge belongs to
A. �is is whyAmust cover every edge of G. �is strategy
is applied by the following algorithm.

Algorithm 2 RealizeGraph(G, f,A, α)

Input: G, an undirected, unweighted, simple graph; f as
in Problem 1; α ∈ (0, 1/2); A, a family of acyclic sub-
graphs of G such that every edge of G belongs to at
least one member of A

Output: w ∈ {0, 1}d
1: Sample an element A uniformly at random from A
2: Set w ← RealizeTree(A, f, α)

A can simultaneously contain di�erent kinds of acyclic
subgraphs such as a single edge, a non-spanning subtree,
a spanning tree, a forest, a matching, etc. We record the
following lemma and defer its proof till Appendix B.

Lemma 4.1. Let n ≥ 25, A be as described
above, f the random variable in Problem 1, and
r , min{u,v}∈E PrA∼A[{u, v} ∈ A]. For a function
d = O

(
(n log n)/r2

)
, Algorithm 2 invoked with α = 1/4

outputs a non-negative w ∈ {0, 1}d which realizes G with
probability 1− 1/n. �

De�nition 4.1 (Arboricity). �e arboricity a of an undi-
rected graph G = (V,E) is the minimum number of
forests F1, F2, . . . , Fa so that E is the disjoint union of
F1, F2, . . . , Fa. �

�eorem 2 (Realizing a graph). Let G be a graph on n ver-
tices with arboricity a, and the random variable f be as in
Problem 1. Let w ∈ {0, 1}d be the output of Algorithm 1 in-
voked with α = 1/4. For a function d = O(na2 log n), w
satis�es the constraints (4) with probability 1 − 1/n. �us
R(G, d) ≥ 1− 1/n. �

Proof. Let a be the arboricity of G. Let A = {φi}ai=1

be the set of all edge-disjoint forests of G so that E =
φ1 t . . . t φa. �e edge-disjointedness implies that every
edge belongs to a unique forest φi, and hence r(e) = 1/a.
Recalling Lemma 4.1, it follows that d ≥ Cna2 log n suf-
�ces for realizing G with probability 1 − 1/n where the
constant C is from the proof of �eorem 1. In the worst
case, d ≥ Cn|E| log n since according to [2], a is at most
d
√
|E|/2 e.
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�eorem 1 is a special case of �eorem 2 because in the
former, A contains only one member: the tree T itself.

Effective resistance and dense graphs. In Appendix B,
we show how one can get a weaker bound on d by tak-
ing A as the set of all spanning trees of G. In that case,
r(u, v) is in fact the e�ective resistance (cf. De�nition B.1)
between the vertices u and v. If a graph G is dense, e.g.,
if |E| =

(
n
2

)
− O(n), its complement G is sparse; conse-

quently, we can realize G with a smaller d and then reverse
the edge/non-edge labels to recover G. �us taking some
d = O(na2 log n) su�ces where a = min(a(G), a(G)).

5 Realizing random graphs and trees

Recall that for three setsA,B, andC ,C = AtB meansC is
a disjoint union ofA andB, or equivalently,C is partitioned
intoA andB. A uniformly random partition of a setB yields
two disjoint sets B0 and B1 such that (i.) B = B0 tB1 and
(ii.) for all b ∈ B, Pr[b ∈ B0] = Pr[b ∈ B1] = 1/2.

Informally, Proposition 5.1 below states that if a point-
set is linearly separable, then some separating hyperplane
passes through exactly d points. Likewise, Proposition 5.2
below (informally) states that a uniformly random partition
of a “large” point-set cannot be linearly separated by a hy-
perplane supported on only “a few” points. We defer the
proofs to Appendix C.

Proposition 5.1. Let S be the a�ne subspace spanned by a
point-set B. Let B0 t B1 be a partition of B such that the
convex hulls of B0 and B1 do not intersect. If d , dim(S) ≥
2, there exists a hyperplane h which separates B0, B1 and is
supported on exactly d points of B. �
Proposition 5.2. Let M,d ∈ N, d ≥ 3,M ≥ 6d. Let B
be an arbitrary set of M points in Rd. Let B = B0 t B1

be a uniformly random partition of B. �en with probability
1 − 1/d, the convex hulls of B0 and B1 cannot be separated
by a hyperplane supported on any d points of B. �

A probabilistic analog of Radon’s theorem. Recall
the geometric interpretation of the realization problem from
Section 2. Suppose G is an Erdős-Rényi random graph G ∼
G(n, 1/2). Since the edges inG are sampled independently,
the red/blue assignments of the points {g(u, v)}u,v∈V will
be uniformly random. Is there a hyperplane which separates
the red points from the blue points? �e following theorem
says that it is unlikely for small d.

�eorem 3. Let d, n ∈ N and let B be an arbitrary subset
of {0, 1}d of size at least 6d. In a uniformly random partition
B0 t B1 = B, the convex hulls of B0 and B1 intersect with
probability at least 1− 1/d. �
Proof. Proposition 5.2 states that for a uniformly random
partition B0 t B1 = B ⊂ {0, 1}d, with high probability,
there is no d-supported hyperplane. �e contrapositive of

Proposition 5.1 states that if there is no d-supported separat-
ing hyperplane, there is no separating hyperplane as well.
�erefore, if d is at most |B|/6, a uniformly random parti-
tion of a subset of {0, 1}d is nonseparable with probability
1− 1/d.

�eorem 3 can be considered a probabilistic analog of
Radon’s �eorem in convex geometry (cf. �eorem 6). See
Appendix C for a discussion. Since the points B can be ar-
bitrary, we can take f : V → {0, 1}d to be arbitrary, set
B = g

(
V
2

)
where g is from (6), and allow the weights wi to

be arbitrary reals (i.e., arbitrary hyperplanes). �is leads to
the main theorem of this section.

�eorem 4 (Realizing random graphs). Let n, d ∈ N, n ≥
7, d ≤

(
n
2

)
/6, and let G ∼ G(n, 1/2) be an Erdős-Rényi ran-

dom graph. With probability at least 1− 1/d in the random-
ness ofG,G is not realizable under any f : V → {0, 1}d and
any w ∈ Rd. �us R(G, d) = 0. �

Proof. Sample an Erdős-Rényi random graphG = (V,E) ∼
G(n, 1/2). Also, let f : V → {0, 1}d be an arbitrary embed-
ding with d ≤

(
n
2

)
/6. Let g be as in (6). Since E is a uni-

formly random subset of
(
V
2

)
, we can invoke �eorem 3 to

show that with high probability, the uniformly random par-
tition g(E) t g(E) of the mapped vertex-pairs B = g

(
V
2

)

is not linearly separable. (However, this would require that(
n
2

)
≥ 6d ≥ 18 since we require d ≥ 3 as well. �us it

su�ces to have n ≥ 7.) Consequently, there exists no hy-
perplane (indicated by somew ∈ Rd) which separates g(E)
from g(E). Recall that our de�nition of linear separabil-
ity has inequality constraints. If these constraints cannot
be satis�ed by any hyperplane, it follows that the strict in-
equality constraints in (1) cannot be satis�ed either. �ere-
fore, the random graph G is not realizable by any w under
any embedding f . Note that the randomness in this argu-
ment comes from G. Hence, R(G, d) = 0.

A similar theorem holds for random spanning trees; we
defer the proof to Appendix C.

�eorem 5 (Realizing random spanning trees). Let n ≥
17, d ≤ n/2, and T be the uniform distribution on the span-
ning trees of the complete graph Kn. Sample a tree T =
(V,E) according to T . With probability at least 1 − 1/n
(in the randomness of T ), T is not realizable under any map
f : V → {0, 1}d and any weights w ∈ Rd. �us R(T, d) =
0. �
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A Related work

�e connections between Problem 1 and the related problems in
the literature fall into two broad categories: (1) �nding the best
map under some constraints (e.g., constrained embedding and met-
ric embedding), and (2) �nding the best metric for a given map (i.e.,
metric optimization). We delve into these connections below. In
the end, we would see that we cannot use existing results to solve
Problem 1. is

A.1 Constrained embedding

Euclidean minimum spanning tree realization. �e
EMST realization problem has important applications in graph
drawing and VLSI circuit design [3, 9].

De�nition A.1 (Euclidean minimum spanning tree (EMST) real-
ization). Let d, n ∈ N; let T = (V,E) be a tree on n vertices.
Let h :

(
V
2

)
→ Rd and let T ′ = (h(V ), E′) be the geometric

spanning tree on the points h(V ) under `2 with the smallest to-
tal edge-length. We say h EMST-realizes T if for all u, v ∈ V ,
{u, v} ∈ E if and only if {h(u), h(v)} ∈ E′. �

A restricted formulation of the EMST-realization problem is, in
fact, equivalent to Problem 1 for trees.

Claim A.1. Suppose w ∈ Rd realizes a tree T = (V,E) on a
�xed random map f . �en h = diag(ŵ) ◦ f EMST-realizes T
where the weights are ŵi =

√
wi, i ≤ d. On the other hand, if

h = diag(ŵ) ◦ f EMST-realizes T , then there is some positive real
θ so that the weights w ∈ Rd, de�ned as wi = ŵ2

i /θ, realizes T on
f . �

Proof. If w realizes T then according to (1),

‖h(u)− h(v)‖2 < 1 for all {u, v} ∈ E , and
‖h(u)− h(v)‖2 > 1 for all {u, v} 6∈ E .

Clearly, a spanning tree algorithm using the `2 metric will detect
this gap and the resulting tree T ′ will be identical to T .

On the other hand, suppose h = diag(ŵ)◦f EMST-realizes T ,
and let T ′ be the resulting unique geometric minimum spanning
tree on h(V ) under the `2 metric. Consider the T ′-edges incident
on a point h(u). Clearly, the lengths of these edges are strictly
smaller than ‖h(u)− h(u′)‖2 for any point h(u′) that is not a T ′-
neighbor of h(u). By assumption, T ′ is identical to T . Accounting
for the neighborhoods of all points h(u), u ∈ V , we conclude that
there must be some positive real θ so that

‖h(u)− h(v)‖2 < θ if and only if {u, v} ∈ T . (12)

Let Ŵ ,W and F be the matrices associated with the liner maps
ŵ, w and f . Let us also write the matrixW = Ŵ 2 and f(u) = Fu
where u is the uth standard basis vector of Rd. Let the matrix W ′
associated with the linear mapw′ be de�ned asW ′ , Ŵ/θ; de�ne
the linear map h′ , w′ ◦ f . �en

∥∥h′(u)− h′(v)
∥∥2

2
=
∥∥W ′F (u− v)

∥∥2

2
=
∥∥∥ŴF (u− v)

∥∥∥
2

2
/θ2

= ‖h(u)− h(v)‖22/θ
2 . (13)

By appealing to (12), it follows that the weightsw = (w1, . . . , wd),
de�ned aswi = w′i

2 would satisfy (1) and thus realize T on f .
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�e contrast between the EMST realization problem and Prob-
lem 1 lies in the role of the embedding f , i.e., whether it is an input
or an output. In connection with 6, suppose a map h = diag(ŵ)◦
f solves the EMST-realization problem. �en h is equivalent to the
following: First, imagine that the tree T = (V,E) colors the

(
n
2

)

elements of
(
V
2

)
as red (edges) or blue (non-edges). �en, we �x a

hyperplane hw given by its normal vector w = (1, . . . , 1) ∈ Rd.
Finally, we choose an embedding f : V → {0, 1}d such that
g(u, v) from (6) maps all red elements in one side of the hyper-
plane hw and all blue points in the other side of hw . �us, we
are free to choose f whereas in Problem 1, f is a given random
embedding.

Not all trees can be EMST-realized in low dimensions. Let ∆ be
the largest vertex degree in the tree. An R2-realization is always
possible if ∆ ≤ 5 but impossible if ∆ ≥ 7. In addition, deciding
whether an R2-realization is possible is NP-hard if ∆ ≤ 6 [3].
Likewise, an R3-realization is always possible if ∆ ≤ 10 [9], while
it is impossible if ∆ ≥ 12 [13].

Structure preserving embedding. A structure preserving
map (SPE) of a graph G into `d2 preserves some global or local
topological structure of a set of high-dimensional data points P
while projecting them into a space of lower dimension [17, 7, 18].
As mentioned in the beginning, this problem is a restricted embed-
ding problem and thus has a notional similarity with Problem 1. In
these problems, however, one has to infer the “structure” from P
itself, whereas in Problem 1, the structure is given as the adjacency
matrix. Moreover, it is hard to relate the data points P to the ver-
tices V or the mapping f(V ) in Problem 1; in particular, V does
not live in a metric space and the map f is random.

A.2 Metric embedding

Recall the metric embedding problem from [15, Ch. 15.1].

De�nition A.2 (D-embedding of metric spaces). A mapping f :
X → Y , where X is a metric space with a metric ρ and Y is
a metric space with a metric σ, is called a D-embedding, where
D ≥ 1 is a real number, if there exists a number r > 0 such that
for all x, y ∈ X ,

r · ρ(x, y) ≤ σ(f(x), f(y)) ≤ D · r · ρ(x, y) .

�e in�mum of the numbers D such that f is a D-embedding is
called the distortion of f . We express aD-embedding as (X, ρ)

D
↪→

(Y, σ). �
Problem 1 is di�erent from metric embedding, as follows. In a

metric embedding problem, we want to preserve all pairwise dis-
tances. However, in Problem 1, the map h has to preserve only
the adjacency relation A (given by G) on the mapped points. In
particular, let A :

(
V
2

)
→ {0, 1} be de�ned as A(u, v) = 1 if

and only if {u, v} ∈ E and Ah :
(
h(V )

2

)
→ {0, 1} be de�ned as

Ah(u, v) = 1 if and only if ‖h(u)− h(v)‖ < 1. �en h has to
satisfy A(u, v) = Ah(u, v) for all u, v ∈ V . In addition, A is not
a metric since it does not satisfy the triangle inequality.

However, a solution to Problem 1 is implied by a constant-
distortion metric embedding into a subset of `2. However, one
cannot embed a tree or a graph into `2 with a constant distortion;
a Ω(logn) distortion is necessary for graphs and a Ω(

√
log log n)

distortion is necessary for trees [14, 1, 11, 12]. It follows that we
cannot solve Problem 1 via metric embedding.

Claim A.2. Let ρ be the shortest-path metric for the unweighted,
undirected graph G = (V,E) and let ε ∈ [0, 1). Let d ∈ N and

f : V → {0, 1}d be arbitrary. If (V, ρ)
1+ε
↪→ ({0, 1}d, `2) then (4) is

satis�ed by the weights w , ω/4. �

Proof. First, we claim that {u, v} ∈ E i� ‖f(u)− f(v)‖2ω < 4. To
see why, observe that since G is unweighted, ρ(e) = 1 if e ∈ E
and ρ(e′) ≥ 2 if e′ ∈ E. For any e = {u, v} ∈ E and e′ =
{u′, v′} ∈ E, we have ‖f(u)− f(v)‖ω ≤ (1 + ε)ρ(u, v) < 2,
and ‖f(u′)− f(v′)‖ω ≥ ρ(e′) ≥ 2.

Consider the scaling w given by the weights w ∈ Rd, wi =
ωi/4. Since ‖·‖2w = ‖·‖2ω/4, the weights w would satisfy (4).

Observe that the metric space (f(V ), ‖·‖ω) is in fact isomor-
phic to (φ(V ), `2) for some φ : V → Rd which depends only on
f and w. �is completes the proof.

A.3 Optimizing a weighted `2 metric

In the Euclidean distance matrix realization problem [10], we are
given a set V and a matrix D̂ containing the desired pairwise dis-
tances for the elements in V . To realize D̂ in Rd, we have to �nd
a map h : V → Rd such that for all u, v ∈ V , ‖h(u)− h(v)‖2 in
fact equalsD(u, v). In [8], Hendrickson studied the conditions un-
der which a graph has a unique realization in this sense. Although
Problem 1 can be seen as a thresholded version of this distance ma-
trix realization problem—the adjacency matrix plays the role of the
distance matrix D̂. Unfortunately, the adjacency matrix does not
give a metric. (For example, it does not give a triangle inequality.)
Hence, the results concerning this problem do not directly apply
to our problem.

Metric learning. Under a suitable formulation, the supervised
metric learning problem requires one to learn a weighted `2 met-
ric on a given point-set P where the adjacencies are also given as
input [16]. In fact, in that study, one �nds a metric dA,W given
by the positive semide�nite matrix AWAT where W is diagonal
and A is arbitrary. �e goal is to make dA,W as close to the un-
weighted Euclidean metric as possible. Although this formulation
becomes identical to Problem 1 if we set A as the identity matrix,
an important issue is the random map f in Problem 1; in fact, the
data points in a learning task are not random. (Otherwise, how
could we learn anything about these points?)

Realizing a tree on biological data. A 2015 study [6]
studies a realization problem for a tree T = (V,E) on an embed-
ding f(V ) ⊂ {0, 1}d in `2. It studies the problem of realizing a
tree on gene-expression data. Speci�cally, the given rooted tree
T is a stem-cell di�erentiation tree for n = 38 cell-types. �e ver-
tices of T are di�erent cell-types and an edge indicates whether
two cell-types u and v are related. �e matrix F associated with
the embedding f is a d × n Boolean matrix where d = 22, 515.
Each row of F corresponds to a di�erent gene; there are d genes
in the study. �e entry f(u)i indicates whether the gene i ∈ [d]
is expressed in the sample corresponding to the cell-type u. �us,
the embedding of the cell-type u ∈ V is the uth column of F .

In this study, the authors ask whether the data points f(V ) can
explain the given tree T . Here, explanation means that there should
exist a map h = diag(ŵ) ◦ f capturing the underlying biological
phenomenon, i.e., which genes were important in generating the
given tree T . �ey formulated a linear program to �nd a feasible
set of non-negative weights w ∈ Rd while keeping the number
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of non-zero weights as small as possible. (�is is reminiscent of
the Semide�nite Programming (SDP) formulation of the celebrated
paper by Linial, London, and Rabinovich [11].)

A di�erence between the problem in [6] and Problem 1 is that
in their case, the embedding f was given by a biological mecha-
nism (i.e., gene expression) whereas in Problem 1, the embedding
is random.

B Proofs omitted in Sections 3 and 4

Claim 3.1

Proof. Fix a coordinate i. Below, we describe a stochastic process
for selecting the values {f(u)i}u∈V ; we call this the uniform edge-
sign process. It is as follows: (i.) Associate with each edge e ∈ E a
random variable σ(e) ∈ {0, 1}. (ii.) Independently for each edge
e ∈ E, �ip a fair two-sided coin; set σ(e) = 1 if and only if it
turns up head. (iii.) Select an arbitrary vertex u ∈ V and �ip a fair
two-sided coin; set f(u)i = 1 if and only if it turns up head. (iv.)
Finally, for each edge e = {a, b} ∈ T such that f(a)i is assigned
but f(b)i is unassigned, set f(b)i = f(a)i if σ(e) = 1; otherwise,
set f(b)i = 1− f(a)i.

We claim that the outcome of the uniform edge-sign process
is isomorphic to the outcome of the original process described
in Problem 1. In particular, the variables {f(u)i}u∈V are i.i.d.
Bernoulli random variables with parameter 1/2. In addition, in
both cases, we used n independent coin �ips to assign n bits of
information.

Now let us describe a biased version of the above process.
Speci�cally, let f be as in Problem 1 and as in the statement of
Claim 3.1, let us condition on the event that there are exactly pi|E|
edges {a, b} ∈ E such that f(a)i = f(b)i. As before, we can
de�ne an analogous edge-sign stochastic process. We need only
modify the step (ii.) of the uniform edge-sign process. We call the
resulting process the biased edge-sign process.

Speci�cally, let m = |E|, m′ = pi|E|, and let
(
E
m′
)

be the
collection of all size-m′ subsets of E. �e step (ii.) of the uniform
edge-sign process is modi�ed as follows: (ii.) Uniformly select an
element A ∈

(
E
m′
)
. For each e ∈ E, set σ(e) = 1 if e ∈ A;

otherwise, set σ(e) = 0.
Notice that the distribution of {f(u)i} generated by the bi-

ased edge-sign process is identical to the observed distribution of
{f(u)i}, i.e., exactly pi|E| of the σ(e)s are 1. Speci�cally, since
A is a random element of

(
E
m′
)
, the “edge signs” {σ(e)}e∈E have

i.i.d. Bernoulli distribution with parameter pi.
Let P be the unique path from u to v along T , whose length is

t. Let St =
∑
e∈P σ(e) and notice that St has a binomial dis-

tribution since σ(e) are i.i.d. Bernoulli random variables. De-
�ne c(t) , Pr[St is even ]. Since St has a binomial distribu-
tion with parameters (t, pi), it is not hard to show that c(t) =(
1 + (2pi − 1)t

)
/2. Note that c(t) also equals PrAgree(u, v, i)

conditioned on dT (u, v) = t where dT is the shortest-path metric
on T . �e claim follows.

Proposition B.1 (Anti-concentration). Let n ≥ 3. Let Z be a ran-
dom variable with the binomial distributionB(n−1, 1/2). Suppose
α ∈ (0, 1/2). �en

(1/2− α) < Pr
[
Z ≥ EZ + α

√
n
]
< 1/2 .

�

Proof. It is easy to see that Pr[Z > EZ + α
√
n] is less than 1/2

since the volume of a “proper” tail cannot exceed 1/2.
Note that the peak of a binomial distribution remains relatively

�at for small deviations from the mean. �e area under the pmf
curve in that region can be closely overestimated by a (slightly
larger) rectangle. �is rectangle will have width α

√
n and height(

n
n/2

)
where σ2 = n/4 is the variance of a binomial distribution

B(n, 1/2) andα is a small positive constant. We want to show that
the mass in the tail beyond n/2 + α

√
n is larger than a constant.

Let N = n− 1.

q = Pr
[
SN ≥ N/2 + α

√
n
]

= 1/2−
N/2+α

√
n∑

k=N/2

(
N
k

)

2N

> 1/2− (α
√
n)

(
N

N/2

)
2−N

≈ 1/2− (α
√
n)

[√
2√
π

2N√
N

]
2−N (Stirling)

= 1/2− α
√

2/π
√
n/N

> 1/2− α for n ≥ 3 .

Claim 3.2

Proof. Fix coordinate i. Let p , 1/2 + α
√
n and ε , εi = pi − p

where pi is the fraction of agreeing edges at coordinate i. Recall
that δi ≥ q(2pi − 1)(1 − pi). Substituting pi = p + ε, we get
δi ≥ q(2p + 2εi − 1)(1− p− εi) = q(2p− 1)(1− p) + λ(p, ε)
where λ(p, ε) = qε(3− 4p− 2ε). It follows that

(2pi − 1)(1− pi) ≥ (2α/
√
n)(1/2− α/√n) , (14)

or δi ≥ q(2p − 1)(1 − p), as long as λ(p, ε) ≥ 0. Since both q is
strictly positive, this inequality gives us ε ≤ 1/2 − 2α/

√
n. �is

condition is equivalent to requiring pi ≤ 1 − α/√n. Recall that
in Algorithm 1, we have put a stronger requirement that pi must
fall within the interval [p, 3/4] for wi to be 1. �erefore, if wi = 1
then λ(p, ε) ≥ 0. Since δi = 0 if wi = 0, it follows that δi ≥
q(2p−1)(1−p) = q(2α/

√
n)(1/2−α/√n) = qα/

√
n−2qα2/n.

Letβ ∈ (0, 1). �e above quantity will be at least (1−β)qα/
√
n

if 2qα2/n is at most βqα/
√
n; this is equivalent to requiring n ≥

4α2/β2. It remains to �nd a lowerbound for q = Pr[wi = 1] =
Pr[p ≤ pi ≤ 3/4] so that we can use it to lowerbound δi.

Let Z be a random variable with a binomial distributionB(n−
1, 1/2). Let a ∈ [0, 1], and de�ne Tail(a) , Pr[Z ≥ (n− 1)a].
According to Proposition B.1, Tail(p) > 1/2 − α. However,
Tail(p) = q+Tail(3/4), which implies q ≥ (1/2−α)−Tail(3/4).

Fact B.2. For any positive integer n and β ∈ [0, 1/2] such that βn
is an integer,

βn∑

k=0

(
n

k

)
≤ 2H(β)n ,

where H(β) is the binary entropy function de�ned as H(x) =
−x log2 x− (1− x) log2(1− x) for x ∈ [0, 1]. �

�erefore, Tail(3/4) =
∑n
k=3n/4

(
n
k

)
=

∑n/4
k=0

(
n
k

)
≤

2(H(1/4)−1)n ≤ 2−0.18n since H(1/4) ≤ 0.82. Consequently,
q ≥ (1/2− α)− 2−0.18n.
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We remark that if we use the uniformly random embedding f :
V → {x, y}d for arbitrary x, y ∈ R, then the δi in the above claim
is at least qs2(2α/

√
n)(1− α/√n) where s , |x− y|.

Lemma 3.3

Proof. Let X = D(u, v) and Y = D(u′, v′). �e random vari-
ables X and Y are sums of d independent sub-Gaussian compo-
nents, each component taking values in the interval [0, 1] of width
c , 1.

First, we want to show that Y −X > 0 with high probability.
Since (9) tells us E(Y −X) =

∑
δi ≥ dδ, it su�ces to show that

(Y − EY ) > θ > (X + EX) where θ = dδ/2.
LetHu,v be the event that for an arbitrary edge {u, v} ∈ E, X

is “too small” compared to its expectation. �en, by Hoe�ding’s
tail inequality, we have

Pr [Hu,v] = Pr{EX −X > θ}

< exp

(
− 2θ2

∑
i≤d c

2

)
= e−2θ2/c2d = e−dδ

2/2 . (15)

Similarly, let Hu,u′ be the event that for an arbitrary non-edge
{u, u′} ∈ E, Y is “too large” compared to its expectation. In this
case, we get PrHu,u′ = Pr{Y − EY > θ} < e−dδ

2/2.
Now, a bad event B is one of the above two events for some

vertex-pair in
(
V
2

)
. We want to show that the probability of this

event is at most an inverse polynomial in n. Using a union bound
over the (n− 1) tree edges and the remaining non-tree edges, we
get PrB ≤ n2e−dδ

2/2 = exp
(
2 logn− dδ2/2

)
.

�is probability will be at most 1/n = e− logn if −2 logn +
dδ2/2 ≥ logn, giving us d ≥ 6(logn)/δ2.

Lemma 4.1

Proof. In Algorithm 1’s context, let p , 1/2 + 1/4
√
n, and q =

Pr[wi = 1]. For every edge e = {u, v} ∈ G, let

r(e) , Pr
A

[e ∈ A] ,

and t be the length of the unique u-v path in A if it exists, and∞
otherwise. Notice that t = 1 if {u, v} ∈ A, and te ≥ 2 otherwise.

Fix a coordinate i and condition on the event thatwi = 1. Recall
the quantity PrAgree(e, i) (cf. De�nition 3.2) for an arbitrary edge
e = {u, v} ∈ G.

PrAgree(e, i|e ∈ G)

= r(e)PrAgree(e, i|e ∈ A) + (1− r(e))PrAgree(e, i|e 6∈ A)

= r(e) (PrAgree(e, i|e ∈ A)− PrAgree(e, i|e 6∈ A))

+ PrAgree(e, i|e 6∈ A)

�is implies, the gap δi is q times

PrAgree(e, i|e ∈ G)− PrAgree(e, i|e 6∈ G)

= r(e) (PrAgree(e, i|e ∈ A)− PrAgree(e, i|e 6∈ A))

+ PrAgree(e, i|e 6∈ A)− PrAgree(e, i|e 6∈ G)

= r(e) (PrAgree(e, i|e ∈ A)− PrAgree(e, i|e 6∈ A))

since conditioned on anyA, the last two terms are the same. Con-
tinuing, the δi is q times

r(e)
(
[1 + (2pi − 1)]/2− [1 + (2pi − 1)t]/2

)
using Claim 3.1

≥ r(e)
(
(2pi − 1)− (2pi − 1)2) /2 since t ≥ 2

= r(e) (2pi − 1)(1− pi) .

Writing r , mine r(e) and applying the reasoning from the proof
of Claim 3.2, it follows that δi ≥ r(1 − β)qα/

√
n if n ≥ 4α2/β.

Retracing our footsteps in the proof of �eorem 1, we see that tak-
ing d ≥ C · (n/r2) logn—where C is the constant in the proof
of �eorem 1—would su�ce for realizing G with probability at
least 1 − 1/n. Using β = 0.1, α = 1/4, and q ≥ 1/6 implies
n ≥ 25.

Effective resistance and Theorem 2.

De�nition B.1 (E�ective resistance). LetG = (V,E) be an undi-
rected graph corresponding to an electrical network where each
edge contains a unit resistance. For every vertex u ∈ [n], let u be
the uth standard basis vector of Rn i.e., uu = 1,uv = 0 for all
v 6= u. LetA be the adjacency matrix ofG and letD be a diagonal
degree matrix of G de�ned as D(u, u) = deg(u). �en the matrix
L = D − A is called the Laplacian matrix of G. Let L+ be the
Moore-Penrose pseudoinverse of L. (rank(L) = n − c where c
is the number of connected components of G.) �e e�ective resis-
tance between two vertices u, v is given by

Reff(u, v) = (u− v)TL+(u− v) .

�
�e e�ective resistance is intimately linked with many combi-

natorial properties of a graph. (Cf. [4] for further reading.) We
recall the following well-known fact.

Fact B.3. Let T be the set of all spanning trees of the undirected
graph G = (V,E). Sample a tree T uniformly at random from T .
�en PrT∼T [e ∈ T ] = Reff(e). Moreover, Reff(e) ≥ 2/n for any
e ∈ E. �

Suppose we take A as the set of all spanning trees of G in the
proof of �eorem 2. Using Fact B.3, we can see that r(u, v) =
Reff(u, v). �is gives d = O

(
(n logn)/ (mine Reff(e))2). Since

Reff(e) ≥ 2/n, d = O(n3 logn) in the worst case. �is bound is
weaker than what we get if we use the arboricity in the proof of
Corollary 2.

C Proofs omitted in Section 5

Let us make concrete the notion of “linear separability” which is
at the center of our argument.

De�nition C.1 (Linear separability). Two point-sets A,B ∈ Rd
are linearly separable (or separable in short) if there exists a hy-
perplane with a normal vector w such that 〈a,w〉 ≤ 〈b, w〉 for all
a ∈ A, b ∈ B. �

Radon’s Theorem and Theorem 3 A well-known theo-
rem in convex geometry is Radon’s theorem. It relates the linear
separability of point-sets with the ambient dimension. �e theo-
rem states that it is always possible to label any collection of at
least d + 2 points in Rd into two subsets which are not linearly
separable.

272



CCCG 2019, Edmonton, Canada, August 8–10, 2019

�eorem 6 (Radon’s �eorem). If B is a set of M points in Rd
with M ≥ d + 2, there exists a partition B0 t B1 = B such that
the convex hulls of B0 and B1 have a non-empty intersection. Con-
sequently, there can be no hyperplane separating B0 from B1. �

In our context, �eorem 6 says “for every point-set B = g
(
V
2

)
,

there exists a nonseparable partition of B.” However, we want to
show that “there exists a graph G = (V,E) such that the parti-
tion g(E) t g((E)) = B are nonseparable for every f .” �is re-
quires a change in the order of the two quanti�ers (the “for every”
and the “there exists”) in the statement of Radon’s theorem. Fortu-
nately, it turns out that a random partition just works: it e�ectively
lets us exchange the said quanti�ers. Moreover, a uniformly ran-
dom partition of

(
V
2

)
means G is an Erdős-Rényi random graph

G ∼ G(n, 1/2). �is notion is captured in �eorem 3 which is
somewhat more expensive than Radon’s theorem. Speci�cally, the
number of points inB needs to be at least 6d instead of just d+ 2.
Additionally, the claim of �eorem 3 holds only with a high prob-
ability.

Proposition 5.1

Proof. LetB ⊂ Rd. Let 〈x, y〉 = yTx =
∑
i xiyi for every x, y ∈

Rd.
Since the convex hulls of B0 and B1 do not intersect, the sepa-

rating hyperplane theorem implies that there exists a hyperplane
h such that

〈b, h〉 ≥ 1 for all b ∈ B0

〈c, h〉 ≤ 1 for all c ∈ B1

Let L be the above feasible linear system. We make the following
claim.

Claim. �e feasibility polytope P of the above linear system does
not contain an a�ne linear subspace of dimension 1. �

If the claim is true, P will have a vertex h∗ that meets d con-
straints, each a d − 1 dimensional facet of P . �is vertex cor-
responds to a separating hyperplane which satis�es d linear con-
straints of L with equality. Since each constraint is given by a
point of B, h∗ is supported by d points in B.

It remains to prove the claim. For the sake of contradiction,
assume that P contains an a�ne subspaceH = {h} of dimension
1 de�ned by the equation h = hx+λhy for some hx, hy ∈ P and
all λ ∈ R.

Suppose there exists a point b ∈ B that is not orthogonal to
the (separating) hyperplane hy i.e., 〈b, hy〉 6= 0. Such a point b
will always exist because otherwise, all points of B would lie on
the same line (normal to hy) and d would be one, violating the
condition that d = dim(span(B)) ≥ 2. Without loss of generality,
assume that b ∈ B0.

Since h ∈ H ⊆ P , it implies that for all λ ∈ R,

〈b, x+ λy〉 ≥ 1 for all b ∈ B0

〈c, x+ λy〉 ≤ 1 for all c ∈ B1

�us we can freely choose λ1, λ2 ∈ R and write h1 = hx +
λ1hy, h2 = hx + λ2hy such that h1, h2 ∈ H ⊆ P and 〈b, h1〉 ≤
1 ≤ 〈b, h2〉. Intuitively speaking, we have translated a separating
hyperplane h1 to a new separating hyperplane h2 along the direc-
tion hy . However, there is now a point b ∈ B which “satis�es”

only one of the hyperplanes h1, h2 but not both. �is is a contra-
diction, since both h1, h2 ∈ H ⊆ P are two feasible solutions of
L. �erefore, the claim must be true.

Proposition 5.2

Proof. LetHB be the set of hyperplanes that pass through exactly
d points of B. Suppose some hyperplane h ∈ HB separates B0

from B1 Fix h. We claim that the number of distinct binary label-
ings c : B → {B0, B1} that h can separate is 2 · 2d = 2d+1, as
follows. We have two choices for the symmetry ofB0 andB1 with
respect to h: one gets the labelB0 and the other gets the labelB1.
We also have 2d choices for the classi�cation of the d points which
support the hyperplane. What is the number of distinct random
partitions of the points of B that can be separated by some hyper-
plane (not just h)? By a union bound over all hyperplanes, this
number is at most 2d+1 |HB | = 2d+1

(
M
d

)
.

However, the total number of labelings c : B → {B0, B1} is
2M since one can encode such a labaling using an M dimensional
Boolean vector. Each labeling c induces a partition B0(c)tB1(c)
on B. Consider the partition induced by a random labeling r ∈
{0, 1}M . �e probability that this partition is separated by some
hyperplane h ∈ HB equals

Pr
r∼{0,1}M

[some h ∈ HB separates the partition B0(r) tB1(r) ]

≤ 2d+1
(
M
d

)

2M
≤
(
Me
d

)d

2M−d−1
=

(αe)d

2d(α−1)−1
,

where α , M/d, α > 1. �is quantity will be at most 1/d for all
d ≥ 3 if we set α ≥ 6.

�erefore, the probability that no d-supported hyperplane h ∈
HB separates the uniformly random partition B0 t B1 is at least
1− 1/d when d ≥ 3 and M ≥ 6d.

Theorem 5 While �eorem 3 applies to random graphs, it is
possible to modify Proposition 5.2 so that a similar statement ap-
plies to random graphs with (n− 1) edges.

Proof. One can make an argument similar to that in the proof of
�eorem 4. �e only place to change would be the proof of Propo-
sition 5.2. Let nt be the number of colorings (trees) that are sep-
arable (realizable) by some d-supported hyperplane. Although we
do not know an exact estimate on nt, it is certainly smaller than
the number of all colorings separable by some hyperplane passing
through d points. From the proof of Proposition 5.2, we know that
this number is

(
M
d

)
2d+1. Hence,

nt ≤
(
M

d

)
2d+1 ≤

(
Me

d

)d
2d+1

≤
(

(n2/2)e

d

)d
2d+1 = n2d(e/2d)d2d+1 ,

since M =
(
n
2

)
≤ n2/2. By Cayley’s formula, the number of

labeled trees on n vertices is nn−2. �us, the probability p that
a coloring, chosen uniformly at random from the colorings corre-
sponding to random spanning trees, is

p =
nt
nn−2

≤ (e/2d)d2d+1

nn−2−2d
.

273



31st Canadian Conference on Computational Geometry, 2019

p will be less than 1/n if

(e/2d)d2d+1

nn−2−2d
<

1

n

or, (e/2d)d2d+1 < nn−3−2d

or, d log(e/2d) + (d+ 1) log 2 < (n− 3− 2d) logn

or, d− d log(2d) + (d+ 1) log 2 < (n− 3− 2d) logn

or, d+ log 2 + (2d+ 3− n) logn < d log(d).

By se�ing d ≤ n/2, the le�-hand side is at most n/2 +
log 2 + 3 logn, which is strictly smaller than the right-hand side
(n/2) log(n/2) when n ≥ 17.

�erefore, with probability 1 − 1/n, a random spanning tree
of the complete graph Kn is not realizable by any real weights
w ∈ Rd and any map f : V → {0, 1}d when d ≤ n/2 and
n ≥ 17.
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The extrinsic nature of the Hausdorff distance of optimal triangulations of
manifolds

Gert Vegter ∗ Mathijs Wintraecken †

Abstract

Fejes Tóth [5] and Schneider [9] studied approximations
of smooth convex hypersurfaces in Euclidean space by
piecewise flat triangular meshes with a given number
of vertices on the hypersurface that are optimal with
respect to Hausdorff distance. They proved that this
Hausdorff distance decreases inversely proportional with
m2/(d−1), where m is the number of vertices and d is
the dimension of Euclidean space. Moreover the pro-
portionality constant can be expressed in terms of the
Gaussian curvature, an intrinsic quantity. In this short
note, we prove the extrinsic nature of this constant for
manifolds of sufficiently high codimension. We do so by
constructing an family of isometric embeddings of the
flat torus in Euclidean space.

1 Introduction

In [5] Fejes Tóth introduced inscribed triangulations ap-
proximating convex surfaces in R3 optimally and the
‘Approximierbarkeit’ (approximation parameter A2).
By a triangulation we shall mean a geometric realization
of a simplicial complex in Euclidean space homeomor-
phic to the surface, that is piecewise linear in ambient
space. From now on we take a simplicial complex to
mean the geometric realization.

Optimal triangulations Tm with m vertices are tri-
angulations which minimize the Hausdorff distance be-
tween the surface and the simplicial complex when this
simplicial complex ranges over the space of triangula-
tions with m vertices. We always assume that the ver-
tices lie on the surface.

The Hausdorff distance between two subsets X and
Y in a Euclidean space of arbitrary but fixed dimension
d is defined as:

dH(X,Y ) = max{sup
x∈X

inf
y∈Y
|x− y|, sup

y∈Y
inf
x∈X
|x− y|},

where |x − y| denotes the standard Euclidean distance
of x and y. The one-sided Hausdorff distance from X
to Y is given by

doH(X,Y ) = sup
x∈X

inf
y∈Y
|x− y|.

∗Johann Bernoulli Institute for Mathematics and Computer
Science, Rijksuniversiteit Groningen, g.vegter@rug.nl
†IST Austria, mathijs.wintraecken@ist.ac.at

The inverse of the asymptotic value of the product
of the number of vertices and the Hausdorff distance is
referred to as the Approximierbarkeit A2.

Let K be the Gaussian curvature of the surface Σ ⊂
R3, and let dVol denote the volume (area) form on the
surface. Fejes Tóth [5] gave the expression

1

A2
= lim
m→∞

dH(Σ, Tm)m ≥ 1√
27

∫

Σ

√
KdVol, (1)

for the Approximierbarkeit for convex surfaces in three
dimensional Euclidean space.

Schneider [9] generalized the discussion of Fejes Tóth
to convex hypersurfaces (Σ) in Euclidean space of ar-
bitrary dimension. The formula for Ad−1, derived by
Schneider reads

1

Ad−1
= lim
m→∞

m2/(d−1)dH(Σ, Tm)

=
1

2

(
θd−1

κd−1

∫

Σ

√
K(x)dVol

)2/(d−1)

, (2)

where κd = πd/2/Γ(1 + d/2) is the volume of the d-
dimensional unit ball, θd the covering density of the ball
in d-dimensional space, dVol the volume form and K the
Gaussian curvature. The covering density is defined as
the infimum of the density over all coverings of, in this
case, Euclidean space by the Euclidean unit ball, see
for example [8]. The density of a cover U = {Ui} of a
compact measurable space with volume form dVol by
a finite number of sets Ui is defined as follows: Let fU
be the integer valued function whose value fU (x) at a
point x is the number of sets Ui such that x ∈ Ui. The
density for the covering U is

∫
fU dVol∫

dVol
.

Formula (2) is intrinsic in nature, because the Gaus-
sian curvature is intrinsic. Generally, we call a quantity
intrinsic if it depends only on the geometry of the sur-
face or manifold itself. On the other hand a quantity
is called extrinsic if depends on the embedding in the
ambient space. If we for example consider a topologi-
cal circle or loop in the plane, the length of the circle
is intrinsic, while the curvature is not. This is because
one can deform the loop without changing the distances
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between the points on the loop (as measured along the
loop).

To make our statement concerning (2) more precise
we note that the Gaussian curvature is invariant under
isometry if d−1 is even and invariant up to sign if d−1
is odd, see [11, Chapter 7, Proposition 24]. It is clear
that here the positive sign is the relevant one, because
expression and thus the root

√
K must be real.1

We will show that the intrinsic nature of the approxi-
mation parameter is particular to low co-dimension, by
giving a sequence of isometric embeddings Ek(Σ) of a
surface Σ such that 1

A2
(Ek(Σ)) tends to infinity with k.

This means that there is no intrinsic quantity that can
bound 1

A2
(Ek(Σ)).

This makes heuristically some sense because the rigid-
ity of a manifold disappears if the codimension of the
embedding is sufficiently high, as was noted by Nash in
[6]. In the setting of Nash, rigidity concerns metric pre-
serving perturbations of the embedding. Nash proved
that a compact n-manifold with a Ck Riemannian met-
ric has a Ck isometric embedding in any small volume of
Euclidean (n/2)(3n + 11)-space, provided 3 < k ≤ ∞.
So roughly speaking, one can squash a manifold in a
small volume without affecting the intrinsic metric, but
this would lead to wrinkles (and a build-up of extrinsic
curvature).

This is the complete opposite of manifolds embedded
in Euclidean space of codimension one, where manifold
with non-zero curvature are embedded rigidly. Rigidity
here means that an isometric embedding is unique up to
Euclidean motions. Euclidean motions are generated by
rotations and translations. We refer to Spivak [10, 12]
for an overview of results on rigidity.

Our interest in the extrinsic nature was raised by the
upper bounds on

lim
m→∞

dH(M,T om)mn/2,

where M is an n-dimensional manifold embedded in Eu-
clidean space and T om denotes an optimal triangulation
of M . These bounds have been discussed in the Mas-
ter’s thesis of David de Laat [3]. Similar upper bounds
were the topic of, among others2, Chen, Sun and Xu[2].
These authors studied the Lp norm of the difference
between a function and a linear approximation of this
function. The bounds in [3] and [2] are defined in terms
of the Hessian and thus extrinsic in nature. Our result
below, gives us that the extrinsic nature of the bounds
is unavoidable:

Theorem 1 Let M be a Riemannian surface, then
there is generally no function f(g, ∂g, . . .) which depends

1We know that for a large class of negatively curved surfaces
in R3 that 1

A2
is proportional to

∫ √
|K|dA, see [1, 7, 13].

2The introduction of [2] offers an extensive literature overview.

only on the metric and all its derivatives and a constant
c̃ such that

lim
m→∞

dH(Tm, E(M))m ≤ c̃
∫

M

fdVol,

where E(M) denotes the embedding of the manifold in
Euclidean space and dVol the volume form.

We prove the theorem by constructing an explicit ex-
ample of a family of embeddings, which we’ll describe
in detail in the next section.

2 The construction of a sequence of embeddings

We consider a family of isometric embeddings E :
S1 × S1 → Rn of the flat torus, whose members are
discriminated by the index k ∈ Z≥1. We write

lim
m→∞

dH(Ek, Tm)m = cEk
,

where Ek indicates a member of the family of isometric
embeddings of S1 × S1, Tm is an optimal triangulation
with m vertices that lie on Ek. cEk

is a real number
depending on Ek. For the family of embeddings, we
construct we have

lim
k→∞

cEk
=∞.

To simplify the calculations we focus3 on embeddings
in R8. We shall study the family of embeddings of the
flat torus Ek parameterized by k ∈ Z≥1:

Ek(θ, ϕ) = ( cos(θ), sin(θ), cos(kθ)/k, sin(kθ)/k,

cos(ϕ), sin(ϕ), cos(kϕ)/k, sin(kϕ)/k)

Ek = {Ek(θ, ϕ) | θ ∈ [0, 2π], ϕ ∈ [0, 2π]}.

Note that ψ 7→ (cos(ψ), sin(ψ), cos(kψ)/k, sin(kψ)/k),
is an embedding of the circle in R4. This makes Ek an
embedded flat torus.

Because Ek contains no straight line segments, we see
that

Lemma 2 For each (fixed) k the edge length of each
edge in a triangulation Tm tends to zero as dH(Tm, Ek)
tends to zero.

Proof. Suppose that there is a subsequence Tm(l) for
which the length of edges em(l) ∈ Tm(l) does not tend
to zero. Without loss of generality we can assume (by
chosing a convergent subsequence) that em(l) converges
to a limit line element, whose length by assumption is
not zero. Because we assume that the Hausdorff dis-
tance dH(Tm(l), Ek) tends to zero, this line element lies
within Ek, which contradicts the fact that Ek contains
no straight lines. �

3It should be possible to prove the result for embeddings in
R4, where the flat torus is not rigid, but the calculations would
be significantly more difficult.
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Because of Lemma 2 we may locally approximate the
surface. In particular the tangent plane of the surface in
the neighbourhood of a triangle is asymptotically well
defined, because the triangle becomes small. Secondly,
we may employ the natural group action of (SO(2))4 on
the ambient space R8 to shift a given point on the torus
to the origin. This means that we can approximate the
surface, parametrized by Ek, locally by

(1− θ2/2, θ, 1− θ2/(2k), θ, 1− ϕ2/2, ϕ, 1− ϕ2/(2k), ϕ),

where (θ, ϕ) are near the origin, and thus through a
translation by

Σk(θ, ϕ) ' (−θ2/2, θ,−θ2/(2k), θ,−ϕ2/2, ϕ,−ϕ2/(2k), ϕ).

Furthermore we may assume that the vertices of a tri-
angle are Σk(0, 0) = 0 ∈ R8, Σk(θ1, ϕ1), Σk(θ2, ϕ2).

We shall employ techniques similar to the ones em-
ployed by Fejes Tóth [5] to find a lower bound for 1

A2
.

To be precise we fix the one-sided Hausdorff distance
for a family of triangles and search for the triangle in
the family with the largest area. The area of surface
divided by the area of the largest triangle in the family
will give a bound on the number of triangles needed in a
triangulation that attains the fixed Hausdorff distance.

Because the number of triangles (m̃), edges (e) and
vertices (m) are related by the fact that every triangle
has three edges and each edge is shared by two triangles
as well as the formula for the Euler characteristic χ =
m̃ − e + m a bound on 1

A2
follows. Here we are only

interested in (rough) lower bounds, so it suffices to fix
some lower bound on the Hausdorff distance and then
determine some upper bound on the area of the triangles
in a triangulation satisfying this bound.

To be able to fix a bound on the Hausdorff distance
we calculate the following:

Lemma 3 The one-sided Hausdorff distance doH of a
triangle on the surface parametrized by Σk(θ, ϕ) with
vertices (0, 0), (θ1, ϕ1) and (θ2, ϕ2) satisfies:

doH ≥ η =
1

8

√
1 + k2 max

{√
θ4

1 + ϕ4
1,
√
θ4

2 + ϕ4
2

}

+O(|(θ, ϕ)|2).

Proof. A point p on the triangle with vertices (0, 0),
(θ1, ϕ1) and (θ2, ϕ2) will be given as p = Σk(θ1, ϕ1)λ1 +
Σk(θ2, ϕ2)λ2, with λ1 ∈ [0, 1] and λ2 ∈ [0, 1 − λ1]. We
now want to find the point on the surface Σk(θc, ϕc)
which is closest to p. This point is determined my the
following equations:

∂θ|p− Σk(θ, ϕ)|2 = 0

∂ϕ|p− Σk(θ, ϕ)|2 = 0.

It is not difficult to verify that θc ' θ1λ1 + θ2λ2 and
ϕc ' ϕ1λ1+ϕ2λ2, where ' denotes equality up to linear

order in θi, ϕi. This means that the distance between a
point on the triangle and the surface is approximately
given by

‖Σk(θ1, ϕ1)λ1 + Σk(θ2, ϕ2)λ2

− Σk(θ1λ1 + θ2λ2, ϕ1λ1 + ϕ2λ2)‖

=

∣∣∣∣
(

(θ1λ1 + θ2λ2)2/2− θ2
1

2
λ1 −

θ2
2

2
λ2, 0,

k(θ1λ1 + θ2λ2)2/2− k θ
2
1

2
λ1 − k

θ2
2

2
λ2, 0,

(ϕ1λ1 + ϕ2λ2)2/2− ϕ2
1

2
λ1 −

ϕ2
2

2
λ2, 0,

k(ϕ1λ1 + ϕ2λ2)2/2− kϕ
2
1

2
λ1 − k

ϕ2
2

2
λ2, 0

)∣∣∣∣.

For the choice λ1 = 1/2, λ2 = 0 and λ1 =
0, λ2 = 1/2 this yields

√
1 + k2

√
θ4

1 + ϕ4
1/8 and√

1 + k2
√
θ4

2 + ϕ4
2/8 respectively, so

dH ≥ η =
1

8

√
1 + k2 max

{√
θ4

1 + ϕ4
1,
√
θ4

2 + ϕ4
2

}

+O(|(θ, ϕ)|2).

�

From Lemma 3 we can conclude that

8√
1 + k2

η ≥ θ2
1, θ

2
2, ϕ

2
1, ϕ

2
2.

On the other hand the area of the triangle is approxi-
mately equal to

|ϕ1θ2 − θ1ϕ2|/2.

So the area of a triangle is bounded from above by

4√
1 + k2

η. (3)

Let us denote by πEk
the closest point projection

onto Ek. Although it seems intuitively clear that the
projection πEk

of Tm to Ek is surjective for sufficiently
small Hausdorff distance, it is not so easy to prove. We
will use that any point in Ek must be at most a dis-
tance dH(Tm, Ek) from a (projected) triangle πEk

(t) in
πEk

(Tm). We furthermore recall that Theorem 4.8(8)
of [4] gives us that the closest point projection on a set
of positive reach S is a Lipschitz map with Lipschitz
constant

rch(S)

rch(S)− δ ,

where rch denotes the reach and δ an upper bound on
the distance of the points to the set, that is the dis-
tance between the medial axis and the set itself. As the
Hausdorff distance tends to zero the Lipschitz constant
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of the projection tends to 1. Using this we see that
the area of the dH -neighbourhood of a triangle πEk

(t)
equals the area of the triangle t itself plus the length of
the boundary times dH plus higher order terms. Using
the estimates in Lemma 3 we find that the area of the
neighbourhood is Area(t) + O(Area(t)1/2dH) or equiv-

alently Area(t) + O(d
3/2
H ). So up to leading order the

bound of (3) on the area holds even after projecting and
with a safe margin.

As we already noted above, the number of triangles
m̃ in a triangulation is bounded from below by

Area(tmax)m̃ & Area(Ek),

where & is used to suppress terms that are not of leading
order in the Hausdorff distance, Ek denotes the embed-
ding of the surface and tmax denotes the biggest triangle
in the triangulation. These considerations give us

dHm & ηm

& ηArea(Ek)

Area(4)

& η (4π)2

4η/
√

1 + k2

= 4π2
√

1 + k2

This implies that

lim
m→∞

dH(Tm, Ek)m ≥ 4π2
√

1 + k2.

The result is summarized in the main theorem

Theorem 1 Let M be a Riemannian surface, then
there is generally no function f(g, ∂g, . . .) which depends
only on the metric and all its derivatives and a constant
c̃ such that

lim
m→∞

dH(Tm, E(M))m ≤ c̃
∫

M

fdVol,

where E(M) denotes the embedding of the manifold in
Euclidean space and dVol the volume form.

In this theorem we could have absorbed c̃ in f(g).
However, we have chosen this form to mimic the tradi-
tional form of the result of Fejes Tóth [5] and Schneider
[9]. The generalization of the above theorem to mani-
folds of arbitrary dimension is straightforward, because
one can take cross product of our example with any
other manifold and find the same result.

3 Open question: rigidity

If the embedding of a manifold M is rigid then

lim
m→∞

mdH(M,Tm)(n−1)/2,

where again Tm is optimal, must only depend on intrin-
sic quantities. This is because any two embeddings are
the same up to Euclidean motions and thus the intrin-
sic geometry determines the geometry of the embedding
completely.

What the converse statement should be is not so clear.
For example the cylinder with boundaries S1 × [a, b] is
non-rigid, while the limit ofmdH(M,Tm) is independent
of embedding, albeit zero. It would be interesting to
understand the exact relation between rigidity and the
asymptotic behavior with respect to m of dH(M,Tm)
better. Results in this direction could also provide a
different perspective on combinatorial rigidity.
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